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1. Introduction  

Cellular DNA is constantly being damaged not only by extrinsic factors such as ionizing 
radiation and environmental carcinogens but also by intrinsic agents such as reactive 
oxygen species arising during normal cellular metabolism. Of the myriad of DNA lesions, 
inflicted by extrinsic and intrinsic genome damaging agents, DNA double strand break 
(DSB) is the most threatening. Replication fork arrest at DNA lesions could also be a threat 
since stalled replication forks, if fail to restart appropriately, induce DNA strand breaks. 
When cells encounter such strand breaks and other types of DNA damage, they mount a 
DNA damage response (DDR) (Harper & Elledge, 2007) that senses DNA damage and 
initiates a cascade of signal transduction pathways consequently culminating in cell cycle 
arrest, DNA repair and/or apoptosis when the DNA lesions become irreparable. Although 
cells are equipped with such DNA damage sensing and repair machinery primarily to 
handle damaged cellular DNA, triggers and receivers of DDR are not necessarily the cells' 
own genetic materials. DDR can also be provoked by essentially non-damaged DNA 
exogenously introduced into cells, most commonly viral genetic materials in nature and 
recombinant DNA (e.g., viral vectors for gene delivery) in laboratory.  
During virus-host interaction, viruses manipulate DDR upon infection of cells in a way that 
benefits their life cycles, while host cells fight against them to eliminate the invaders. DDR is 
detrimental to viral life cycles in many instances; therefore, DDR is often viewed as an innate 
antiviral host defense mechanism. For example, adenoviruses express viral proteins that block 

                                                                 
1 Abbreviations: AAV, adeno-associated virus; ATM, Ataxia telangiectasia mutated; ATR, Ataxia 
telangiectasia and Rad3 related; ATR-IP, ATR-interacting protein; BLM, Bloom syndrome protein; 
CARE, the cis-acting replication element within the p5 promoter; DDR, DNA damage response; DNA-
PKcs, DNA-dependent protein kinase catalytic subunit; ds, double-stranded; DSB, double strand break; 
HR, homologous recombination; MRN, Mre11/Rad50/NBS1; NHEJ, non-homologous end joining; 
rAAV, recombinant AAV; RBS, Rep-binding site; RPA, replication protein A; SCID, severe combined 
immune deficiency; ss, single-stranded; TopBP1, DNA topoisomerase II-binding protein 1; WRN, 
Warner protein; wtAAV, wild type AAV. The demarcation between wtAAV and rAAV is often not 
important. If this is the case, AAV without wt or r prefix is used. 
2 Current affiliation: Department of Molecular & Medical Genetics, Oregon Health & Science University School 
of Medicine, USA 
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the cellular non-homologous end joining (NHEJ) pathway, which, unless inactivated, 
concatemerizes viral genomes and prohibits viral genome packaging into virions (Evans & 
Hearing, 2005; Stracker et al., 2002). Viruses may also take advantage of DDR in their life cycle 
as seen in retroviruses, which exploit the NHEJ pathway to complete insertion of their 
genomic materials into host cellular DNA (Daniel et al., 1999; Li et al., 2001). Similar but 
distinct types of "intervention" by viruses on DDR have been found in many other viruses 
(Lilley et al., 2007; Weitzman et al., 2004, 2010). Thus, understanding DDR and DNA repair 
machinery is imperative for elucidating the biology of viruses and viral vectors, and 
conversely, studying virus biology provides new insights into fundamental biological 
processes elicited by DNA damage. In this context, interactions between viruses and host DDR 
and DNA repair machinery have recently gained attention and established a new area of basic 
research. Importantly, this field of study is relevant to gene therapy research in overcoming its 
limitations and drawbacks and improving the current molecular therapy approaches. 
Adeno-associated virus (AAV) represents a good example for exploring this new research 
field, which studies the interactions between viruses and DNA repair machinery. AAV has 
become increasingly popular as a promising gene delivery vehicle. Wild type AAV 
(wtAAV) is replication defective and recombinant AAV (rAAV) is devoid of virally encoded 
genes. Despite their replication-defective nature and/or lack of expression of viral proteins, 
there are significant interactions between virus and host DNA repair machinery, which 
determine the fates of the virus and the host cells following infection. In this chapter, we 
provide an overview of how wtAAV and rAAV alter the fate of the host cells through DDR, 
and how DDR processes the viral genomic DNA by exerting DNA repair machinery to 
establish the lytic and latent life cycles of wtAAV and transduction of rAAV. 

2. Adeno-associated virus (AAV) 

Adeno-associated virus (AAV) is a non-enveloped replication-defective animal virus of 
approximately 20 nm in diameter (Figure 1a). It belongs to Dependovirus, a genus of the 
family Parvoviridae, which has a viral capsid in the simplest icosahedral shape composed of 
60 units of viral structural proteins. Productive AAV replication requires co-infection of a 
helper virus such as adenoviruses and herpesviruses. A virion has an approximately 5-kb 
single-stranded DNA genome of either plus or minus polarity at an equal probability. AAV 
serotype 2 and many other serotypes are prevalent in human populations worldwide and 
up to 80% of adult humans have been infected with AAV in their childhood (Boutin et al., 
2010; Calcedo et al., 2009; Erles et al., 1999). AAV is generally considered as a non-
pathogenic virus, and clinical relevance of AAV infection in humans appears to be limited to 
male infertility (Erles et al., 2001), early miscarriage in pregnant women (Burguete et al., 
1999; Pereira et al., 2010) and protection against cervical cancer (Su & Wu, 1996; Walz & 
Schlehofer, 1992) although some studies have shown negative results (Strickler et al., 1999). 
The current relevance of AAV in biological and medical research primarily stems from its 
benefits as a tool for gene delivery and genetic engineering of the cellular genome and as a 
refined agent for inducing DDR without damaging the cellular genome (Table 1).  

2.1 Wild type adeno-associated virus serotype 2 (wtAAV2)  
2.1.1 Structural organization of wtAAV2  
AAV was first identified as a contaminant in adenovirus stocks in early 1960s (Atchison et 

al., 1965). Since infectious wild type AAV2 (wtAAV2) clones were generated from  
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AAV-derived 
agents and 

tools 
Applications 

rAAV of any 
serotypes 

• Delivery of exogenous genetic materials to cells with no 
toxicity 

• Targeted genetic manipulation of cells (i.e., precise 
introduction of insertion, deletion or a small mutation at a 
defined location in the cellular genome in a predicted 
manner) 

• Introduction of DDR without damaging the cellular genome 

• Identification of DNA breakage sites in the cellular genome 
 

wtAAV2 • Introduction of DDR without damaging the cellular genome 

• Tumor cell-specific killing  
 

Rep68/78 • Site-specific insertion of exogenous genetic materials at the 
AAVS1 site in the human chromosome 19q13.42 

Table 1. AAV as biological agents and tools 

 

 

Fig. 1. Wild-type AAV (wtAAV) and recombinant AAV (rAAV). (a) Structural organization 
of wtAAV and rAAV. wtAAV genome is a single-stranded DNA with ITRs at the both ends. 
The two viral genes (the rep and cap genes) encode five non-structural (Rep and AAP) and 
three structural (VP) proteins, and they are controlled by the three viral promoters (p5, p19, 
and p40). AAV virion particle consists of VP1, VP2, and VP3. AAP supports assembly of VP 
proteins. rAAV genome is devoid of the viral components except for the ITRs, and contains 
an exogenous DNA of interest. (b) Representative photomicrographs of XGal-stained 
sections of the murine liver and heart transduced AAV8-EF1α-nlslacZ and AAV8-CMV-lacZ 
vectors at a high dose (7.2.x 1012 viral particles per mouse), respectively. All the hepatocytes 
and cardiomyocytes express the lacZ marker gene product, which turns transduced cells 
blue by the XGal staining. 
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recombinant plasmids (Samulski et al., 1982), AAV2 has been most extensively studied for 
viral capsid structure, genome organization, virally encoded protein functions, AAV life 
cycle and infection pathways (reviewed in Berns & Parrish, 2007; Carter et al., 2009; Smith 
& Kotin, 2002). WtAAV2 has a single-stranded DNA genome of 4679 nucleotides (nt) in 
length (GenBank accession no. AF043303) that comprises the region encoding 2 viral 
genes (e.g., the rep and the cap genes), their promoters (p5, p19 and p40 promoters), a 
polyadenylation signal, and two 145-nt inverted terminal repeats (ITR) forming T-shaped 
DNA hairpins at each viral genome terminus (Figure 1a). WtAAV2 expresses a total of 3 
structural proteins (VP1, VP2 and VP3 from the cap gene) and 5 non-structural proteins 
(Rep40, Rep52, Rep68, and Rep78 from the rep gene and AAP from an alternative open 
reading frame from the cap gene). VP proteins form the AAV viral capsids while Rep 
proteins play roles in viral genome replication, packaging and site-specific viral genome 
integration at the AAVS1 site in the human chromosome 19 (Kotin et al., 1990, 1992). AAP 
protein (AAP stands for assembly-activating protein), which was identified in 2010, plays 
a role in directing VP proteins to nucleolus, the organelle where new AAV virions 
assemble (Sonntag et al., 2010).  

2.1.2 The viral life cycle of wtAAV2  
The life cycle of wtAAV2 consists of the lytic and the latent phases. Following infection 

through its surface receptors including heparan sulfate proteoglycan (Summerford & 

Samulski, 1998), wtAAV2 viral particles are carried to the nucleus where single-stranded 

viral genomes are released from virions into nucleoplasm. When an adenovirus co- or 

super-infects cells that are infected with wtAAV2, adenovirus helper functions are supplied 

and wtAAV2 enters the lytic phase where productive viral genome replication takes place. 

Adenoviral E1a, E1b55k, E4orf6, DNA-binding protein (DPB), and virus-associated RNA I 

(VAI-RNA) have been identified as the helper functions required for the growth of wtAAV2 

and rAAV (Berns & Parrish, 2007; Geoffroy & Salvetti, 2005). In the lytic cycle, there are 

significant interactions between viral components and host DDR mediated by adenoviral E1 

and E4 gene products and AAV large Rep proteins (i.e., Rep68/78). The interactions are 

primarily aimed at blocking the cell cycle and suppressing the NHEJ DNA repair pathway 

(more details are described in 3.2.). 

In the absence of helper virus co-infection, most of the viral genomes are lost during cell 

division in dividing cells because they do not replicate or segregate together with  

the cellular genome into daughter cells. However, a certain proportion of AAV genomes 

establishes a latent phase by integration into the cellular genome, particularly at  

the AAVS1 site located within the human chromosome 19q13.42 (Kotin et al., 1992; 

Samulski et al., 1991). The AAVS1 site has a 33-nt DNA sequence within the myosin 

binding subunit (MBS) 85 gene and this short DNA sequence serves as the target for  

the site-specific integration (Linden et al., 1996b; Tan et al., 2001). The site-specific 

integration process requires expression of Rep68/78, which binds to a GCTC repeat 

element termed Rep binding site (RBS) and creates a nick at a nearby 3'-CCGGT/TG-5', 

designated terminal resolution site (trs). A set of these two recognition sequences is 

located within the AAV-ITR and the AAVS1 site (Brister & Muzyczka, 1999; McCarty et 

al., 1994). Several cellular factors have been shown to modulate Rep68/78-mediated site-

specific integration (Figure 2b), although the experimental observations appear to be  

in conflict in some aspects. High mobility group protein 1 (HMG1) binds to Rep78, 
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enhances its RBS binding and nicking activities, and promotes site-specific integration at 

the AAVS1 site (Costello et al., 1997). In addition, the human immunodeficiency virus 

type 1 (HIV-1) TAR RNA binding protein 185 (TRP-185) binds to the RBS within the 

AAVS1 site, interact with Rep68, enhances Rep68's helicase activity, and controls selection 

of AAV genome integration sites within the AAVS1 locus (Figure 2b) (Yamamoto et al., 

2007). This mode of latency is unique to wtAAV2 among the animal viruses, and is the 

case at least in cultured cells. In latently-infected human tissues, a majority of wtAAV2 

genomes persist as circular genomes and no site-specific integration has been 

demonstrated even by sensitive PCR-based assays (Schnepp et al., 2005); therefore, the 

significance of the site-specific integration of wtAAV2 in natural infection in humans 

remains elusive. 

2.1.3 wtAAV2 viral components that evoke DDR 
Among the viral components, large Rep proteins, the cis-acting replication element (CARE) 

within the p5 promoter (Fragkos et al., 2008; Francois et al., 2005; Nony et al., 2001; Tullis  

&  Shenk, 2000), AAV-ITR, and the unusual single-stranded nature of the viral genome  

are particularly important in AAV-evoked DDR and interaction with DNA repair 

machinery. These elements could potentially activate DDR without AAV viral genome 

replication. 

2.2 Recombinant AAV (rAAV) vectors 
Recombinant AAV (rAAV) vectors are genetically-engineered viral agents that carry 

heterologous DNA to be delivered to target cells and are devoid of all the viral genome 

sequence except for the 145-nt (ITR) at each genome terminus. Until early 2000s, rAAV 

vectors were primarily derived from AAV2 due to the limited availability of alternative 

serotypes at that time. rAAV2 vectors have a broad host range and outstanding ability to 

deliver genes of interest to both dividing and non-dividing cells of various types in vitro. 

However, rAAV2 exhibits limited transduction efficiency in tissues and organs in vivo when 

administered in experimental animals. This drawback of rAAV2 has recently been overcome 

by the discovery of new serotypes exemplified by AAV serotypes 8 and 9 (AAV8 and 

AAV9) (Gao et al., 2002, 2004). rAAV vectors derived from serotypes alternative to AAV2 

have become widely available at present and been shown to exhibit unprecedented robust 

transduction in various tissues and organs by intravascular injection of the vector (Figure 

1b) (Foust et al., 2009; Ghosh et al., 2007; Inagaki et al., 2006; Nakai et al., 2005a; Sarkar et al., 

2006; Vandendriessche et al., 2007; Wang et al., 2005). It should be noted that alternative 

serotype rAAV vectors are in general those containing a rAAV2 viral genome encapsidated 

with an alternative serotype viral coat (i.e., pseudoserotyped rAAV2 vectors) (Rabinowitz et 

al., 2002). Therefore, they are often referred to AAV2/8 and AAV2/9 (genotype/serotype) 

when rAAV2 genome is contained in AAV8 and AAV9 viral coats, respectively. In addition 

to the exploitation of AAV capsids derived from various serotypes and variants present in 

nature, recent advances in genetic engineering of viral capsids aiming for the creation of 

specific cell type/tissue-targeting vectors have significantly broadened the utility of this 

vector system (Asokan et al., 2010; Excoffon et al., 2009; Koerber et al., 2009; Yang et al., 

2009). Double-stranded (ds) rAAV vectors and gene targeting rAAV vectors are also worthy 

of note. Ds rAAV contains a ds viral genome in place of a single-stranded (ss) DNA 
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(McCarty, 2008). Because ds rAAV vectors overcome the rate-limiting step in transduction, 

i.e., conversion from ss to ds DNA in infected cells, they exhibit a 1-2 log higher transduction 

efficiency than that achievable with the conventional ss vectors (McCarty et al., 2003; Wang 

et al., 2003). Gene-targeting rAAV vectors have the ability to introduce genomic alterations 

precisely and site-specifically at high frequencies of up to 1% (Russell & Hirata, 1998; 

Vasileva & Jessberger, 2005), which is several logs higher than that achievable by the 

conventional homologous recombination (HR) approaches  (Thomas & Capecchi, 1987) 

(please refer to 3.5 for more details).  Nonetheless, even if rAAV vectors are devoid of 

several key components that trigger DDR (i.e., large Rep expression and the CARE), 

establishment of rAAV transduction heavily relies on the interactions between rAAV viral 

genomes and DNA repair machinery irrespective of serotypes or nature of viral genomes 

(i.e., ss rAAV or ds rAAV).  

3. AAV and DNA repair pathways 

An overview of AAV and DNA repair pathways is summarized in Figure 2. 

3.1 AAV-evoked DDR 
3.1.1 Earlier evidence for the role of DDR in the AAV genome processing 

Although the interplay between virus and DDR is a relatively new area of research, earlier 

studies indicated potential roles of DDR in the AAV life cycle or viral genome processing. 

The first indicative evidence came from the observation that cells treated with a wide 

variety of genotoxic agents including UV irradiation and carcinogens such as 

hydroxyurea could support wtAAV2 genome replication in the absence of helper virus  

co-infection (Yakinoglu et al., 1988; Yakobson et al., 1987, 1989). Subsequently,  

such treatment was found to augment rAAV2 transduction efficiency in both dividing and 

non-dividing cells with the latter showing a more dramatic enhancing effect (Alexander et 

al., 1994; Russell et al., 1995). These earlier observations suggested that activated DNA 

repair pathways following DNA damage induced by genotoxic treatment somehow 

facilitated the conversion of rAAV genomes from ss to ds DNA by second-strand 

synthesis (Figure 2f, g and h) (Ferrari et al., 1996; Fisher et al., 1996). As mentioned earlier, 

the formation of ds AAV genomes is a critical step for wtAAV to initiate productive 

infection and for rAAV to undergo abortive infection and express transgene products.  

A better response to the treatment in non-dividing cells conforms to the idea that DNA 

repair pathways are constitutively activated to a greater extent in dividing cells. Such 

activation is required to repair DNA replication errors that occur naturally and 

unavoidably. Although the underlying mechanism of this effect still remains elusive,  

one can speculate that up-regulation of DNA repair pathways increases the pool of 

cellular factors required for AAV genome processing. Alternatively, factors inhibitory for 

wtAAV genome replication or rAAV transduction may become sequestered from AAV 

genomes to multiple DNA repair foci formed on the damaged cellular genome (Figure 2f 

and g). A recent observation that the MRN complex and ATM, the major DDR proteins, 

have an inhibitory effect on rAAV transduction supports the latter model (Cataldi &  

McCarty 2010; Cervelli et al., 2008; Choi et al., 2006; Sanlioglu et al., 2000; Schwartz et  

al., 2007). 
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3.1.2 DNA repair proteins associated with AAV genomes in cells 
AAV is composed of only two elements, VP proteins that form viral capsids and a single-
stranded viral genomic DNA. VP proteins primarily determine biological properties of 
various AAV serotypes; i.e., how AAV particles reach cells, enter cells, traffic in cytoplasm 
and nucleoplasm, and uncoat virion shells to release viral genomes. At present there is no 
evidence indicating that the above-mentioned AAV infection pathways driven by the capsid 
trigger DDR. AAV-evoked DDR is all about the cellular responses against AAV viral 
genomes except for wtAAV2, which expresses Rep68/78 proteins that also trigger DDR. It is 
plausible that the structure of single-stranded DNA with T-shaped hairpin termini, which is 
unusual and is not present in the cellular genome, is recognized as damaged DNA and 
triggers DDR. Direct evidence for the association of AAV genomes with DNA repair 
machinery has obtained in chromatin immunoprecipitation (ChIP) studies where AAV 
genomes and their associated cellular factors were crosslinked by formalin and precipitated 
together using antibodies specific to DNA repair proteins. To date, the MRN complex, Ku86, 
Rad52, RPA and DNA polymerase delta have been identified as factors bound to ss AAV 
genomes (Cervelli et al., 2008; Jurvansuu et al., 2005; Zentilin et al., 2001). In addition, 
immunofluorescence microscopy has revealed that the MRN complex, ATR, TopBP1, BLM, 
Brca1, Rad17, RPA, and Rad51 are recruited to the discrete nuclear foci where AAV 
genomes accumulate (Cervelli et al., 2008; Jurvansuu et al., 2005). Table 2 summarizes the 
roles of DNA repair proteins in AAV infection/transduction, AAV genome self-
circularization, and AAV genome integration into the host genome. 

3.1.3 AAV genome activates ATR-mediated DDR 
Although not exclusive, the DNA repair proteins found to be associated with AAV genomes 
described in 3.1.2 are those involved in the ATR-mediated DDR that is triggered by stalled 
replication forks (Figure 2d and e) (reviewed in Branzei & Foiani, 2010 and Shiotani & Zou, 
2009). At stalled replication forks, ss DNA regions become coated with RPA. RPA then 
recruits ATR-ATRIP and the Rad17 complex to the damaged site. The Rad17 complex 
subsequently recruits the ring-shaped trimeric Rad9/Rad1/Hus1 (9-1-1) complex, and 
finally ATR-ATRIP kinase becomes activated by TopBP1 recruited to the site and sends a 
DNA damage checkpoint signal (Figure 2d and e). In addition, Mre11 has also been reported 
to relocalize to stalled replication forks to a limited extent (Mirzoeva & Petrini, 2003). AAV-
ITR exhibits a close structural similarity to stalled replication forks in that it contains both ss 
DNA regions and ss DNA-ds DNA junctions. This strongly supports a model in which 
AAV-ITR is recognized as a stalled replication fork and triggers the checkpoint response via 
ATR kinase. The actual activation of the ATR pathway by AAV genomes has been 
confirmed by the demonstration that the ATR-downstream effector proteins; i.e., Chk1 and 
RPA, become phosphorylated in cells infected with wtAAV2 or UV-irradiated wtAAV2, 
both of which are devoid of the ability to replicate or express viral genes in the system used 
for the experiment (Fragkos et al., 2008; Ingemarsdotter et al., 2010; Jurvansuu et al., 2005, 
2007). Interestingly, rAAV2 genome devoid of the 55-nt CARE within the p5 promoter does 
not evoke the ATR-mediated checkpoint signal, and it has been shown that co-existence of 
both ITR and CARE in an AAV genome is essential for the activation (Fragkos et al., 2008). 
The consequence of the AAV genome-evoked ATR-mediated DDR is G2/M cell cycle arrest 
in wild type cells, while it leads to cell death in p53-deficient cells (Ingemarsdotter et al., 
2010; Jurvansuu et al., 2007) (please see 3.1.4. for more details). Cell cycle arrest in the late S 
and/or G2 phases following infection of wtAAV2 or UV-irradiated wtAAV2 was observed  
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Protein Effects of deficiency2 

Note References3  In vitro  In vivo 

 T C I  T C I 

Artemis     ↓ ↓   1 

ATM ↑ 
↓/↑

→
↑   ↓   2, 3, 4, 5 

ATR ↑/→ → →     wtAAV2-evoked signal ↑ 5 

BLM  ↓       4 

Chk1        wtAAV2-evoked signal ↑  14, 15 

DNA-PKcs ↓ ↓ ↓/↑  ↓ ↓ ↑/→ rAAV2 genome replication ↓ when 
deficient 

wtAAV2 genome replication ↑ when 
deficient 

1, 4, 5, 6, 7, 8, 
15 

Ku70/80(86) ↑ →      wtAAV2 genome replication ↓ when 
deficient 

Targeting efficiency ↑ when deficient 

3, 4 

ligase IV  → ↓      4, 8 
MDC1 ↑        9 
MRN ↑ ↓    →   9, 4, 10 
Rad52 ↓    → →   3, 16 

Rad54B        Targeting efficiency ↓ when deficient 11 

Rad54L        Targeting efficiency ↓ when deficient 11 

WRN  ↓       4 

XRCC3  →      Targeting efficiency ↓ when deficient 4, 11 

pRb        Induction of cell death when deficient 12, 13 
p21        Induction of cell death when deficient 12, 13 
p53        Induction of cell death when deficient 12, 13 

Table 2. DNA repair and AAV 

in an earlier study although how and what DDR is involved was not known at that time 
(Winocour et al., 1988).   

3.1.4 AAV genome-evoked DDR leading to cell death 
A unique aspect of AAV-evoked DDR is the ability to induce cell death without productive 
viral genome amplification, viral gene expression or cellular DNA damage, when cells are 
devoid of p53 expression. In 2001, Raj et al. reported an unexpected experimental 
observation that wtAAV2 infection of an osteosarcoma cell line that lacks expression of 
functional p53 leads to cell death through apoptosis or mitotic catastrophe, whereas the wild 
type control cells merely undergo a transient cell cycle arrest in the G2 phase (Raj et al., 
2001). Mitotic catastrophe is an ill-defined term describing an apoptosis-like cell death 
during mitosis that takes place even in the presence of unrepaired DNA damage (Castedo et 
al., 2004; Vakifahmetoglu et al., 2008). This p53 deficiency-dependent cell killing effect was 

                                                                 
2 Observed effects caused by deficiency or knockdown are summarized.  T, transduction efficiency; C, 
AAV genome self- circularization efficiency; I, AAV genome integration efficiency. In the table, arrows 

indicate an increase (↑), a decrease (↓) or no change (→). 
3 References cited are as follows: 1, Inagaki et al., 2007b; 2, Sanlioglu et al., 2000; 3, Zentilin et al., 2001; 4, 
Choi et al., 2006; 5, Cataldi et al., 2010; 6, Song et al., 2006; 7, Choi et al., 2010; 8, Daya et al., 2009; 9, 
Cervelli et al., 2008; 10, Schwartz et al., 2007; 11, Vasileva et al., 2006; 12, Garner et al., 2007; 13, Raj et al., 
2001; 14, Schwartz et al., 2009; 15, Collaco et al., 2009; 16, Nakai, unpublished. 
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also observed when cells were infected with UV-irradiated wtAAV2 or microinjected with a 
145-nt AAV2-ITR oligonucleotide, demonstrating that the unusual structure of the AAV2-
ITR sequence itself is the culprit (Raj et al., 2001). Initially it was presumed that infection of 
wtAAV2 activates the ATM-p53-mediated DDR, which in turn increases and decreases the 
levels of p21 and CDC25C, respectively, resulting in the G2 arrest (Raj et al., 2001). Although 
the mechanism of p53 deficiency-dependent cell killing by AAV genomes still remains 
elusive, a series of subsequent studies on this phenomenon has revealed at least three 
potentially independent AAV-evoked pathways leading to cell death: the pathways 
involving (1) p53-p21-pRb, (2) p84N5 via caspase 6, and (3) ATR-Chk1. In the first 
mechanism, AAV-evoked DDR signal is transduced to a potent antiapoptotic proteins, pRb, 
via p53 and p21. Therefore, cells defective in this pathway fail to transduce the DDR signal 
to pRb, leading to apoptosis (Garner et al., 2007). In the second mechanism, functional defect 
of the p53-p21-pRb pathway allows activation of the nuclear death domain protein p84N5, 
which otherwise is inhibited by association with pRb (Doostzadeh-Cizeron et al., 1999). The 
activated p84N5 then induces apoptosis via caspase-6 (Garner et al., 2007). In the third 
mechanism, AAV genomes activate ATR, which in turn phosphorylates Chk1, causing a 
transient cell cycle arrest in the G2 phase. In the absence of p53, cells fail to sustain the G2 
arrest following degradation of the unstable Chk1, progress suicidally into mitosis, and die 
via mitotic catastrophe associated with centriole overduplication and the subsequent 
formation of multipolar mitotic spindles (Ingemarsdotter et al., 2010; Jurvansuu et al., 2007). 
Whether all of the pathways or only some of them are triggered by AAV genomes remains 
unknown at present.  

3.1.5 AAV2 Rep68/78-evoked DDR 
In addition to AAV genome as a trigger of DDR, AAV2 large Rep proteins (i.e., Rep68/78) 
themselves also evoke DDR independent of AAV genome. In the lytic phase of the AAV life 
cycle where cells are co-infected with a helper virus, Rep proteins are strongly expressed 
and exert many functions in the network of cellular proteins and viral factors derived from 
adenovirus or other helpers. Rep proteins can also be expressed without helper virus 
infection but only to a limited extent due in part to the large Reps' ability to negatively 
regulate their own promoter (p5) and the promoter for the small Rep proteins (p19) (Beaton 
et al., 1989; Kyostio et al., 1994). The significance of Rep68/78 expression in the absence of 
helper viruses reside in a series of the AAVS1-targeting approaches that exploit wtAAV2's 
ability to introduce exogenously derived DNA into the AAVS1 site in a site-specific manner 
(Figure 2c) (Henckaerts & Linden, 2010; Linden et al., 1996a). In these approaches, a donor 
vector in any context (e.g., plasmid DNA, adenoviral vectors or rAAV) containing a gene of 
interest and RBS is delivered to human cells where AAV2 large Rep expression is supplied 
by the same vector or a separate one. The AAV2-ITR sequence is commonly used as an RBS-
containing cis element; however, the p5 promoter also serves as an alternative (Philpott et 
al., 2002). 
It has been known that Rep68/78 shows significant cellular toxicity due to the strong 
antiproliferative action of the protein (Yang et al., 1994). Rep78 completely blocks the cell 
cycle in the S phase (Saudan et al., 2000). Studies have shown that Rep78 exerts two 
independent but complementing DDR-associated cellular signal transduction pathways to 
arrest the cell cycle. The two pathways are the pRb pathway and the ATM-Chk2 pathway 
(Berthet et al., 2005). In the first pRb pathway, Rep78 expression leads to an increased level 
of the cyclin-dependent kinase inhibitor p21 and accumulation of hypophosphorylated pRb, 
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the active form of pRb protein (Berthet et al., 2005; Saudan et al., 2000) (Figure 2c). 
Consequently, cellular proteins that control cell cycle progression such as cyclin A, cyclin 
B1, and Cdc2, are down-regulated, resulting in slowing down the cell cycle (Saudan et al., 
2000). Supporting this model, this effect is substantially attenuated in pRb-deficient mouse 
embryonic fibroblasts (Saudan et al., 2000). An increased amount of p21 might explain the 
inability to phosphorylate pRb upon large Rep expression, but the transcriptional activation 
of p21 has been shown to occur via a p53-independent pathway (Hermanns et al., 1997). In 
the second ATM-Chk2 pathway, the DNA-nicking activity of Rep68/78 creates multiple 
damaged sites in the cellular genome, which activates the ATM-Chk2 pathway and arrests 
the cell cycle (Figure 2c) (Berthet et al., 2005). Large Rep proteins create a break in only one 
strand of two-stranded DNA, which is not a type of damage that usually activates ATM. It is 
currently unknown how Rep68/78-induced DNA damage triggers this pathway. Worthy to 
note, activation of either one of the above-mentioned two pathways by itself is not sufficient 
for the complete block of the cell cycle, which is attainable by Rep68/78 expression (Berthet 
et al., 2005). It appears that there would be many other Rep68/78-associated DNA repair 
pathways that have yet to be identified. This is because a recent study using a tandem 
affinity purification (TAP) approach has demonstrated physical interaction of Rep78 with 
many DNA repair-associated proteins including DNA-dependent protein kinase catalytic 
subunit (DNA-PKcs), minichromosome maintenance (MCM) proteins, Ku70/80, 
proliferating cell nuclear antigen (PCNA), RPA, and structural maintenance of chromosome 
2 (SMC2) (Nash et al., 2009).    

3.2 wtAAV2 genome replication and DNA repair pathways 
In the lytic phase of the wtAAV2 life cycle, viral genome replication requires co-infection of 
a helper virus. Since human adenoviruses have been most extensively studied in the context 
of AAV virology, this section specifically focuses on the interplay between wtAAV2, human 
adenoviruses, and DNA repair machinery. The adenoviral components required in the lytic 
infection are E1a, E1b55k, E4orf6, DBP, and VAI. A series of adenovirus/AAV co-infection 
studies has provided significant insights into how DDR and DNA repair machinery play 
roles in AAV genome replication in the presence of adenovirus helper functions (Collaco et 
al., 2009; Schwartz et al., 2009). It has been shown that adenoviral E1b55k/E4orf6 degrades 
the MRN complex via the ubiquitin-proteasome pathway and E4orf3 mislocalizes the MRN 
complex to aggresome, abrogating the MRN function in triggering the ATM and ATR 
pathways (Figure 2a) (Collaco et al., 2009). In addition, E4orf6 dissociates ligase IV from 
ligase IV/XRCC complex and degrades it (Jayaram et al., 2008). The main consequence of 
this adenoviral manipulation of DDR is inhibition on NHEJ, which prevents concatemeric 
adenoviral genome formation and promotes adenoviral genome replication and packaging. 
Although it remains elusive how beneficial the inhibition of NHEJ is in the AAV lytic life 
cycle, the significance of E1b/E4-mediated degradation of MRN complex in the wtAAV2 
lytic cycle has been revealed by the observation that the MRN complex binds to AAV-ITR 
and inhibits wtAAV2 genome replication and rAAV vector transduction (Cervelli et al., 
2008; Schwartz et al., 2007). Along the same line, the observation that cells deficient in ATM 
exhibit a higher rAAV transduction efficiency (Sanlioglu et al., 2000) might be explainable 
on the assumption that lack of ATM would be an equivalent to inactivation of the MRN 
complex because the MRN complex serves as a damage sensor that activates the ATM 
pathway (Carson et al., 2003). It is tempting to propose that dislocation of the MRN complex 
and other inhibitory factors from AAV genomes to the sites in the cellular genome where 
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genome integrity is more severely threatened, is the mechanism for the augmentation  
of wtAAV2 genome replication and rAAV vector transduction by genotoxic treatment  
(Figure 2g). Suppression of the NHEJ pathway that involves DNA-PKcs and Ku proteins, 
however, may or may not be beneficial, because one study has shown that deficiency of 
these proteins both resulted in impaired rAAV2 genome replication (Choi et al., 2010) 
whereas another study has reported that siRNA-mediated knockdown of DNA-PKcs 
enhanced wtAAV2 genome replication (Collaco et al., 2009).   
In addition to the adenovirus-evoked DDR, productive wtAAV2 viral genome replication 

triggers DDR distinct from that observed in adenovirus only infection (Collaco et al., 2009; 

Schwartz et al., 2009). Adenovirus-wtAAV2 co-infection results in much more 

pronounced activation of ATM and the checkpoint kinases, Chk1 and Chk2. This 

activation occurs independently of the MRN complex; therefore, the activation sustains 

even if MRN complex starts being degraded by adenoviral E1b/E4 proteins (Collaco et al., 

2009). Other DDR substrate proteins RPA, NBS1 and H2AX become phosphorylated as the 

lytic phase progresses (Collaco et al., 2009; Schwartz et al., 2009). It has been shown that 

AAV genome replication is essential and sufficient to induce the DDR signal transduction 

cascade observed in the adenovirus co-infection, and Rep proteins does not play a role in 

the activation of DDR (Collaco et al., 2009; Schwartz et al., 2009). Among the three 

phosphatidylinositol 3-kinase-like kinases (PIKKs) that initiate signal transduction (i.e., 

ATM, ATR and DNA-PKcs), ATM and DNA-PKcs are the primary kinases that 

phosphorylate downstream DDR substrates, and ATR appears to play only a minor role 

in the lytic phase of the AAV life cycle (Collaco et al., 2009; Schwartz et al., 2009). 

Although the significance of the DDR in the AAV lytic cycle remains unclear, the 

activation of the ATM pathway appears to be beneficial for AAV genome replication 

(Collaco et al., 2009).  

3.3 rAAV genome recombination and DNA repair pathways 
3.3.1 rAAV genome processing is mediated solely by DNA repair machinery 

After entering nuclei, rAAV virion shells break down, releasing single-stranded (ss) vector 

genomes into nucleoplasm, which subsequently convert to various forms of double-

stranded (ds) genomes (Deyle & Russell, 2009; Schultz & Chamberlain, 2008). It should be 

noted that rAAV does not express any viral gene products that can process viral genomes 

such as recombinases and integrases; therefore the processing of viral genomes must heavily 

depend on DNA repair machinery. In addition, unlike the battle between adenovirus and 

the host DNA repair systems as described in 3.2, rAAV has no means to manipulate DNA 

repair pathways once viral genomes evoke DDR. Unless rAAV genomes have been 

processed to completion into stable ds DNA with no free ends, DDR would remain 

activated due to the continued presence of viral DNA in an unusual structure presenting a 

single strand with free ends. In mammalian cells, extrachromosomal free DNA ends at ds 

rAAV genome termini as well as those in ds linear plasmid DNA, when exogenously 

delivered, appear to be removed primarily by ligating two free ends and making a single 

continuous ds DNA strand via NHEJ and/or occasionally HR rather than by DNA 

degradation (Nakai et al., 2003b; Nakai, unpublished observation). In this sense, the rAAV 

genomes processed into various forms in their latency could be viewed as byproducts that 

have been created and disposed of by a cellular defense mechanism against potentially toxic 

exogenous agents.  
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3.3.2 Single-to-double-stranded rAAV genome conversion and DNA repair machinery 
How ss rAAV genomes become ds DNA is not completely understood but the process 

involves the following two mechanisms; second-strand synthesis (Ferrari et al., 1996; Fisher 

et al., 1996; Zhong et al., 2008; Zhou et al., 2008) and annealing of plus and minus strands 

(Hauck et al., 2004; Nakai et al., 2000). It has been shown that, upon rAAV infection, the 

MRN complex becomes activated, physically associates with AAV2-ITR and inhibits 

wtAAV2 replication and rAAV transduction (Figure 2a and h) (Cervelli et al., 2008; 

Schwartz et al., 2007); therefore, MRN appears to have some role in the conversion of ss to 

ds DNA. ATM has also been suggested to be a cellular factor that inhibits the single-to-

double-stranded genome conversion because transduction efficiency with ss rAAV is 

significantly enhanced in ATM-deficient cells in vitro (Figure 2h) (Sanlioglu et al., 2000). 

However, a recent study has proposed an ATM-mediated gene silencing model rather than 

the mechanism involving the second-strand synthesis to explain the ATM's inhibitory effect. 

This model stems from the observation that, in the absence of ATM, ds rAAV transduction 

was enhanced as well, indicating that an alternative mechanism other than second-strand 

synthesis is involved (Cataldi & McCarty, 2010). Another factor that is known to inhibit this 

process is tyrosine-phosphorylated FKBP52, which binds to AAV-ITR and inhibits second-

strand synthesis (Qing et al., 2001). Its dephosphorylation by T-cell protein tyrosine 

phosphatase (TC-PTP) dissociates FKBP52 from AAV-ITR, allowing the formation of ds 

genomes (Qing et al., 2003). In vitro AAV replication studies have identified the DNA 

polymerase that catalyzes second-strand synthesis as DNA polymerase δ (Nash et al., 2007), 

which is a polymerase that fills a single-stranded DNA gap created during the nuclear 

excision repair (Torres-Ramos et al., 1997). Physical association of DNA polymerase δ and 

AAV genome has also been demonstrated (Jurvansuu et al., 2005). At present it remains 

elusive whether and how the above-mentioned signal kinases (i.e., MRN and ATM) and 

effectors (FKBP52 and DNA polymerase δ) are linked in the rAAV-evoked DDR.  

3.3.3 Extrachromosomal rAAV genome recombination and DNA repair machinery 
In addition to the above-mentioned single-to-double-stranded genome conversion, rAAV 
genomes are further processed into the following stable ds forms by intra- or inter-
molecular DNA recombination mediated solely by DNA repair machinery, and establish the 
latent infection. The viral genome forms in the latent phase include ds circular monomers, 
large concatemers (circular and/or linear), and rAAV proviral genomes that are stably 
integrated into the host cellular genome at low frequencies (Deyle & Russell, 2009; Schultz & 
Chamberlain, 2008). It has not been determined when the rAAV genome recombination 
takes place, which may be either before, at, or after completion of the single-to-double-
stranded genome conversion. In dividing cells, extrachromosomal genomes are lost because 
they do not replicate episomally, whereas they can be stabilized and maintained as 
chromatin in quiescent cells in animal tissues (Penaud-Budloo et al., 2008). Earlier studies 
indicated that the formation of large concatemeric rAAV genomes is important for 
transgene expression; however, accumulated observations might favor a model in which 
extrachromosomal circular monomer genomes, not large concatemers or integrated forms, 
are primarily responsible for persistent and stable transgene expression in rAAV-transduced 
animal tissues (Nakai et al., 2001; Nakai et al., 2002; Nathwani et al., 2011).    
In extrachromosomal rAAV genome recombination, AAV-ITR plays a pivotal role in 
mediating recombination. Although it has yet to be elucidated how DDR is evoked by rAAV 
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genomes in the context of rAAV genome recombination, it is not unreasonable to speculate 
that the T-shaped hairpin structure within the AAV-ITR and/or ss DNA-ds DNA junctions 

in the stem of the hairpin DNA trigger DDR. A set of DNA repair proteins, which includes 
DNA-PKcs, Artemis, ATM, MRN, BLM, and WRN (Figure 2h), has been found to be 

involved in rAAV genome recombination (Cataldi & McCarty, 2010; Choi et al., 2006; Duan 
et al., 2003; Inagaki et al., 2007b; Nakai et al., 2003b; Sanlioglu et al., 2000; Song et al., 2001). 

Deficiency of these proteins impairs intramolecular recombination of ss rAAV and/or ds 
rAAV genomes via the AAV-ITR sequence. DNA-PKcs and Artemis are the two major 

components in the classical NHEJ pathway of DSB repair. Artemis, when activated by DNA-
PKcs, possesses an endonuclease activity and resolves DNA hairpin loops and flaps formed 

at broken DNA ends to facilitate ds DNA end joining (Ma et al., 2005). BLM and WRN are 
members of the RecQ family of DNA helicases. They unwind ds DNA to ensure the 

formation of proper recombination intermediates, and mediate a various types of DNA 
transactions, mainly HR (Bernstein et al., 2010). MRN is a multifaceted protein complex that 

functions as a primary sensor of DSB, binds DNA lesion, recruits ATM, and processes DNA 
ends by utilizing the Mre11 endo- and exo-nuclease activity that creates recombinogenic 3' 

single-stranded tails (Williams et al., 2010). The initial study of the structure of ITR-ITR 
junction sequences revealed that the majority of the recombination junctions in ds circular 

monomer genomes exhibited a 165-nt double-D ITR structure, the hallmark of HR (Duan et 
al., 1999; Xiao et al., 1997). This indicates that HR is the major pathway for intra- and inter-

molecular genome recombination events. Supporting this view, Rad52, which is a key player 
in HR, was identified as a protein that binds to rAAV genomes in cultured cells (Zentilin et 

al., 2001). Interestingly, deficiency of Rad52 does not affect rAAV transduction efficiency or 
genome processing in murine liver (Nakai, unpublished observation). It remains possible 

that HR plays a major role in rAAV genome recombination at least under certain cellular 
environment; however, accumulated observations by us and others rather support a model 

in which NHEJ is the major pathway for extrachromosomal rAAV genome recombination. 
In the absence of DNA-PKcs or Artemis, intramolecular recombination is significantly 

impaired in cultured cells and animal tissues (Cataldi & McCarty, 2010; Duan et al., 2003; 
Inagaki et al., 2007b; Nakai et al., 2003b; Song et al., 2001), and the footprints on junction 

DNA are quite consistent with NHEJ-mediated recombination, showing nucleotide 
deletions of various degrees with occasional microhomology at junctions (Inagaki et al., 

2007b). Interestingly, intra- and inter-molecular recombination events that form ds circular 
monomers and ds concatemers, respectively, are differentially regulated by different DNA 

repair pathways (Figure 2h). Intramolecular recombination heavily depends on the 

Artemis/DNA-PKcs-dependent NHEJ pathway, while the NHEJ pathways that mediate 
intermolecular recombination are redundant because intermolecular recombination occurs 

efficiently in the absence of DNA-PKcs or Artemis (Inagaki et al., 2007b). The DNA-PKcs or 
Artemis-independent NHEJ might be those involving ATM and/or MRN (Cataldi & 

McCarty, 2010; Choi et al., 2006; Duan et al., 2003; Inagaki et al., 2007b; Nakai et al., 2003b; 
Sanlioglu et al., 2000; Song et al., 2001). Alternatively, HR might be the major pathway for 

intermolecular rAAV recombination. This model stems from the observation that 
recombination between two homologous AAV-ITRs derived from the same serotype is 

preferred to that between two non-homologous AAV-ITRs derived from different serotypes 
(Yan et al., 2007). The ATR pathway does not appear to be involved in extrachromosomal 

rAAV genome recombination (Cataldi & McCarty, 2010).  
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How DNA-PKcs and Artemis process rAAV genome termini and mediate recombination 
has been extensively studied in the context of murine tissues. In DNA-PKcs or Artemis-
deficient SCID mice, ds linear rAAV genomes with covalently closed hairpin caps at genome 
termini accumulate in rAAV-transduced tissues (Figure 3b). In SCID mouse thymi, V(D)J 
recombination is impaired resulting in accumulation of covalently-sealed hairpin 
intermediates at V(D)J coding ends in the T cell receptor gene (Rooney et al., 2002; Roth et 
al., 1992) (Figure 3a). These two phenomena are essentially the same in that if hairpin 
structures at DNA ends are not cleaved by the Artemis/DNA-PKcs endonuclease activity, 
covalently closed DNA ends accumulate without undergoing further recombination. 
Therefore, intramolecular recombination most likely uses the same Artemis/DNA-PKcs-
dependent NHEJ pathway used for V(D)J recombination. It is not easy to determine GC-rich 
AAV-ITR hairpin DNA structures at sequencing levels; however this shortcoming has been 
overcome by exploiting the bisulfite PCR technique. Utilizing this method, the primary 
cleavage site by the Artemis/DNA-PKcs endonuclease activity has been mapped to the 5' 
end of the 3-base AAA loop at the AAV-ITR hairpin tips (Figure 3b) (Inagaki et al., 2007b). 
In DNA-PKcs-deficient SCID mouse tissues, the relative proportion of rAAV genome 
recombination junctions exhibiting the hallmark of HR increases, indicating compensatory 
activation of HR in the absence of DNA-PKcs in quiescent cells in animal tissues (Nakai, 
unpublished observation). In this regard, worthy of note are the following observations 
made by us and others that DNA repair pathways might somehow be linked to epigenetic 
modifications of rAAV genomes. We have found that the cytomegalovirus (CMV) 
immediately early gene promoter in rAAV genome can be significantly silenced in Artemis- 
or DNA-PKcs-deficient mouse muscle (Nakai, unpublished observation). Recently, Cataldi 
et al. reported that the CMV promoter is somewhat silenced in ATM-proficient murine 
fibroblasts compared to that in ATM-deficient cells (Cataldi & McCarty, 2010). These 
observations imply that rAAV genome recombination via NHEJ generates more functionally 
active genomes than HR presumably due to a difference in epigenetic modifications of 
rAAV genomes (Cataldi & McCarty, 2010).  

3.4 rAAV genome integration and DNA repair pathways 
rAAV is devoid of Rep68/78 expression; therefore, it lacks the ability to integrate into the 
cellular genome site specifically. In addition, rAAV does not harness machinery designed 
specifically for integration into the cellular genome. rAAV vectors are generally considered 
as episomal vectors, but they do integrate into the cellular genome of both dividing and 
non-dividing cells at low frequencies (Deyle & Russell, 2009; McCarty et al., 2004). This 
process is entirely dependent on the host cellular DNA repair machinery. Although it is not 
easy to determine the frequency of rAAV genome integration in each case and it may vary 
depending on the amount of rAAV genomes delivered to cells, integration has been 
reported to occur at approximately ~0.1% of total input rAAV genomes (Russell et al., 1994) 
or up to ~4% of cell population in rAAV-infected cultured cells (Cataldi & McCarty, 2010), 
or at approximately 0.1% of rAAV-transduced hepatocytes when rAAV is injected into 
newborn mice (Inagaki et al., 2008). rAAV genome integration occurs at nonrandom sites in 
both cultured cells and somatic cells in animals. The preferred genomic sites for integration 
include the 45s pre-ribosomal RNA gene, transcriptionally active genes, DNA palindromes, 
CpG islands, and the neighborhood of transcription start sites (Inagaki et al., 2007a; Miller et 
al., 2005; Nakai et al., 2003a). Although the mechanism of integration remains largely 
unknown, it has been presumed that input rAAV genomes are fortuitously captured at pre- 
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Fig. 3. A similarity of Artemis / DNA-PKcs-mediated hairpin cleavage in V(D)J 
recombination and AAV-ITR recombination. (a) During V(D)J recombination, the 
recombination activating gene products, Rag1 and Rag2 endonucleases, cleave the 
immunoglobulin and T cell receptor genes, forming covalently closed hairpin loops at 
cleaved DNA ends. Artemis/DNA-PKcs complex resolves the hairpin loops, which triggers 
the subsequent recombination between the two coding ends via the classical NHEJ DNA 
repair pathway. In cells deficient in either Artemis or DNA-PKcs (SCID phenotype), hairpin 
coding ends remain unrecombined and accumulate. (b) The same Artemis/DNA-PKcs-
dependent NHEJ pathway mediates intramolecular AAV-ITR recombination, forming 
circular monomer genomes. Intermolecular AAV-ITR recombination occurs independently 
of Artemis/DNA-PKcs. A red arrowhead indicates the primary target for Artemis/DNA-
PKcs-mediated cleavage. In SCID mouse tissues, ds linear rAAV genomes with covalently 
closed AAV-ITR hairpin caps accumulate. 

existing breaks in the cellular genome when the DNA breaks are repaired by DNA repair 

machinery, which establishes rAAV integration. This model has been supported by the 

observations that rAAV genome integrations are frequently found at I-SceI-induced DSBs in 

the cellular genome (Miller et al., 2004) and genotoxic treatments can increase integration 

rates (Russell et al., 1995). Clinically, rAAV vectors are generally considered to be safe; 

however, one study has shown that vector genome integration could cause insertional 

mutagenesis leading to hepatocarcinogenesis in a mouse model (Donsante et al., 2007). 
The detailed analyses of rAAV vector genome-cellular genome junction sequences in 
cultured cells and murine tissues have provided significant insights into which and how 
DNA repair pathways play roles in rAAV integration (Inagaki et al., 2007a; Miller et al., 
2005; Nakai et al., 2005b). rAAV integration does not take place in a neat cut-and-paste 
fashion and always accompanies various degrees of deletions in rAAV genome terminal 
sequences and the cellular genomes around integration sites. Complex genomic 

www.intechopen.com



The Role of DNA Repair Pathways in Adeno-Associated  
Virus Infection and Viral Genome Replication / Recombination / Integration  701 

rearrangements are not rare and integration often causes a chromosomal translocation. All 
of these observations fit very well with a model in which NHEJ mediates rAAV integration.  
A series of studies has shown that DNA-PKcs has negative or positive effects on integration 
depending on the experimental systems used (Figure 2i). In a cell-free in vitro rAAV 
integration system, ss rAAV integration frequency increases and decreases by the addition 
of DNA-PKcs antibody and purified DNA-PKcs, respectively, leading to a conclusion that 
DNA-PKcs inhibits rAAV integration (Song et al., 2004). Whereas, in a cell culture system 
using DNA-PKcs-proficient M059K and deficient M059J cells, DNA-PKcs has been shown to 
enhance integration of both ss rAAV and ds rAAV (Cataldi & McCarty, 2010; Daya et al., 
2009). In the context of animal experiment, Song et al. have exploited a two-thirds partial 
hepatectomy approach and shown that rAAV genomes integrate in DNA-PKcs-deficient 
SCID mouse livers at a significantly greater frequency than that of wild type control animals 
(i.e., >50% in SCID versus <10% in wild type mice) (Song et al., 2004). Whereas, our most 
recent study has indicated that this effect could be observed at a limited range of liver 
transduction levels, and deficiency of DNA-PKcs may not have a generalized effect on 
rAAV integration frequency (Adachi & Nakai, unpublished observation). Nonetheless, a 
high-throughput ss rAAV integration site analysis in mouse liver, muscle and heart has 
successfully identified many rAAV integration sites in both wild type and SCID mouse 
tissues. This indicates that DNA-PKcs itself does not play a direct role in the process of 
rAAV genome integration (Figure 2i) (Inagaki et al., 2007a). Other DNA repair proteins that 
might participate in the rAAV genome integration process include ATM, which also shows 
varying effects on integration in cell culture experiments depending on the types of cells and 
rAAV (i.e., ss versus ds rAAV) (Cataldi & McCarty, 2010; Sanlioglu et al., 2000). 
Interestingly, our study has implied that rAAV genomes more preferably integrate in the 
cellular genome than remain as extrachromosomal genomes when murine hepatocytes 
receive a minimum rAAV dose to establish latency (Adachi & Nakai, unpublished 
observation). This observation indicates that different DDRs are evoked and recruit different 
DNA repair machinery depending on the amount of DDR triggers in a cell. Collectively, at 
this point, there is no consensus model that explains which and how DNA repair pathways 
mediate rAAV integration. As for the integration of rAAV at the AAVS1 site in the presence 
of Rep68/78 expression, DNA-PKcs enhances site-specific integration of ss rAAV but not ds 
rAAV, indicating differential effects of DNA repair proteins in the Rep-mediated integration 
(Daya et al., 2009). 

3.5 rAAV-mediated gene targeting and DNA repair pathways 
HR mediated by the conventional vector systems occurs with efficiencies of a range of 10-6 to 
10-7. In this regard, rAAV has become increasingly popular as the most efficient tool to 
precisely introduce defined DNA modifications at the target site in the cellular genome with 
remarkably high efficiencies of up to 1% in the cell population (Hendrie & Russell, 2005; 
Khan et al., 2011; Russell & Hirata, 1998; Vasileva & Jessberger, 2005). Targeting efficiencies 
could be increased further by 60-100 fold or more by introducing a DSB at the target site 
with a site-specific endonuclease (Miller et al., 2003; Porteus et al., 2003). This system, named 
the gene targeting rAAV vector system, has been applied in various disciplines, not only for 
gene therapy (Chamberlain et al., 2004) but also for generating knockout animals (Sun et al., 
2008) and other types of basic research (Khan et al., 2011). Gene targeting rAAV serves as a 
donor vector that carries a DNA segment homologous to the chromosomal target sequence 
with a desired modification being introduced. The length of the homology arms can be 1.7 
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kb or potentially shorter, which is an advantage over the conventional targeting vectors that 
require a longer homologous DNA sequence (Hirata & Russell, 2000). Despite significant 
advance in the applications of the system, the underlying mechanism for rAAV-mediated 
gene targeting is poorly understood. As described above, rAAV does not harness any 
machinery designed specifically for mediating highly efficient gene targeting. The unusual 
structure of viral genome DNA is the only element that makes the system much more 
efficient than the conventional approaches.  
The mechanism of rAAV-mediated gene targeting has just begun to be partly elucidated. 
Studies have indicated that the single-stranded nature of gene-targeting rAAV is key to 
efficient gene targeting reactions. Experimental evidence has come from the observation 
that, when mixtures of gene-targeting ss rAAV and ds rAAV vectors were used, gene 
correction rates correlated with the amounts of ss rAAV but not ds rAAV within the 
mixtures (Hirata & Russell, 2000). Another study took advantage of recombinant minute 
virus of mice (rMVM), a rAAV-like parvovirus-based vector that predominantly packages 
viral genomes of minus polarity and does rarely undergo second-strand synthesis to form 
ds viral genomes. When reporter cells were infected with gene-targeting rMVM vectors 
containing either the coding or noncoding strand of a transgene cassette, a significant 
difference in targeting efficiencies was revealed between the two, indicating that ss viral 
genomes are the substrate (Hendrie et al., 2003). However, a recent study points out 
limitations in the previously used assay systems and argues against the above model 
because ds rAAV has also been found to mediate gene targeting at a higher level compared 
with the ss rAAV control (Hirsch et al., 2010). Although the nature of gene targeting 
substrates may be a subject of debate, it is clear that rAAV genome integration and rAAV-
mediated gene targeting use different DNA repair pathways. Genotoxic treatment, which 
significantly augments rAAV genome integrations, does not affect gene targeting efficiency 
(Hirata & Russell, 2000). In addition, rAAV gene targeting occurs preferentially in S-phase 
cells and does not take place at an appreciable level in terminally differentiated murine 
skeletal muscle fibers (Liu et al., 2004; Trobridge et al., 2005). Moreover, the cell cycle 
dependence has not clearly been demonstrated in rAAV integration and a study has 
demonstrated a readily appreciable level of rAAV integration in terminally differentiated 
cardiomyocytes and skeletal myofibers (Inagaki et al., 2007a). Collectively, NHEJ appears to 
be the major DNA repair pathway involved in rAAV integration while rAAV-mediated 
gene targeting uses HR. It has been demonstrated that RAD51/RAD54 pathway of HR is 
required for efficient rAAV-mediated gene targeting (Figure 2j), and deficiency of either of 
the NHEJ proteins, DNA-PKcs and Ku70, enhances the targeting rates (Fattah et al., 2008; 
Vasileva et al., 2006). Although the DNA-PKcs effect appears to be a cell-type dependent 
phenomenon (Fattah et al., 2008), the observations underscore the significant contribution of 
the HR pathways in rAAV-mediated gene targeting. Manipulation of HR and NHEJ 
pathways with small molecules will offer a novel and effective means to further improve 
rAAV-mediated gene targeting approaches to genetically engineer cellular genomes.  

4. AAV as a tool for studying damaged DNA sites, DDR, and DNA repair 
pathways  

AAV has provided the most powerful means to deliver genetic materials to a broad range of 
cell and tissue/organ types without toxicity and to introduce sequence modifications at 
defined locations. What has made AAV more attractive is its utility as an unprecedented 
research tool to study molecular and cellular biology, where gene delivery is not a primary 
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goal. As described in 3.1.3 and 3.1.4, AAV has been successfully exploited as a refined agent 
that can trigger DDR toward cell cycle arrest and apoptosis. AAV can deliver an element 
that triggers DDR (e.g., stalled replication forks) extrachromosomally with minimal 
transcriptional responses (McCaffrey et al., 2008) and without damaging the cellular 
genome. Although the phenomena observed in the AAV-based system may not necessarily 
recapitulate what takes place when the cellular DNA is damaged, it is assumed that 
molecularly defined extrachromosomal DDR triggers would provide a simple and less 
complicated means to study cellular responses to DNA damage. In addition, AAV has been 
exploited to study potential differences in DNA repair pathways among various tissues in 
the context of living animals. This type of study has demonstrated that, in hepatocytes, there 
is significant redundancy of Artemis/DNA-PKcs-independent NHEJ pathways that process 
hairpin DNA ends, while such redundancy is not observed in skeletal myofibers or 
cardiomyocytes in mice (Inagaki et al., 2007b). Moreover, AAV has recently emerged as a 
powerful tool to identify DNA sites damaged either endogenously or exogenously by 
genotoxic treatment or agents. Using rAAV as a tool to label pre-existing damaged DNA 
sites, a study has shown that DNA palindromes with an arm length of > 20 base pairs in the 
cellular genome represent the sites susceptible to breakage in mouse tissues (Inagaki et al., 
2007a). Another study has taken a similar AAV-based labeling approach and demonstrated 
frequent off-target cleavage of the cellular genome by a rare cutting endonuclease, I-SceI, 
following expression of I-SceI in cells (Petek et al., 2010). Perhaps applications of AAV in 
biological and medical research will not be limited to the disciplines described above and 
will continue to expand with the advent of novel rAAV vector technologies.  

5. Conclusions  
The virus-host interaction from a viewpoint of viral components and DNA repair machinery 
is an emerging research area that would offer unprecedented means to study both virology 
and molecular and cellular biology. The interaction in this aspect is most studied with 
adenoviruses, herpesviruses, and retroviruses including human immunodeficiency virus. 
These viruses have evolved sophisticated machinery to benefit them by manipulating or 
controlling DDR, DNA repair machinery, and the cell cycle. In this regard, AAV (i.e., 
wtAAV and rAAV) represents a unique viral agent in that Rep proteins are the sole viral 
components that interact with DNA repair machinery and rAAV expresses no such 
component. Despite the seemingly simple nature of AAV, there are significant virus-host 
interactions that involve DDR and DNA repair machinery in AAV infection, and we have 
just begun to appreciate them as summarized in this chapter. There has been an increasing 
interest in AAV primarily as a promising gene delivery vector and more recently as a new 
tool to study DNA damage, DDR, and DNA repair machinery. Studying AAV from various 
scientific aspects including virology, immunology, physiology, gene therapy, DNA damage, 
DDR, DNA repair, genomic instability, carcinogenesis, and so on, would significantly 
advance our knowledge about AAV and could solve unanswered fundamental biological 
questions that are difficult to address by the conventional approaches.  
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