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1. Introduction 

Cancer ranks as one of the most frequent causes of death worldwide and in Western society it 
is competing with cardiovascular disease as the number one killer. This high frequency in 
Western countries can be attributed to lifestyle and environmental factors, only 5-10% of all 
cancers are directly due to heredity. Common environmental factors leading to cancer include: 
tobacco (25-30%), diet and obesity (30-35%), infections (15-20%), radiation, lack of physical 
activity and environmental pollutants or chemicals (Anand et al.,2008). Exposure to these 
environmental factors cause or enhance abnormalities in the genetic material of cells (Kinzler 
KW et al.,2002). These changes in the DNA or hereditary predisposition can result in 
respectively uncontrolled cell growth, invasion and metastasis. Cancer cells can damage tissue 
and disturb homeostasis leading to dysfunctions in the body that can eventually lead to death.  
Under normal conditions cell growth is under strict conditions and control. Hereditary 
dysfunctions or introduced DNA damage in tumor suppressor genes, oncogenes or DNA 
repair genes can create an imbalance that may lead to cancer development. DNA repair and 
cell cycle arrest pathways are essential cellular mechanisms to prevent or repair substantial 
DNA damage which, if left unattended, can cause diseases.  
Here, one of the most important and versatile DNA repair pathways, the Nucleotide 
Excision Repair (NER) pathway, will be discussed in relation to DNA damage accumulation 
and carcinogenesis together with its mechanistic mode of action.  

2. DNA damage 

One of the initial steps in cancer development is the accumulation of DNA damage. These 
genomic assaults are abundant due to environmental factors and continuously ongoing 
metabolic processes inside the cell (Lodish et al.,2004). Endogenous DNA damage occurs at an 
estimated frequency of approximately 20,000 – 50,000 lesions per cell per day in humans 
(Lindahl,1993; Friedberg,1995), which roughly adds up to 10 - 40 trillion lesions per second in 
the human body. Endogenously generated lesions can occur through metabolic cellular 
processes and result in hydrolysis (e.g. depurination, depyrimidination and deamination), 
oxidation (8-oxoG, thymine glycol, cytosine hydrates and lipid peroxidation products) and 
non-enzymatic methylation of the DNA components (Cadet et al.,2003; Friedberg et al.,2006b). 
Besides these endogenous insults to the DNA, exogenous factors can play a significant role in 
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damaging the DNA. Examples of exogenous insults are ionizing radiation, ultraviolet (UV) 
radiation and exposure to chemical agents. One hour of sunbathing in Europe for example 
generates around 80,000 lesions per cell in the human skin (Mullaart et al.,1990). The 
endogenous and exogenous primary lesions can result in persistent DNA damage if left 
unattended. Therefore, repair pathways and cellular responses are of vital importance in the 
prevention of cancer and age-related diseases. DNA repair pathways come in many varieties, 
Figure 1 shows a schematic overview of biological responses to several types of DNA damage.  
Reversal of DNA damage and excision repair pathways are responsible for the fundamental 
repair of damaged nucleotides, resulting into the correct nucleotide sequence and DNA 
structure. Besides damaged nucleotides, cells often sustain fracture of the sugar-phosphate 
backbone, resulting in single- or double-strand breaks (SSB or DSB) (Friedberg et al.,2006b). 
Repairing the DNA damage can occur in an error-free (e.g. Nucleotide Excision Repair 
(NER), Base Excision Repair (BER), Homologous Recombination (HR)) or by an error-prone 
pathway like Non-Homologous End-Joining (NHEJ). Besides DNA repair pathways, DNA 
damage tolerance mechanisms are active to bypass lesion that normally block replication 
like Translesion Synthesis (TLS) or template switching. Template switching occurs in an 
error-free way, while TLS acts in an often error-prone manner (although a few polymerases 
of this pathway are able to handle the lesions in an error-free way). Even though error-prone 
mechanisms do not result in the original coding information they do enhance the chances of 
cell survival, which is preferred over correct genomic maintenance in these cases. In light of 
this, cell cycle checkpoint activation and scheduled cell death (apoptosis) also enhance 
chances of genomic stability and in some cases cell survival. The responses, in which tumor 
suppressor factor p53 plays a major role, greatly facilitate the efficiency of repair and 
damage tolerance. Arrested cell cycle progression will result in an increased time window 
for DNA repair or damage tolerance to occur. In addition, apoptosis will attenuate the risk 
of genomic instability by programming the cells with extensive DNA damage for cell death, 
thereby, annulling the possible negative effect of the DNA damage in those cells and hence 
maintaining homeostasis.  

3. Nucleotide excision repair 

The abundant targeting of bases and nucleotides in the genome makes the Nucleotide 
Excision Repair one of the most essential repair pathways. NER can restore the correct 
genomic information, but also replication and transcription after these types of damage. The 
pathway can deal with a broad spectrum of (mostly) structurally unrelated bulky DNA 
lesions, arisen from either endogenous or exogenous agents. NER for example removes 
DNA lesions from the genome such as photolesions, crosslinks, bulky aromatic hydrocarbon 
and alkylation adducts (Figure 1).  
Nucleotide excision repair is a multistep pathway using over 30 proteins that eliminate the 
helix-distorting lesions. As mentioned, lesions of this matter can originate upon exposures 
to several damaging agents. For instance, UV radiation (sunshine) is a physical DNA 
damaging agent that mainly produces cyclobutane pyrimidine dimers (CPDs) and 
pyrimidine-(6,4)-pyrimidone products (6-4PP) but is also believed to induce oxidative DNA 
damage (Lo et al.,2005). Exposure to numerous chemicals can result in helix-distorting bulky 
adducts, for example polycyclic aromatic hydrocarbons (present in cigarette smoke or 
charcoaled meat) (de Boer et al.,2000). Interstrand crosslinks, alkylation adducts and oxygen 
free-radical induced minor base damage can trigger NER (Friedberg et al.,2006b). 
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Schematic overview of DNA repair pathways. Several types of induced DNA damage can trigger 
different repair pathways, which can repair the DNA in an error-free or an error-prone manner.  
NER (Nucleotide Excision Repair), BER (Base Excision Repair), HR (Homologous Recombination), 
MMR (Mismatch Repair), NHEJ (Non-Homologous End-Joining).  

Fig. 1. DNA Repair pathways.  

3.1 Global genome-NER and transcription coupled-NER 
NER is divided into two subpathways which mechanistically initiate in a divergent manner, 
but after damage recognition both pathways proceed along the same molecular route (see 
Figure 2). The subpathways are designated Global Genome NER (GG-NER) and 
Transcription Coupled NER (TC-NER). GG-NER recognizes and removes lesions 
throughout the entire genome, and is considered to be a relatively slow and somewhat more 
inefficient process, since it scans the whole genome for DNA damage (Guarente et al.,2008). 
However, UV induced helix-distorting lesions like 6-4PPs, are rapidly cleared by GG-NER 
(Garinis et al.,2006). TC-NER is responsible for eliminating lesions in the transcribed strand 
of active genes. This repair process takes care of lesions blocking the transcription 
machinery and otherwise possible resulting dysfunctions. Since TC-NER is directly coupled 
to the transcription machinery it is considered to be faster acting and more efficient than 
GG-NER, but is only initiated when transcription of a gene is blocked.  

3.2 DNA damage recognition 
The difference between the two sub pathways is the initial damage recognition step  
(Figure 2). As mentioned previously, a helical distortion and alteration of DNA chemistry 
appears to be the first structural element that is recognized. For GG-NER, the XPC/hHR23B 
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complex (including centrin2), together with the UV-Damaged DNA Binding (UV-DDB) 
protein (assembled by the DDB1 (p127) and DDB2/XPE (p48) subunits), are involved in 
lesion recognition (Dip et al.,2004). The XPC/hHR23B complex is additionally essential for 
recruitment of the consecutive components of the NER machinery to the damaged site, also 
known as the preincision complex (Yokoi et al.,2000; Araujo et al.,2001).  

 

 

Fig. 2. Nucleotide Excision Repair.  

Schematic overview of the Nucleotide Excision Repair (NER) pathway. Damaged DNA is 

recognized by either initial factors of the Global Genome Repair (e.g. Xpc) or Transcription 

Coupled Repair (CSA and CSB), which constitute the two different repair pathways in NER. 

After DNA damage recognition the repair route progresses along the same way. After helix 

unwinding and verification of the damage incisions are made to remove the faulty stretch of 

DNA. Finally, DNA synthesis and subsequent ligation reproduce the correct DNA sequence. 

It has been shown that XPC itself has affinity for DNA and can initiate GG-NER in vitro, but 

its functionality is enhanced when hHR23b and centrin2 are added (Nishi et al.,2005; Araki 

et al.,2001). The latter two are not able to bind to DNA themselves. Centrin2 as well as 

hHR23B stabilize the heterotrimer complex, putatively by inhibiting polyubiquitination of 

XPC and hence preventing subsequent degradation by the 26S proteasome (Nishi et 

al.,2005). XPC recognizes various helix-distorting base lesions that do not share a common 

chemical structure. Biochemical studies have revealed that XPC recognizes a specific 

secondary DNA structure rather than the lesions themselves and the presence of single-
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stranded DNA seems a crucial factor (Sugasawa et al.,2001; Sugasawa et al.,2002; Min et 

al.,2007). XPC appears to scan the DNA for distortions by migrating over the DNA, 

repeatedly binding and dissociating from the helix. When XPC encounters a lesion the 

protein changes its conformation and aromatic amino acid residues stack with unpaired 

nucleotides opposite the lesion, thereby increasing its affinity and creating a conformation 

which makes it possible to interact with other NER factors (Hoogstraten et al.,2008).  

Binding affinity of XPC to the DNA seems to correlate with the extent of helical distortion. 

6-4PP products substantially distort the DNA structure and are therefore more easily 

recognized than CPDs, which only induce a minimal helical distortion (Sugasawa et 

al.,2005). More recent studies have indicated that UV-DDB facilitates recognition of lesions 

that are less well-recognized by the XPC-hHR23B complex, like CPDs, via ubiquitylation of 

XPC (Fitch et al.,2003).  

The UV-DDB is able to recognize UV-induced photoproducts in the DNA and is now 

believed to precede the binding of XPC-hHR23B to the UV-damaged site. CPD repair is UV-

DDB dependent (Fitch et al.,2003; Tang et al.,2000). Since affinity of the XPC-hHR23B to 

CPD sites is low, DDB2 is needed for efficient binding (Tang et al.,2000). Affinity of DDB2 

for 6-4PP is also extremely high and the protein is furthermore able to bind to DNA lesions 

such as apurinic/apyrimidinic (AP) sites and mismatches (Nichols et al.,2000; Wittschieben 

et al.,2005). DDB2 is also part of the E3 ubiquitin ligase complex which is further comprised 

of CUL4A, ROC1/RBX1, COP9 signalosome (CSN) and DDB1 (Groisman et al.,2003). Live 

cell imaging studies show prompt recruitment of DDB1, DDB2 and Cul4a to UV induced 

lesions (Alekseev et al.,2008). CUL4A displays ubiquitin ligase activity and was shown to 

ubiquitylate DDB2 (Chen et al.,2001; Nag et al.,2001; Matsuda et al.,2005). The CSN subunit 

contains deubiquitylation capacities. This interactive mechanism is thought to be 

responsible for (poly)ubiquitylation of XPC and DDB2, but not in a similar fashion and 

result. Upon ubiquitylation DDB2 is degraded by the 26S proteasome (Fitch et al.,2003; 

Rapic-Otrin et al.,2002). XPC is not degraded after UV DNA damage, hereby increasing its 

binding affinity to the DNA as well as stimulating the interaction with hHR23B (Araki et 

al.,2001; Ortolan et al.,2004; Ng et al.,2003). Degradation of UV-DDB enhances the binding of 

XPC-hHR23B to the DNA in vitro (Sugasawa et al.,2005). Timing of the programmed 

degradation of DDB2 determines the recruitment of XPC-hHR23B to the UV-damaged site 

(El Mahdy et al.,2006).  

The XPC protein contains several binding domains, a DNA binding domain, a hHR23B 

binding domain, centrin2 binding domain and a TFIIH binding domain (Sugasawa,2008). 

TFIIH is a multifunctional transcription factor and NER complex and amongst others 

contains the helicases XPB and XPD (Figure 2). This complex is essential for the continuation 

of the NER pathway and is responsible for unwinding the DNA helix after damage 

recognition by XPC/hHR23B. XPC has been shown to physically interact with TFIIH and in 

vivo and in vitro studies have shown the recruitment of the NER complex to unwind the 

DNA is executed in a XPC-dependent manner (Sugasawa,2008; Friedberg et al.,2006b).  
The XPC protein is redundant in TC-NER. Here a stalled RNA polymerase II (RNA polII) is 
the onset of the NER machinery. The proteins CSA and CSB play a crucial role in setting the 
transcription coupled repair in motion, but are also implicated in RNA polII transcription 
functions. The CSB protein interacts with RNA polII (Tantin et al.,1997), while CSA does not 
(Tantin,1998). CSA mainly interacts with CSB, XAB2 (XPA binding protein 2) and the p44 
subunit of the TFIIH complex (Henning et al.,1995; Nakatsu et al.,2000). The function of CSA 
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remains to be elucidated but is implicated to be required for TC-NER during elongation of 
the transcription process (Groisman et al.,2003; Kamiuchi et al.,2002). CSA is also part of an 
E3 ubiquitin ligase complex in which CUL4A, CSN and DDB1 are involved. Both CSA and 
CSB are part of RNA PolII associated complexes, but for CSB additional functions are 
assigned outside NER (Sunesen et al.,2002).  
In TC-NER, CSB is thought to be responsible for displacement of the stalled RNA 
polymerase. Additionally, as with XPC in GG-NER, the preincision complex of NER is 
recruited in a CSB-dependent manner (Fousteri et al.,2008; Fousteri et al.,2006). But first, as 
in GG-NER, the TFIIH complex is recruited after damage recognition.  

3.3 DNA helix unwinding 
From DNA damage recognition and subsequent recruitment of TFIIH on, GG-NER and TC-
NER converge into the same pathway. The TFIIH complex consists of 10 proteins: XPB, 
XPD, p62, pP52, p44, p34, p8 and the CDK-activating kinase (CAK) complex: MAT1, CDK7 
and Cyclin H. TFIIH forms an open bubble structure in the DNA helix (Giglia-Mari et 
al.,2004; Goosen,2010). The DNA helicases XPB and XPD facilitate the partial unwinding of 
the DNA duplex in an ATP-dependent manner, allowing the preincision complex to enter 
the site of the lesion (Figure 2) (Oksenych et al.,2010). The preincision complex consists of 
the XPA, RPA and XPG proteins and is assembled at the damage site (Zotter et al.,2006) 
(Figure 2). The function of XPA is verification of the lesion; in addition, XPA acts, together 
with the single strand DNA binding complex RPA, as an organizational orchestrator, so that 
the repair machinery is positioned around the lesion. The arrival of XPA and RPA leads to 
complete opening of the damaged DNA and catalyzes the release of the CAK complex from 
the TFIIH complex. Data suggest this step is essential for the initiation of incision/excision 
of the damaged DNA (Andressoo et al.,2006; Coin et al.,2008).  
XPA and RPA in the preincision complex bind to the damaged DNA. Specific binding 

properties for certain structural DNA distortions have been reported for XPA, which 

suggests the protein recognizes conformations of the DNA and is able to verify the 

damage (Lao et al.,2000; Krasikova et al.,2010). XPA has no enzymatic activity to attribute 

to the incision step, but nevertheless is indispensable for DNA incision (Miyamoto et 

al.,1992). Through zinc finger motifs of XPA interaction with RPA is established (Ikegami 

et al.,1998). RPA consists of 3 subunits and with high affinity binds to the undamaged 

strand (de Laat et al.,1998b) (Figure 2). The protein roughly covers 30 nucleotides 

(corresponding in size to the excised product later in NER) and acts as a wedge between 

the DNA strands. It is also believed to protect the undamaged intact strand from 

inappropriate nuclease activity (de Laat et al.,1998a; Hermanson-Miller et al.,2002). RPA is 

concerned as the major component in the preincision complex, thereby also protecting the 

native template strand. Furthermore, RPA interacts with several other factors of the 

nucleotide excision repair pathway, like the endonucleases XPG and the ERCC1-XPF 

dimer, which are required for the dual incision of the damaged strand (Figure 2). RPA 

hereby facilitates the correct positioning of the endonucleases and orchestrates the open 

complex formation (Krasikova et al.,2010; Park et al.,2006). Besides that, RPA later plays a 

role in the DNA repair synthesis and ligation steps (Shivji et al.,1995). XPA exhibits a 

moderate preference for binding to damaged DNA, as do other NER factors. Individually, 

the proteins XPA and RPA do not show sufficient selectivity to explain the high efficiency 

of NER lesion removal, which is most likely due to a discrimination cascade of recognition 
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and verification steps (Lin et al.,1992). XPA is thought to play a major role in verification, 

possibly by acting as a molecular sensor of aberrant electrostatic potential along the DNA 

substrate (Camenisch et al.,2008). Structural changes, like kinked backbones, in damaged 

DNA can induce deviant electrostatic potentials. Bulky adducts often result in sharply 

bent backbones due to the decrease of rigidity. Normally, base stacking supplies the DNA 

helix with strength and structure, but bulky lesions and hence loss of base stacking can 

weaken the sturdiness of the backbone. It is known that XPA has a higher affinity for 

kinked backbones. However how the exact recognition of the lesion is executed remains to 

be elucidated. But it is clear that the XPA-RPA complex is indispensable for the high 

efficiency of NER (Camenisch et al.,2008). 

3.4 Incision, DNA repair synthesis and ligation 
When the preincision complex is accurately positioned in relation to the damaged site by the 
XPA-RPA complex, single strand breaks are introduced by XPG and ERCC1-XPF (Figure 2). 
Several mechanistic theories were postulated over the years. A general consensus is that the 
combined actions of XPG and ERCC1-XPF result in excision of a 24-32 nucleotide long single 
strand fragment including the damaged site (Hess et al.,1997). XPG is responsible for the 3’ 
incision and is putatively recruited by the TFIIH complex (Zotter et al.,2006). According to 
some studies its presence appears to be necessary for ERCC1-XPF activity, which is 
responsible for carrying out the 5’ incision (Friedberg et al.,2006b; Wakasugi et al.,1997). 
Others propose a ‘cut-patch-cut-patch’ mechanism for the incision and resynthesis process 
within NER, where the 5’ incision possibly precedes the 3’ incision (Staresincic et al.,2009).  
XPG is expected to have additional stabilization features, because of its ability to interact 
with XPB, XPD and several other subunits of the TFIIH complex(Friedberg et al.,2006b). 
Since loss of XPG results in very early death(Wijnhoven et al.,2007) the protein might be 
involved in systemic and important additional mechanisms, like transcription (Bessho,1999; 
Lee et al.,2002). Furthermore, XPG is suggested to have a role in oxidative damage removal 
(Dianov et al.,2000). The ERCC1-XPF seems to be a multifunctional complex as well, since it 
is also involved in interstand crosslink repair and homologous recombination (Niedernhofer 
et al.,2001; Al Minawi et al.,2009).  
The excision of the damaged fragment is restored in original (undamaged) state by DNA 
synthesis and ligation steps (either by cut-patch-cut-patch mechanism or full excision 
followed by resynthesis and ligation). Both XPG and RPA are thought to be required for the 
transition between (pre)incision and post-incision events (Mocquet et al.,2008). XPG is 
thought to be involved in the recruitment of PCNA (Staresincic et al.,2009; Mocquet et 
al.,2008). Resynthesis of DNA requires PCNA because of its ability to interact with DNA 
polymerases (Mocquet et al.,2008). The mechanism of involvement of these polymerases in 
DNA resynthesis is not yet fully elucidated. Recent studies show at least three DNA 
polymerases are involved. Pol ├, Pol κ and Pol ┝ are recruited to damage sites (Figure 2). 
Recent in vivo studies show Pol β most likely plays no major role in NER (Ogi et al.,2010; 
Moser et al.,2007). To complete the repair of the damaged DNA site the resynthesized strand 
needs to be ligated. The primary participant in the subsequent ligation process of NER 
appears to be the XRCC1-Ligase 3 complex, which is shown to accumulate in both quiescent 
as well as proliferating cells after local UV irradiation (Moser et al.,2007). Ligase 1 appears to 
be involved in the ligation step in proliferating cells only (Moser et al.,2007). To date, the 
cross play of over 30 proteins in total is involved in NER to counteract DNA damage in the 
error free manner described above.  
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4. NER in cancer 

DNA repair is vital to humans and other organisms and a defect in one of the genes can 
result in some severe syndromes or diseases by loss of genomic stability. Essential 
consequences of genomic instability can be cancer and other age-related diseases, such as 
neurological disorders as Huntington’s disease and ataxias (Friedberg et al.,2006b). DNA 
damage for example can cause mutations that trigger (pre-)oncogenes, inactivate tumor 
suppressor genes or other indispensable genes which cause loss of homeostasis. Defects in 
the DNA repair machinery will inflate the mutational load, since DNA damage will be left 
unattended and subsequently gene mutations will accumulate. Therefore, organisms that 
harbor defective DNA repair are often more prone to develop cancer or (segmental) age-
related diseases. 
In humans, several syndromes have been identified which are the result of an impaired 
nucleotide excision repair pathway, of which Xeroderma Pigmentosum (XP), Cockayne 
syndrome (CS) and Trichothiodystrophy (TTD) are the most well-known. Since NER is the 
major defense against UV-induced DNA damage, all three syndromes are hallmarked by an 
extreme UV-sensitivity, of which XP ensues a highly elevated risk of developing skin cancer 
(Friedberg et al.,2006b; Cleaver et al.,2009).  
The involvement of NER genes in rare and severe syndromes underscores the vital 
importance of this repair pathway. It is known that accumulative DNA damage is one of the 
most important causes in cancer development and loss of homeostasis in organisms 
(Mullaart et al.,1990; Lindahl,1993; Friedberg et al.,2006b; de Boer et al.,2000; Cleaver et 
al.,2009). Defects in DNA repair pathways are therefore also considered to accelerate aging 
and tumorigenesis. In defective NER both types of endpoints occur, XP patients are 
predisposed to cancer development while CS and TTD patients are not. The latter exhibit 
premature aging features which XP patients lack (Friedberg et al.,2006b; de Boer et al.,2000; 
Cleaver et al.,2009). Reason for this might be the involvement of several NER proteins in 
other significant cellular mechanisms. CSB is believed to be involved in (TC-)BER, while 
XPD is also associated with replication and transcription. Some of these affected 
mechanisms could overshadow the NER deficiency and ever increasing mutational load 
eventually predisposing an individual to cancer. Severely affected developmental and 
neurological systems could be more life threatening on the shorter term than tumor 
development is. This could be the rationale behind the fact that CS and TTD patients are 
extremely short-lived and not cancer prone. 

5. Xeroderma pigmentosum 

Xeroderma pigmentosum (XP), meaning parchment pigmented skin, was the first human 

causal NER-deficient disease identified (Cleaver et al.,2009). It is a rare, autosomal inherited 

neurodegenerative and skin disease in which exposure to sunlight (UV) can lead to skin 

cancer. In Western Europe and the USA the incidence frequency is approximately 1:250,000, 

rates are higher in Japan (1:40,000). XP-C and XP-A are the most common complementation 

forms of XP (Bhutto et al.,2008).  

Early malignancies (from 1-2 years of age) in parts of the skin, eyes and the tip of the tongue 
develop due to sun-exposure (Table 1). Additionally, benign lesions like blistering, 
hyperpigmented spots and freckles are abundant (Figure 3). XP is associated with a more 
than 1,000-fold increase in risk of developing skin cancer. These cancers are mainly basal 
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Feature % / age Feature % / age 

Cutaneous abnormalities  Neurological abnormalities  

   Median age of onset of 
   symptoms 

1.5 yr    Median age of onset 6 mo 

   Median age of onset of freckling 1.5 yr 
   Association with skin 
   problems 

33% 

   Photosensitivity 19% 
   Association with ocular 
   abnormalities 

36% 

   Cutaneous atrophy 23%    Low intelligence 80% 

   Cutaneous telangiectasia 17%    Abnormal motor activity 30% 

   Actinic keratoses 19%    Areflexia 20% 

   Malignant skin neoplasms 45%    Impaired hearing 18% 

   Median age of first cutaneous 
   neoplasm 

8 yr    Abnormal speech 13% 

Ocular abnormalities     Abnormal EEG 11% 

   Frequency 40%    Microcephaly 24% 

   Median age of onset 4 yr 
Abnormalities associated with 
neurological defects 

 

   Conjunctival injection 18%    Slow growth 23% 

   Corneal abnormalities 17% 
   Delayed secondary sexual 
   development 

12% 

   Impaired vision 12%   

   Photophobia 2%   

   Ocular neoplasms 11%   

   Median age of first ocular  
   neoplasm 

11 yr   

Adapted from Friedberg, E.C et al. 2006b 

Table 1. Overview of some XP features and their average age of onset or frequency 

and squamous cell carcinomas (45% of the XP patients) and to a lesser extent melanomas 
(Friedberg et al.,2006b) (Table 1). Besides skin cancers, XP patients have a 10-20 fold 
increased risk to develop internal cancers (Kraemer et al.,1984). The disease is mostly 
symptomatic during childhood. The mean latency time for cutaneous neoplasms is 8 years, 
this is in comparison to the general population in which the mean latency time is 50 years 
later (Kraemer,1997). Progressive neurological degeneration occurs in approximately 20% of 
the XP cases and can be correlated to deficiencies in specific XP genes (XPA, XPB, XPD and 
XPG) (Cleaver et al.,2009). XP-C and XP-F patients rarely develop neurological degeneration 
and if so with a later onset when compared for example to XP-A and XP-D patients 
(Kraemer,1997; Friedberg et al.,2006b). The heterogeneity in exhibited symptoms is 
correlated to the genetic heterogeneity in XP patients. XP-A, XP-B, XP-D and XP-G patients 
are in general the most severely affected and all these patients are defective in both GG-NER 
and TC-NER. Solely GG-NER is defective in XP-C and XP-E patients. XP-C and XP-E cells 
show higher survival rate after UV exposure than XP-A and XP-D cells for example 
(Friedberg et al.,2006b). This could be the reason that XP-C patients suffer less from 
sunburn. Most abundant XP variants in human are XP-A and XP-C (~50% of all XP cases) 
(Zeng et al.,1997).  
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Fig. 3. Xeroderma pigmentosum.  

Photo of a 19 year old Xeroderma pigmentosum patient suffering from hyperpigment skin 
lesions and a tongue carcinoma (IARC). 

6. NER mouse models in cancer research 

To investigate the role of the proteins involved in NER on survival and cancer development 

several transgenic mouse models were created, mimicking the existing NER mutations or 

deletions in humans. Table 2 shows an overview of NER mouse models and their 

accompanying spontaneous phenotypes. Selected knockout mouse models (Xpa, Xpc and 

Xpe) are described in more detail further below. These three models show a decreased 

lifespan in comparison to their concurrent wild type controls, but not as extreme as several 

other NER-deficient mouse models in Table 2. Therefore the mouse models survive long 

enough to study the effect of impaired NER on cancer development. Others, like Xpb, Xpf, 

Xpg and Ercc1 deficient models are too short- lived to study carcinogenesis.  

6.1 Xpa deficient mouse model 
The first DNA repair defective models were the Xpa-deficient mouse models, generated by 

de Vries et al. (de Vries et al.,1995) and independently by Nakane et al (Nakane et al.,1995). 

Xpa-deficient mice appeared more cancer prone compared to their heterozygous and wild 

type littermates when exposed to carcinogenic and genotoxic compounds (de Vries et 

al.,1997b; Takahashi et al.,2002; Ide et al.,2001; Hoogervorst et al.,2005; Hoogervorst et 

al.,2004). As in humans, the mouse model exhibited a marked predisposition to skin cancer 

upon UV treatment of shaved dorsal skin (de Vries et al.,1995). 

Survival studies without directed exposure were performed initially but always in a mixed 

genetic background, C57BL/6J/Ola129 (de Vries et al.,1997b) and C3H/heN 

strains(Takahashi et al.,2002) and fairly small numbers. However, both studies indicated 

that Xpa-/- mice (from here mentioned as Xpa mice) developed a significant number of 

spontaneous liver tumors. The C3H/heN strain wild type mice already showed 47% liver 

tumor incidence in the male mice within 16 months. The C57BL/6J/Ola129 mice were more 

resilient, no enhanced mortality was observed until the age of 1.5 years. The Xpa mice 

showed a 15% hepatocellular adenoma tumor incidence after 20 months, while there were 

no tumors in the wild type and heterozygous littermates. The lack of a pure genetic 
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Mouse 
model 

Affected 
repair 

pathway 

Enhanced 
spontaneous 

tumor 
response 

Reference 
Accelerated 

aging/development
al problems 

Reference 

Xpa−/− 
GG-

NER/TC-
NER 

Yes, liver 

(de Vries et 
al.,1997b; Melis 

et al.,2008; 
Tanaka et 
al.,2001) 

Shorter life span, no 
pathology 

(Melis et 
al.,2008) 

Xpb−/− 
NER/transcri

ption 
n.a.  

Impaired embryonic 
development 

(Friedberg et 
al.,2006a) 

Xpc−/− GG-NER Yes, lung 
(Hollander et 

al.,2005; Melis et 
al.,2008) 

Shorter life span 
(Melis et 
al.,2008) 

XpdTTD 
NER/transcri

ption 
No 

(de Boer et 
al.,2002; 

Wijnhoven et 
al.,2005) 

Shorter life span, 
aging and CR 

pathology 

(de Boer et 
al.,2002; 

Wijnhoven 
et al.,2005) 

XpdXPCS 
NER/transcri

ption 
n.d.    

Xpe (DDB2)−/− GG-NER Yes, various 
(Ng et al.,2003; 

Yoon et al.,2005)
 

 
 

Xpfm/m NER/ICL n.a.  
Very short life span, 
maximum 3 weeks 

(Tian et 
al.,2004) 

Xpg−/− 
TC-

NER/transcri
ption 

n.a.  
Very short life span, 
maximum 3 weeks 

(Harada et 
al.,1999) 

mHR23B−/− GG-NER n.a.  
Very short life 

span/embroynic 
lethality 

(Ng et 
al.,2002) 

Csa−/− TC-NER No 
(van der Horst 

et al.,2002) 
  

Csb−/− 
TC-

NER/transcri
ption 

No 
(van der Horst 

et al.,1997) 
Normal life span, 
mild pathology 

(van der 
Horst et 
al.,1997), 

unpublishe
d results 

Ercc1−/− NER/ICL n.a.  
Very short life span, 
maximum 4 weeks 

(McWhir et 
al.,1993; 

Weeda et 
al.,1997) 

Ercc1Δ7/− NER/ICL No 
Personal 

communication 
van Steeg/Dollé

Short life span of 4–6 
months 

(Weeda et 
al.,1997) 

ICL = interstrand cross link, CR = caloric restriction 
n.a.: not applicable, mouse models are too short lived to develop tumors 
n.d.: not determined 

Table 2. Overview of spontaneous phenotypes of NER-deficient mouse models 

background for this and other mouse models made it harder to investigate the underlying 
cause of the phenotypic responses in these mice. An Xpa mouse model in a pure genetic 
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C57BL/6J background more recently was investigated (Melis et al.,2008). C57BL/6J mice 
showed a low baseline tumor response and appear therefore suitable for studying 
mutagenesis and tumorigenesis. In a pure genetic background a significant increase in liver 
tumors was observed (10%). A small (but not significant) increase in lung tumors was also 
observed (6.6% of the Xpa mice) (Melis et al.,2008).  Correspondingly, mutation 
accumulation in the C57BL/6J Xpa mice was significantly increased during survival 
compared to wild type mice in liver, implicating an Xpa repair defect and subsequent 
mutation induction in carcinogenesis (Melis et al.,2008).  
Like human XP-A patients, Xpa mice appeared predisposed to skin cancer after UV light 
exposure to shaved dorsal skin of the mice (de Vries et al.,1995; Tanaka et al.,2001). 
Heterozygous Xpa mice did not show this cancer prone phenotype after UV exposure, not 
even when the Xpa mutation was crossed in in hairless mice (Berg et al.,1997). Skin cancer 
predisposition in XP mice might not only involve NER deficiency, but several reports 
indicate enhanced immunosuppression and impaired natural killer cell function are 
involved (Gaspari et al.,1993; Horio et al.,2001; Miyauchi-Hashimoto et al.,2001). Xpa mice 
were also predisposed to tumors of the cornea when exposed to UV radiation, see Table 3 
(de Vries et al.,1998).  
Chemical exposure of Xpa mice to 7,12-dimethyl-1,2-benz[a]anthracene (DMBA) also 

resulted in skin cancer (de Vries et al.,1995). Several chemical exposures in Xpa mice 

however shed some more light on the cancer development other than skin cancer, which in 

humans is the predominant tumor phenotype (Table 3). For example, oral treatment of Xpa 

deficient mice with genotoxic carcinogens like benzo[a]pyrene (B[a]P), 2-

acetylaminofluorene (2-AAF), and 2-amino-1-methyl-6-phenylimidazo [4,5-b]-pyridine 

(PhIP) resulted in lung tumors and lymphomas (B[a]P), liver and bladder tumors (2-AAF) 

and intestinal adenomas plus lymphomas (PhIP) (de Vries et al.,1997b; van Steeg et al.,1998; 

van Steeg et al.,2000; Ide et al.,2000). Other human carcinogens like cyclosporin A (CsA) and 

diethylstilbestrol (DES), although not directly mutagenic, showed to be carcinogenic in Xpa 

mice after 39 week exposure, but in contrary the low potent human carcinogen phenacetin 

did not result in a significant increase in tumors.  

LacZ and Hprt mutation measurements in Xpa mice after B[a]P and 2-AAF treatment 

showed a 2-3 fold increase in mutations compared to wild type mice after only 12-13 weeks 

of exposure (Hoogervorst et al.,2005; van Oostrom et al.,1999; Bol et al.,1998; de Vries et 

al.,1997b). This increase in mutational load in comparison to wild type indicates Xpa mice 

are more sensitive to mutation accumulation, which consequently corresponds to the 

increased cancer susceptibility of Xpa mice. 

The increased sensitivity towards cancer development of Xpa mice made it possible to 

identify genotoxic carcinogens even more accurate and faster when combined with 

heterozygosity for p53. This latter mouse model could be beneficial in reducing and refining 

in vivo carcinogenicity testing of compounds.  

6.2 Xpc deficient mouse model 
Two independent Xpc-deficient mouse models were also created in the mid-nineties (Cheo 

et al.,1997; Sands et al.,1995). As the Xpa mouse model, this model is informative for human 

XP and cancer development in general. The model is especially interesting since it is only 

defective for GG-NER and not for TC-NER. Hereby, differences between pathways can be 

investigated. 
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Mouse 
model 

Treatment Target 
Enhanced 

tumor 
response*

References 

Xpa 

UV-B radiation Skin Yes 
(de Vries et al.,1995; Nakane 

et al.,1995) 

DMBA paint + TPA Skin Yes 
(de Vries et al.,1995; Nakane 

et al.,1995) 

B[a]P gavage 
Multiple, 

lymphomas 
Yes 

(de Vries et al.,1997a; van 
Oostrom et al.,1999) 

B[a]P diet 
Stomach, 

esophagus 
Yes (Hoogervorst et al.,2003) 

B[a]P intratracheal 
instillation 

Lung Yes (Ide et al.,2000) 

AFB1  i.p. injection Liver Yes (Takahashi et al.,2002) 

PhIP diet 
Lymphoma, 

small 
intestine 

No (Klein et al.,2001) 

4NQO drinking water Tongue Yes (Ide et al.,2001) 

2-AAF diet 
Liver, 

bladder, gall 
bladder 

Yes 
(Hoogervorst et al.,2005; van 

Kreijl et al.,2001) 

CsA Lymphoma Yes (van Kesteren et al.,2009) 

DES 
Osteosarcom
a, lymphoma

Yes (McAnulty et al.,2005) 

Wy Liver Yes (van Kreijl et al.,2001) 

DEHP Liver No Unpublished results 

p-cres Liver Yes Unpublished results 

    

Xpc 

UV-B radiation Skin Yes 
(Sands et al.,1995; Berg et 

al.,1998) 

2-AAF diet 
Liver, 

bladder 
Yes (Hoogervorst et al.,2005) 

AAF i.p. injection Liver, lung Yes (Cheo et al.,1999) 

NOH-AAF i.p. injection Liver, lung Yes (Cheo et al.,1999) 

DEHP Liver No Unpublished results 

p-cres Liver Yes Unpublished results 

    

Xpe/ 
DDB2 

UV-B radiation Skin Yes (Itoh et al.,2004) 

DMBA paint Skin No (Itoh et al.,2004) 

* in comparison to the untreated controls 
DEHP = Di(2-ethylhexyl) phthalate 
AFB1 = Aflatoxin B1 
4NQO = 4-Nitroquinoline 1-oxide 
WY = Wyeth-14643 
p-cres = p-cresidine 
NOH-AAF = N-hydroxyacetylaminofluorene 

Table 3. Tumor responses in Xpa, Xpc and Xpe mice upon exposure 
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As in human XP-C patients, Xpc mice are highly predisposed to UV radiation-induced skin 
cancer (Table 3) (Berg et al.,1998; Cheo et al.,1996; Cheo et al.,2000; Friedberg et al.,1999; Sands 
et al.,1995). Contrasting to Xpa+/- mice the heterozygous Xpc mice are more susceptible to UV-
induced skin cancer (but only at approximately from 1 year old) when compared to their wild 
type littermates. The haploinsufficient sensitivity could mean that XPC is a rate limiting factor 
in NER and since XPC is involved in damage recognition might explain the difference with 
Xpa heterozygous mice. Exposure studies with 2-AAF using Xpc mice showed a significant 
predisposition to liver and lung tumors compared to the heterozygous Xpc and wild type mice 
(Table 3) (Cheo et al.,1999; Friedberg et al.,2006b). Internal tumor incidence is higher in XP 
mice than in human XP, since patients normally develop skin cancer at a faster rate and die of 
resulting metastatic complications. NER is believed to be the sole pathway to remove CPD and 
6-4PP lesions, while for chemical carcinogenic exposure other repair mechanisms are also 
present in the cell. In human, other types of cancer generally do not develop fast enough and 
are possibly overshadowed by skin cancers in XP.    
In a mixed genetic background (C57BL/6J/129) no decrease in survival was found in 
relation to wild type mice, even though Xpc mice showed an extremely high and 
significantly increased lung tumor incidence (100%). However, in this study the wild type 
mice were not genetically related to the Xpc mice (Hollander et al.,2005). The spontaneous 
survival characteristics of Xpc mice in a pure genetic C57BL/6J background together with 
their related wild type littermates were also investigated. Xpc mice showed a significant 
decrease in survival, again exhibited a significant increase in lung and liver tumors and an 
increased mutation accumulation in these tissues compared to wild type mice (Melis et al., 
2008). Here, Xpc mice showed a divergent tumor spectrum from Xpa mice in the same 
genetic C57BL/6J background. The additional increase in lung tumor development in two 
independent spontaneous survival studies indicate XPC is involved in other pathways 
besides NER. A corresponding strong increase in mutational load during aging was found 
in lungs of the C57BL/6J Xpc mice, which was not the case in Xpa mice (Melis et al.,2008). 
Uehara et al. have shown that enhanced spontaneous age-related mutation accumulation in 
Xpc mice is tissue dependent. Liver, lung, heart and spleen exhibited an increase in mutant 
frequency compared to wild type, while this difference was not visible in brain and small 
intestine. Mutant frequencies of liver, lung and spleen are higher in Xpc mice compared to 
Xpa mice, just as the tumor incidence in this study (Melis et al.,2008). The additional increase 
in mutational load in Xpc mice might be caused by increased sensitivity towards oxidative 
DNA damage. XPC functioning has been implied in other DNA repair pathways like base 
excision repair and non-homologous end joining or might be involved in redox homeostasis 
(D'Errico et al.,2006; Despras et al.,2007; Liu et al.,2010; Okamoto et al.,2008; Rezvani et 
al.,2010; Shimizu et al.,2003; Uehara et al.,2009).  
Chemical exposures to B[a]P (Wickliffe et al.,2006), 3,4-epoxy-1-butene (EB) (Wickliffe et 
al.,2006), DMBA (Wijnhoven et al.,2001) and UV-B (Ikehata et al.,2007) also showed 
significantly enhanced mutant frequencies compared to wild type mice in several tissues. 
Direct comparisons to Xpa mice in these studies have not been made, however when Xpa 
and Xpc mice were exposed to pro-oxidants (DEHP and paraquat) for 39 weeks, Xpc again 
exhibited a higher mutant frequency than Xpa.  

6.3 Xpe deficient mouse model 
In 2004 and 2005 Itoh et al. and Yoon et al. independently generated a strain of DDB2-/- mice 
(Itoh,2006; Itoh et al.,2004; Yoon et al.,2005). The latter group reported that DDB2-/- mice 
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show a decrease in spontaneous survival (n=10) compared to wild type (Yoon et al.,2005). 
Also the heterozygous DDB2+/- mice showed a decreased lifespan, although not as severe as 
the DDB2-/- mice. Six out of 10 DDB2-/- mice harbored tumors at the end of life, while 3 out of 
10 DDB2+/- mice were tumor bearing (Yoon et al.,2005). DDB2-/- mice additionally showed to 
be cancer prone upon UV-B exposure, resulting in a significant increase in skin tumors 
(Table 3) (Itoh,2006; Itoh et al.,2004; Yoon et al.,2005). DMBA treatment however did not 
enhance tumor incidence compared to wild type (Table 3) (Itoh,2006; Itoh et al.,2004). DDB2 
deficiency is, due to these and other studies, since being classified as a XPE phenotype. 
Besides UV-B and DMBA exposure, other in vivo carcinogen exposures have not been 
reported in these models so far. DDB2 is well conserved between humans and mice and 
appears to function as a tumor suppressor, at least in part, by controlling p53-mediated 
apoptosis after UV-irradiation (Itoh et al.,2004). 

7. Conclusion 

DNA repair has proven to be of vital importance and protects or at least delays cancer 
development and several age-related diseases. DNA damage accumulation and consequent 
mutation accumulation is considered pathogenic. NER has been shown to be a highly 
versatile and important DNA repair pathway, removing helix distorting DNA damages. 
Mutations in the XP genes of NER in human can result in the severe syndrome Xeroderma 
pigmentosum, which is accompanied by a cancer predisposition and severe UV sensitivity. 
Mouse models mimicking this human syndrome are important to study cancer development 
and the consequences of persistent DNA damage. Novel functionality of DNA repair 
proteins and implications of their deficiency in mutagenesis, cell cycle regulation, 
carcinogenesis and aging were discovered using NER-deficient models. Besides mechanistic 
insight these models can be used as a refined model in carcinogenicity testing, especially in 
combination with p53 heterozygosity. The increased cancer susceptibility can be beneficial 
towards a decrease in the number of animals used and the duration of carcinogenicity 
testing.  
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