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1. Introduction 

DNA repair defect is one of the hallmarks of tumorigenesis, and is intimately linked to 

various human cancers, both inherited and sporadic (1). The two best examples are perhaps 

the DNA mismatch repair pathway in colorectal cancer, and the Fanconi Anemia/Brca 

(Fanc/Brca) pathway in head and neck squamous cell carcinomas (HNSCCs) (1). In this 

book chapter, I will review the updated knowledge of Fanc/Brca pathway in human cancers 

particularly in HNSCCs.  

Fanconi anemia is a rare autosomal recessive or X-linked chromosomal instability disorder, 

with incidence of 1 to 5 cases per millions. The affected children have multiple congenital 

defects, and typically develop bone marrow failure during the first decade of life. They are 

at the risk for developing hematological cancers with the acute myelogenous leukemia 

(AML) the most frequent (2). Recently studies also showed a predisposition of Fanconi 

anemia patients to multiple solid tumors (3, 4), particularly to HNSCCs (5). Other tumors 

include gynecologic SCCs, and tumors of esophagus, liver, and skin (3, 4). Since Fanconi 

anemia is characterized by spontaneous chromosome breakage and cellular hypersensitivity 

to DNA cross-linking agents, such as mitomycin C, or diepoxybutane (DEB), the DEB-

induced chromosome-breakage assay is widely used as a diagnostic test for Fanconi anemia 

patients, and the complementation test is used to define the Fanconi anemia subtypes. 

Androgens, hematopoietic growth factors, or stem-cell transplantation is currently used for 

treating bone marrow failure in Fanconi anemia patients(2).  

The Fanconi anemia pathway is complex and interacts with other DNA repair pathways (6, 
7). The pathway itself is regulated by so far thirteen Fanconi anemia proteins (FANCA, B, C, 
D1, D2, E, F, G, I, J, L, M and N). Among those proteins, eight are assembled in a nuclear 
ubiquitin E3 ligase complex (FANCA/B/C/E/F/G/L/M), known as the Fanconi anemia 
core complex, which mono-ubiquitinates FANCD2 and FANCI. The mono-ubiquitinated 
FANCD2/FANCI complex is targeted to chromatin, where it interacts, either directly  
or indirectly, with additional downstream Fanconi anemia proteins (FANCD1, FANCN, and 
FANCJ) (6, 7). The first evidence of the convergence of Fanconi anemia pathway with  
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the Breast cancer (Brca) pathway came from the finding that the breast cancer susceptibility 
gene, Brca2 is actually identical to a Fanconi anemia gene, FANCD1 (8). Later studies 
showed that Fanconi anemia proteins form foci with Brca1, another major breast cancer 
susceptibility gene, and Rad51 for DNA repair (9). In addition, Brca1 and Brca2 also interact 
with another Fanconi anemia protein, FANCN (10, 11). Thus the Fanconi anemia and  
Brca pathways are intimately connected, and are summarized as Fanc/Brca pathway 
[Figure 1]. 
 

 

Fig. 1. Schematic of Fanc/Brca pathway in DNA repair. A-D1, D2, E-G, I-J, N stands for 
Fanconi anemia proteins FancA-D1, FancD2, FancE-G, FancI-J, and FancN.  

2. Fanc/Brca pathway and human cancers 

As briefly mentioned in the introduction section, the correlations of Fanc/Brca pathway and 
human cancers are well demonstrated by at least three lines of evidence: I). Susceptibility to 
various human cancers, including both hematologic and solid tumors in homozygous 
Fanconi anemia patients (3, 4). About one-third of Fanconi anemia patients will develop 
either hematologic or solid tumors by the age of 40 years. While AML is the predominant 
among hematologic cancers, squamous cell carcinomas (SCC) are the majority group of solid 
tumors developed in Fanconi anemia patients (3, 4). SCC of head and neck region is the 
most common (5), followed by SCC of gynecological system (vulva and cervix), esophagus, 
and skin (3, 4). II). Increased risk of cancers in heterozygous carriers of gene mutations in the 
Fanc/Brca pathway. The most common cancers in the heterozygous carriers of the 
Fanc/Brca gene mutations are breast and ovarian cancers (2, 12). In addition, development 
of pancreatic cancer was also reported in the heterozygous carriers of Fanc/Brca gene 
mutations, including FANCC, FANCG, and FANCN/PALB2 (13-15). Other cancers 
associated with heterozygous Fanc/Brca gene mutations are mainly prostate, lung, gastric 
cancer, and melanoma (16, 17). III). Molecular alterations of Fanc/Brca pathway genes in 
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sporadic human cancers. The most common molecular alteration of the Fanc/Brca pathway 
genes in sporadic human cancers is epigenic silencing of FANCF gene, which is most 
frequently seen in ovarian (18), cervical cancers (19), non-small-cell lung cancers (20), and 
HNSCC (20). In addition, methylation of Brca1 has also been reported in breast, ovarian, 
and non-small-cell lung cancers (20, 21). 

3. Fanc/Brca pathway and HNSCCs: Clinical and molecular studies 

HNSCC refers to SCCs arising from oral cavity, tongue, pharyngeal and laryngeal regions, 
and is the 6th most common human cancer worldwide. There are about 600,000 new cases 
and 350,000 cancer deaths worldwide each year (22, 23). HNSCCs usually occur in relatively 
late age of life, and higher in male with well known etiological factors of tobacco and/or 
alcohol (22, 23). However, the incidence of HNSCC is increasing recently in women with 
relatively young age, and correlates with human papilloma virus (HPV) infection (22, 23). 
The inherited form of HNSCC is very rare, in comparison with those in colorectal or breast 
cancers. Thus, the higher incidence of HNSCC developed in Fanconi anemia patients is both 
interesting and surprising. Thus, the Fanconi anemia patients may represent the first and 
perhaps the only one example of hereditary cancer syndromes predisposing to HNSCC.  
The first evidence of high incidence of HNSCC in the Fanconi anemia patients came from 
studies of a 20-year perspective on 754 Fanconi anemia patients from the International 
Fanconi Anemia Registry (3, 5). These studies combined with another study showed that 
incidence of HNSCC is about 500 to 700 times increased in Fanconi anemia patients than 
those in general population (3-5).  The Fanconi anemia patients ranged from 15 to 49 years 
of age, and comprised subtypes of FANCA, C, D2, F, G and nontype ones, and patients with 
HNSCC were found in these subtypes except FANCD2 and FANCF (3, 5). The incidence of 
HNSCC is even higher in the Fanconi anemia patients after hematopoietic stem cell 
transplantation (24). Compared to about 3% of HNSCC incidence in the Fanconi anemia 
patients before bone marrow transplantation, the incidence of HNSCCs increases more than 
3 fold to about 10% in the Fanconi anemia patients after bone marrow transplantation (24). 
While most of the Fanconi anemia patients develop bone marrow failure before their cancer 
development, there are about 20% of patients, often with milder physical and hematologic 
phenotypes, having developed solid tumors before the diagnosis of Fanconi anemia. These 
so-called adult head and neck cancer and hematopoietic mosaicism have been described in 
patients as mosaicism of 2 populations of cells in blood, one carrying FA defect, and the 
other seemingly normal (25). These findings have great impact on understanding the causal 
pathway of head and neck cancers in general population. Although there are no reports of 
genetic mutations in Fanc/Brca pathway in HNSCCs, FANCB and FANCF methylation 
have been described in about 31% and 15% of sporadic HNSCCs, respectively (20, 26). In 
addition, loss or reduced expression of FANC/Brca pathway genes, such as FANCB, 
FANCF, FANCJ, FANCM, Brca1, Brca2, FANCD2 and FANCG have been reported in 
sporadic HNSCCs (27, 28). Interestingly, reduced expression of FANCA and FANCG is 
more common in young HNSCC patients than older ones, suggesting different molecular 
mechanisms of HNSCC tumorigenesis between younger and older patients (29). 
Given the clinical characteristics of HNSCC in Fanconi anemia patients, it is speculated that 
the molecular characteristics of HNSCC from Fanconi anemia patients might be different 
from sporadic HNSCC patients. It was suggested that Fanconi anemia patients have higher 
susceptibility to HPV-induced HNSCC (30). However, separate studies failed to show the 
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link between Fanconi Anemia and HPV-associated HNSCC (31), and molecular 
characteristics of HNSCC from Fanconi Anemia patients are not significantly different from 
sporadic HNSCC, except for the sensitivity to the chemotherapy drug, cisplatin (32). 
Interestingly, a study showed that cigarette smoke, one of the major etiological factors in 
sporadic HNSCC, induces genetic instability by suppressing FANCD2 expression (33), 
suggesting the molecular similarities shared between HNSCC from Fanconi Anemia 
patients and sporadic HNSCC. 

4. Fanc/Brca pathway and HNSCCs: Lessons from animal models 

Utilizing genetically engineered mouse models of Fanc/Brca pathway provides a powerful 
platform to study the causal role of Fanc/Brca pathway in human cancer development, 
including HNSCC (34). The first mouse model demonstrating the role of Fanc/Brca 
pathway in epithelial cancer development is the FANCD2 knockout mouse (35). FANCD2 is 
the common downstream effector of the Fanconi anemia nuclear complex, and acts as 
readout for the Fanc/Brca pathway. In addition, it forms nuclear foci with Rad51 and Brca1 
for functional DNA repair (6, 7) [Figure 1]. Similar to human Fanconi anemia patients, 
FANCD2 knockout mice exhibited sensitivity to DNA interstrand cross-linking agents. 
Further more, these mice developed epithelial cancers in various organs, including 
mammary, bronchoalveolar, lung, and ovarian cancers (35). Knockout FANCD1/Brca2 
developed breast and ovarian cancers; in addition, high incidence of squamous cell 
carcinoma of forestomach was seen in these mice (36). Cancer development, progression, 
and latency of both models were further enhanced by combination with p53 knockout (37, 
38). Mice with germline knockout of FANCA and FANCC also developed sarcoma, 
lymphoma, and adenocarcinomas (34). 
Using tissue specific promoters, such as Keratin 5, or 14, which target gene specifically in 
stratified epithelial cells (39), several studies showed that disruption of Fanc/Brca pathway 
lead to development of squamous cell carcinoma in multiple organs. For example, tissue 
specific deletion of Brca1 driven by Keratin 5 in mice developed squamous cell carcinomas 
in skin, ear canal, oral cavity, esophagus, and forestomach (40). Furthermore, another study, 
using tissue specific promoter Keratin 14-driven HPV mice crossed with FANCD2 knockout 
mice, showed an increased susceptibility to HNSCC when treated with a chemical 
carcinogen, supporting the hypothesis that Fanconi anemia patients have increased 
susceptibility to HPV-associated HNSCC observed in human samples (41). 
Although the germline or tissue specific knockout mouse models of Fanc/Brca pathway 
suggested a causal role of this pathway in HNSCC tumorgenesis, the various types of cancers 
developed in multiple organs still hampered the study of this pathway specifically in HNSCC 
pathogenesis. To overcome this problem, we recently developed an inducible head-and-neck 
region specific knockout system (42, 43). This system uses the Keratin 5 or Keratin 14 promoter 
to direct head-and-neck specific expression of CrePR1, a fusion protein comprised of Cre 

recombinase fused to a truncated progesterone receptor ligand binding domain (∆PR). In this 
system, RU486 treatment causes the CrePR1 fusion protein to translocate into the nucleus 
where it excises DNA sequences that have been flanked by loxP sites (“floxed”). Since the 
Keratin 5 or 14 promoter targets transgene expression to epithelial stem cells of the basal layer 
of stratified epithelium, such as head and neck epithelia, once RU486-induced excision occurs 
in stem cells, the stratified epithelium will eventually be replaced by cells in which the targeted 
gene is deleted for the lifetime of the mice (42, 43) [Figure 2].  
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Fig. 2. Inducible head and neck specific gene knockout system. 

We have used this system to establish a metastatic HNSCC mouse model in which Smad4, 

the central signal mediator of transforming growth factor β (TGFβ) is specifically deleted in 
the head and neck epithelia (43). TGFβ is a multifunctional cytokine that regulates cell 
proliferation, apoptosis, tissue remodeling, and angiogenesis. In addition, TGFβ is also 

known to regulate genomic stability (44). The TGFβ signaling initiates from ligand binding 
to heteromers of TGFβ type I and type II receptors, and activate intracellular signal 
mediators Smad2 and Smad3 through phosphorylation. Smad3 binds to the smad-binding 
element (SBE) of a target gene, and subsequently recruits Smad4 to the same SBE. The Smad 
complexes then translocate to the nuclus to regulate gene expression of Smad targets 
involved in a wide variety of cancer-related processes (44) [Figure 3]. When the Smad4 gene 
is specifically deleted in mouse head and neck epithelia, the mice developed spontaneous 
HNSCC (43). Interestingly, the Smad4-/- head and neck epithelia and tumors exhibited 
genomic instability as revealed by abnormal centrosomes, increased genomic aberrations, 
and increased sensitivity to mitomycin C. Further molecular analysis found that Fanc/Brca 
pathway gene expression and function correlate with Smad4 expression level. Specific 
knockdown of Smad4 in normal keratinocytes decreases expression of Fanc/Brca pathway 
genes, such as FancA, FancD2, Brca1, and Rad51. Restoration of Smad4 in a Smad4-null 
HNSCC cell line Cal27, increases the expression of Brca1 and Rad51 and the number of 
DNA repair nuclear foci. Interestingly, SBE sites were found in the promoters of FancA, 
FancD2, and Brca1 genes, suggesting that these genes may be transcriptional targets of 
TGFβ/Smad4 signaling pathway (43). Thus, the TGFβ/Smad4 signaling pathway is directly 
connected with the Fanc/Brca pathway in HNSCC tumorigenesis [Figure 3]. 

5. Components of FA/Brca pathway as targets for cancer therapy  

DNA repair genes, including Fanc/Brca pathway, critically regulate the cellular response to 

chemotherapy and radiation therapy (45). The Fanc/Brca pathway regulates genomic 

stability required for cellular resistance to DNA cross-linking agents, thus the defects of this 

pathway contribute to chemo-, or radiation sensitivities (46). 

The milestone discovery for Fanc/Brca pathway conferring chemosensitivity came from 
the discovery of epigenic silencing of FANCF in ovarian cancer (18). Ovarian cancer cells  
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Fig. 3. Potential mechanism for chromosome instability in HN-Smad4-/- Lesions. HN: head 
and neck 

are usually hypersensitive to chemotherapeutic drug, such as cisplatin initially, but become 

resistant to the drug over time. The underlying molecular mechanism was revealed to be 

due to DNA methylation of the CpG island of FANCF, and the resistance is correlated with 

demethylation of FANCF (18). This study questioned the application of demethylation 

agents in treatment of ovarian cancer, and suggested that targeted disruption of Fanc/Brca 

pathway may be a better therapeutic option for ovarian cancer (18). While similar results of 

targeting Fanc/Brca pathway in sensitizing chemotherapy were reported in other types of 

cancers, such as colorectal cancer, peritoneal carcinomas, and multiple myeloma (47-50), the 

results from HNSCC are still controversial. It was reported that targeting Fanc/Brca 

pathway by the histone deacetylase inhibitor phenybutyrate sensitizes human HNSCC cells 

to cisplatin (51). However, a separate study failed to correlate Fanc/Brca pathway 

inactivation with cisplatin sensitivity based on lack of evidence of FANCF methylation, and 

down-regulation of other Fanconi anemia genes (52). Another interesting finding for the 

mechanisms of cisplatin resistance in ovarian cancer is to identify secondary mutations of 

Brca2/FANCD1 (53) and Brca1 gene (54). Similar mutations of Brca2/FANCD1 have also 

been detected in pancreatic cancers (55). All these results highlight the functional 

importance of Fanc/Brca pathway in modulating sensitivity of cancer chemotherapy (50). 

Recent studies showed that cancer cells deficient in DNA repair pathways become highly 

dependent on alternative pathways for survival (45). For example, cancers deficient in Brca1 

or Brca2 usually exhibit impaired ability to repair double-stranded DNA breaks via 

homologous recombination (56, 57). Moreover, in the setting of defective homologous 

recombination, inhibition of a second DNA repair pathway, such as base excision repair, 

is often a lethal event (56, 57). This so called “synthetic lethality” has been utilized in 

designing the ultimate cancer therapy (45). One of the best examples is to apply 
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poly(ADP-ribose) polymerase 1 (PARP1) inhibitors in breast or ovarian cancer patients 

with Brca1 or Brca 2 mutation (56-59). PARP1 is a nuclear protein that rapidly binds to 

DNA single-strand breaks and facilitates DNA repair (60). Use of the PARP1 inhibitor also 

induced significant sensitization to radiation therapy in HNSCC cells (61). Although 

alterations of Brca1 and Brca2 are rare in human HNSCC, HNSCC with loss of Smad4 are 

common and exhibit Fanc/Brca pathway defects in DNA repair as we showed previously 

(43), thus, providing a promising rationale and biomarker in utilizing PARP1 inhibitor for 

cancer therapy in HNSCC with Smad4 loss. In addition to the sensitivity to PARP1 

inhibition, Fanc/Brca pathway-deficient tumor cells are also hypersensitive to inhibition 

of ataxia telangiectasia mutated kinase ATM (62), and checkpoint kinase CHK1 (63). With 

discoveries of more pathways, defects in which confer synthetic lethality with defects in 

Fanc/Brca pathway, more sophisticated and efficient therapeutic approaches will be 

designed and tested. 

6. Future perspectives 

Defect of Fanc/Brca pathway represents by far the only genetic predisposition to HNSCC 

through clinical genetic studies. Given the complexity of this pathway and its interaction 

with other DNA repair pathways, there are still lots of unanswered questions about the 

molecular mechanisms of this pathway in HNSCC tumorigenesis. However, with more 

biomarkers being identified and utilized to stratify HNSCC patients with particular defects 

of Fanc/Brca pathway, a personalized therapy with more efficacy and less side effect will 

ultimately be available, which will have significant impact on HNSCC management.  
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