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1. Introduction 

The present study deals with the planning methodology of tests in which the parameters of 

two exponentially-distributed random variables are compared. The largest application field 

of such tests is reliability checking of electronics equipment. They are highly cost-intensive, 

and the requirements as to their resolution capability become stricter all the time. Hence the 

topicality and importance of an optimal plan permitting decisions at a given risk level on the 

basis of a minimal sample size. 

Such comparison tests are required for example in assessing the desirability of replacing a 

“basic” object whose reliability is unknown, by a “new” one; or when the influence of test 

conditions on the results has to be eliminated. 

This is the case when an electronics manufacturing process is transferred to another site and 

the product undergoes accelerated testing. 

Recently, equipment and methods were developed for accelerated product testing through 

continuous observation of a population of copies and replacement of failed objects without 

interrupting the test. For such a procedure, the sequential approach is a feasible and 

efficacious solution with substantial shortening – on the average – of the test duration (see 

e.g. Chandramouli et al. 1998; Chien et al. 2007). 

In these circumstances there is high uncertainty in the acceleration factor, with the same 

effect on the estimated reliability parameters of the product. This drawback can be remedied 

by recourse to comparison testing. The latter serves also for reliability matching in objects of 

the same design and different origins, or a redesigned product versus its earlier counterpart, 

or different products with the same function (see e.g. Chien & Yang, 2007; Kececioglu, 2002). 

The exponential nature of the Time Between Failures (TBF) of repairable objects, or the time 
to failure of non-repairable ones – is noted in the extensive literature on the reliability of 
electronic equipment (Kececioglu, 2002;  Chandramouli et al, 1998;  Drenick, 1960; Sr-332, 
2001; MIL-HDBK-781A, 1996). For brevity, the TBF acronym is used in the sequel for both 
these notations.  
Mace (1974, Sec. 6.12) proposed, for this purpose, the so-called fixed sample size test with 
the number of failures of each object fixed in advance – which is highly inconvenient from 
the practical viewpoint. For example, when the "basic" object has "accumulated" the 
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specified number of failures, one has to wait until the "new" one has done the same, and if 
the latter is substantially more reliable, the waiting time may be very long. 
The international standard IEC 61650 (1997) deals with two constant failure rates, which is 
equivalent to the problem just described. However, this standard, which forms part of an 
international system of techniques for reliability data analysis, does not refer to the planning 
aspect of the tests. 
A solution to our problem was outlined in (Michlin & Grabarnik, 2007), where it was 
converted into binomial form, for which Wald's sequential probability ratio test (SPRT) is 
suitable (Wald, 1947, chap. 5). Wald and Wolfowitz (1948) also proved that this test is the 
most efficacious at two points of its characteristic, but it has one drawback – the sample size 
up to a decision can be many times larger than the average. This is usually remedied by 
resorting to truncation (see e.g. Wald, 1947; Siegmund, 1985). 
A methodology is available for exact determination of the characteristics of such a truncated 
test with known decision boundaries. It was proposed by Barnard (1946) and developed by 
Aroian (1968). It served as basis for an algorithm and computer programmes (Michlin et al. 
2007, 2009) used in examining its properties. 
Hare we consider the inverse problem – determination of the test boundaries from specified 
characteristics. 
In the absence of analytical dependences between the boundary parameters and 
characteristics, the search is hampered by the following circumstances:  

 The number of parameter-value combinations may be very large. 

 While shortening of the step makes for more combinations, it cannot be guaranteed that 
combinations with optimal characteristics are not missed. 

 The standard optimum-search programmes are unsuitable for some of the discrete data 
of the type in question. 

The theme of this chapter is the planning methodology for comparison truncated SPRT's. 
Formulae derived on its basis are presented for calculation of the test boundary parameters. 
The rest of the chapter is organised as follows: In Section 2 is given a description of the test 
and its conversion to SPRT form. In Section 3 are described the quality indices for a 
truncated test and criteria for the optimal test search. In Section 4 are discussed the discrete 
nature of the test boundaries and its characteristics; a search algorithm is presented for the 
oblique boundaries. Section 5 describes the planning methodology, and approximative 
dependences are presented for calculation of the boundary parameters. Section 6 deals with 
planning of group tests. Section 7 presents a planning example and applications. Section 8 – 
the conclusion. 

2. Description of test and its SPRT presentation 

2.1 Description of test procedure in time domain. Checked hypothesis 
In the proposed test two objects are compared – one “basic” (subscript “b”) and the other 
“new” (subscript “n”). In the course of such tests, the “null” hypothesis is checked, that the 
ratio of the mean TBF (MTBF) of these objects exceeds or equals a prescribed value Φ0, 
versus the alternative of it being smaller than the latter. The compared objects work 
concurrently (Figure 1). When one of them fails, it is immediately repaired or replaced. The 
unfailed object is not replaced but allowed to continue working until it fails in turn (in 
which case it is neither replaced nor repaired), or until the test terminates. A situation may 
occur in which there has been no failure in one object and it kept working throughout the 
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whole test, as against several failures in the other object. The total work times T are equal for 
both objects. 
 

 

Fig. 1. Scheme of test course (Upward marks – failures of basic item; downward marks – 
those of new item; T – time, common to both systems) (Michlin et al., 2011). 

 The probability density of the TBF for each of the compared objects has the form: 

 fTBF (t)=(1/ǉ)*exp(-t/ǉ)  

where ǉ is the MTBF for the "new" (ǉn) and “basic” (ǉb) objects respectively. At each failure, a 
decision is taken – continuing the test versus stopping and accepting the null hypothesis, or 
rejecting it in favour of the alternative (Michlin & Migdali, 2002; Michlin & Grabarnik, 2007): 
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where   

 /n b      (2) 

ǂ and ǃ  are the probabilities of I- and II-type errors; in the sequel, their target values will be 
denoted by the subscript  "tg", and their actual values – by the subscript "real". 
Pa(Φ) is the probability of acceptance of H0, which is the Operating Characteristic (OC) of the 
test; 

 1 0 / d       (3) 

d>1 being the discrimination ratio. 

Mace (1974 , Sec. 6.12) presents the following estimate ̂ for Φ, obtained with the aid of the 
maximum likelihood function (for the proof, see Kapur & Lamberson 1977, Sec. 10.C): 

  ( / ) ( / )n n b bT r T r      

where rn and rb – the accumulated number of failures over times Tn and Tb. 
As in this test Tn=Tb=T, we have: 

  /b nr r     (4) 

Figure 2  shows an example of the test field. In the course of the test, it can reside at a point 
of this field characterised by an integer number of failures of each of the objects. When one 
of them fails, the test “jumps” to a neighbouring point located above (failure of “n”) or to the 
right (failure of “b”). With the test course thus described, shifts from point to point occur 
only on failures in one of the objects, i.e. the time factor is eliminated from the analysis. 
When the Accept boundary is crossed, the test stops at the Accept Decision Point (ADT), 
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and when its Reject counterpart is crossed – at the RDP. The boundaries consist of two 
parallel oblique straight lines (accept line (AL) and reject line (RL)) and the truncation lines 
parallel to the coordinate axes and intersecting at the Truncation Apex (TA). 
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Fig. 2. Truncated test field for Φ0=4.3, d=2, ǂreal=0.098, ǃreal=0.099, RASN =9.2%, (Michlin et al., 
2011). 

2.2 Binomial presentation of test and SPRT solution 
For all points of the test field, the probability of the next failure occurring in the new object 
(i.e. of a step upwards) is constant and given by the following expression (for proof see 
Michlin & Grabarnik, 2007):  

  ( ) 1 1RP       (5) 

A binomial SPRT is available for such a test (Wald, 1947, chap. 5), whose oblique boundaries 
are: 

 Accept line (AL):               rb= rn/s+h’b    (6) 

 Reject line (RL):               rn= rb·s+hn    (7) 

where s is their slope, uniquely determined by the SPRT theory depending on ǂ, ǃ, Φ0, d  
(Wald,1947; Michlin & Grabarnik, 2007), and given by: 

  ln ln lns q q d      (8) 

where 

     0 01q d      (9) 

The absolute terms of (6) and (7) are given by: 

     * *ln 1 ln lnah q d     (10) 
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      * *ln 1 ln lnnh q d     (11) 

 ' /b ah h s   (12) 

The expressions (10)-(12) have one drawback: the parameters ǂ* and ǃ* are unknown. Their 

dependence on ǂ0, ǃ, Φ0, d, and on the TA coordinates is available only in the form of the 

limits between which the parameters lie (Michlin et al., 2009). Still, these limits suffice for 

determining – from the above expressions – corresponding search limits for h'b and hn. A 

search methodology, within these limits, for exact values ensuring the target characteristics 

– is, basically, the goal of this work. 

2.3 Calculation of test characteristics acc. to given boundaries 
The probability of hitting a given point of the test is given by (Barnard, 1946; Michlin & 
Grabarnik, 2007):  

    , , 1 1,( ) ( ) ( ) 1
b n b n b nr r r r R r r RP P P P P               (13) 

while that of hitting the given ADP is: 

      1,, 1
b nADP n r r RP r P P          (14) 

and that for the given RDP is: 

      , 1,
b nRDP b r r RP r P P       (15) 

Pa(Φ) is the sum of all the probabilities  ,ADP nP r   of hitting all ADP, hence the actual 

values of ǂ and ǃ, namely ǂreal and ǃreal , are given by: 

  01real aP    ;    1real aP     (16) 

The Average Sample Number (ASN) of a truncated test is calculated as: 

             
0 0

( ) , ( ) ,b n

b n

TA TA
b nRDP b RDP b n bADP n ADP nr r

ASN r r r P r r r r P r
 

         (17) 

where ( )nRDP br r  is the rn-coordinate of the RDP with given rb. 

The Average Test Duration (ATD) for each object is:  

      1 1bATD ASN       (18) 

3. Comparative characteristics and optimality of test  

In this Section the optimality criteria for the test, on which the comparison- and selection 

algorithm is based, are substantiated, and the problems of the study are clarified. 

In (Michlin & Grabarnik, 2007) were presented three optimality criteria which can be 

calculated for the specified boundaries: 
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 Closeness of the test OC to the prescribed one. For given d, the measure of this closeness 
is RD: 

           2 2

D real tg tg real tg tgR                    (19) 

  with ǂreal and ǃreal as per (16). 

 The degree of truncation, which characterises the maximum test duration whose 
measure can be, for example, the sum of the TA coordinates. 

 The efficacy of the test according to Wald (1947) and to Eisenberg & Ghosh (1991), as 
the measure of which RASN was adopted (Michlin et al., 2009) – the relative excess of the 
function ASN(Φ) of the truncated test over ASNnTR(Φ), its non-truncated counterpart 
which can be taken as ideal: 

                5 5

1 1ASN i nTr i nTr ii i
R ASN ASN ASN

 
           (20) 

 where Φi - values of Φ in geometric progression: 

      4

0

i
d


       for  i = 1…5 (21) 

ASN(Φ) – calculated as per the recursive formulae (17), (13…15)        ASNnTr(Φ) – calculated 
by Wald’s formulae (1947,  chap. 3) obtained for a non-truncated test of the type in question:   

              
       
      0 0

1 ln 1 ln

1 ln 1 ln

a a
nTr

P B P A
ASN

d d

  



      
       

 (22) 

where 

       
   

0 0

0 0

1

1

d d

d

 

 
   

 
  

 (23)  

      1aP A A B        (24)  

  1 real realA      (25) 

   1real realB     (26) 

ǈ– an auxiliary parameter calculated by (23) for Φ values as per the progression (21). 

The choice criterion for the optimal test is:  

  min(TAn+TAb) (27) 

subject to: 

 (minRd at given TA)&(Rd< Rd0)&(RASN< RASN0)  (28) 
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where Rd0 and RASN0 – threshold values of Rd and RASN. 
The TA of such a test called Optimal TA (OTA). Section 5 presents approximative formulae 
for determination of those OTA coordinates which permit reduction of the search field to 2 
to 6 points. A particular problem in this context is: for a given TA, find h’b and hn (eqs. (6), 
(7)) ensuring min Rd. 

4. Discreteness of test boundaries and their search at given TA  

This Section deals with the interrelationships between the boundary parameters of the test 
on the one hand, and the characteristics of the test itself (namely, ǂreal and ǃreal) and those of 
its quality (introduced in the preceding Section, Rd and RASN) – on the other. These 
interrelationships lack analytical expression and are further complicated by the discreteness 
of the test. Thus one had to make do with typical examples of their behaviour in the vicinity 
of the optimum. With this behaviour clarified, an efficacious search algorithm could be 
developed for the optimum in the discrete space in question. Clarity of the picture is 
essential both for the developer of the planning methodology and for the practitioner 
planning the binomial test in the field. 

4.1 Discreteness of test boundaries  
As the slope s of the oblique test boundaries, described by eqs. (6) and (7), is unrelated to ǂ 
and ǃ (see eq. (8)), the search for them under the min Rd stipulation reduced to finding the 
absolute terms in the describing equation, namely the intercepts h’b and hn on the coordinate 
axes (Figure 3).  
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Fig. 3. Test Plane (Michlin & Grabarnik, 2010). 1 – Example of interval of h’b values over 
which the test ADP's do not change. 2 – Ditto for hn and RDP. 
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Stopping of the test occurs not on the decision lines, but at points with integer coordinates, 
with ADP to the right of the AL and RDP above the RL. If the AL is shifted from an initial 
position (solid line in Figure 3) to the right, the test characteristics remain unchanged until it 
crosses an ADP, which in turn is then shifted in the same direction by one failure. The AL 
positions at these crossings are shown as dot-dashed lines, and its shifts are marked with 
arrows. Projecting the termini of these arrows, parallel to the AL, on the rb axis, we obtain 
the values of h’b at which the changes occur. An analogous process takes place when the RL 
is shifted upwards. 
The intervals of h’b and hn over which the test characteristics remain unchanged are marked 
in Figure 3 by the circled numbers 1 and 2 respectively. 
When the AL is shifted to the right (h’b increased) Pa(Φ) is reduced, i.e. ǂreal increases and ǃreal 
decreases. When the RL is shifted upwards, the effects are interchanged. These relationships 
are monotonic and stepwise, and differ in that change of h’b is reflected more strongly in ǃreal 
and more weakly in ǂreal. With hn the pattern is reversed. 

4.2 Basic dependences between oblique boundaries and test characteristics  
In (Michlin et al., 2009, 2011; Michlin & Kaplunov, 2007) were found the limits within which 
ǂ* and ǃ* of the optimal tests should be sought. These limits can also serve for determining 
the search limits of h’b and hn, as per (10) – (12). 
Figure 4 shows an example of the above, with the limits for h’b and hn calculated, according 
to the data of (Michlin et al., 2009), for d=2,  Φ0=1,  ǂtg=ǃtg=0.1,  TAb=27,  TAn=38,  RASN≤12%. 
In the figure, the points mark the centres of rectangles within which the characteristics 
remain unchanged. The resulting picture is fairly regular, even though the spacings of the 
columns and rows are variable. In space, the Rd points form a cone-shaped surface. 
 

 

Fig. 4. Contours of RASN (dashed lines) and RD (solid lines) vs.  h’b and hn. (Michlin & 
Grabarnik, 2010). The dots mark the centres of rectangles within which the test 
characteristics do not change. 1 – 4 are the corner points at which the test characteristics are 
calculated in the search for the optimum (Subsection 4.3, stage ‹1.1›). 
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The figure also contains the contours (isopleths) of Rd (solid lines) and RASN (dashed lines), 
given as percentages. In macro the Rd contours can be described as oval-shaped, whereas in 
micro they are quite uneven, so that derivatives calculated from a small set of points would 
show large jumps, which would hamper the search for the minimum Rd . It is seen that in 
the vicinity of that minimum, RASN≈11%. 
Figure 5 shows two projections representing ǂreal and ǃreal, calculated according to the 
coordinates of Figure 4, so that to each point of the latter corresponds one of ǂreal and ǃreal. 
These points form intersecting almost-plane surfaces. In the upper figure the coordinate 
axes are oriented so that the intersection zone (ǂreal - ǃreal) is perpendicular to the page; in the 
lower figure. the orientation is such that the rows of ǃreal points reduce in projection to a 
single point – in other words, they form parallel or almost-parallel lines. 
 

 

Fig. 5. Two projections of real  and real “planes”. (Michlin & Grabarnik, 2010).  
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Figure 6 shows analogous projections for RASN, and we again have an almost-plane surface, 
monotonic and uneven in micro. 
The provided examples show that the described patterns characterise the dependences of 
ǂreal, ǃreal and RASN on h’b and hn within the limits determined in Subsection 5.3 (Michlin et al., 
2009, 2011; Michlin & Kaplunov, 2007). Over small intervals these dependences are 
stepwise, and the lines through the step midpoints are uneven as well. 
 

 

Fig. 6. Two projections of RASN  “plane”. (Michlin & Grabarnik, 2010).  

4.3 Search algorithm for oblique test boundaries  
Standard search programmes for minima (such as those in Matlab) operate poorly, or not at 
all, with discrete data of the type in question. Availability of known regularities in the 
behaviour of the functions ǂreal, ǃreal, RASN, RD makes it possible to construct a fast and 
efficacious algorithm. 
These known regularities are: 

 The values of h'b and hn at which the test characteristics change. 

 The limits of h'b and hn, yielding tests with the specified characteristics. 

 Almost-plane monotonic dependences of ǂreal, ǃreal and RASN within the above limits, 
stepwise and unstable but also monotonic in narrower intervals. 
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 Stronger dependence of ǂreal on hn than on h'b; the reverse – for ǃreal. 
In expanded form, the search algorithm for min Rd consists in the following:  

1st stage.  

‹1.1› Calculation of the test characteristics at the four vertices of a rectangle (Figure 4) whose 
coordinates are obtained from the relationships presented in Subsection 5.3.  
‹1.2› Approximation of ǂreal(h'b, hn) and ǃreal(h'b, hn) as planes, and determination of the first 
estimate h'b1, hn1 yielding min RD (point 5, Figure 7). Checking for RD ≤ RD0. If satisfied, 
stopping of search. 
 

 

Fig. 7. Example of search scheme for min(RD). (Michlin & Grabarnik, 2010). 5 – 11 are points 
of test characteristics calculation. 

2nd stage.  

Determination of point 6 – from ǂreal5, ǃreal5 and the slopes of the ǂ-, ǃ-planes as per ‹1.2›. 
Re-checking for RD ≤ RD0. 

3rd stage.  

Alternating advance parallel to the h'b- and hn-axes. In view of the discreteness and 
complexity of the RD function, the search for its minimum was reduced to one for the points 
h'b and hn where Δǂ and Δǃ change sign:  

 Δǂ= ǂreal – ǂtg;    Δǃ= ǃreal –ǃtg  

This problem is easier to solve, as both Δǂ and Δǃ are monotonic functions of h'b and hn.  
The search can be stopped at every step, subject to RD ≤ RD0. 
‹3.1›  If at point 6 (‹2› above) Δǂ6 > Δǃ6, a path parallel to the hn-axis is taken in uniform steps 
Δhn, until Δǂ changes its sign (points 6,7,8 on Figure 7), Δhn= Δǂ6/a3, where a3 is the 
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coefficient in the equation of the ǂ-plane as per ‹1.2›. Beyond that point, the root Δǂ(hn) is 
searched for by the modified Regula Falsi method (point 9). (The term "root" refers here to 
one of a pair of adjoining points at which the function changes its sign and has the smaller 
absolute value). The special feature of this procedure is accounting for the discreteness of 
the solution.  
‹3.2› At the point of the root Δǂ, a right-angled turn is executed and a path parallel to the 
h'b-axis is taken, searching for the Δǃ root (point 10). 
‹3.3› The alternating procedure is continued until a situation is reached where two 
consecutive turns involve only movement to an adjoining point. This point 10 corresponds 
to min(RD).  If in ‹3.1› Δǂ6 < Δǃ6, we begin from ‹3.2›. 

4.4 Efficacy of algorithm  
With a view to assessing the efficacy of the proposed algorithm, a search for the h’b and hn 
values yielding min Rd was conducted with the aid of a Matlab programme which realised 
this algorithm, and alternatively with the Matlab fminsearch command, with the same 
function WAS (Michlin & Grabarnik, 2007) referred to in both cases. This function 
determines the test characteristics according to its specified boundaries. The run covered 
different tests with RASN0=5 and 10%. 
The calculation results are shown in Figure 8.  
 

 

Fig. 8. Comparative efficacy of proposed algorithm. (Michlin & Grabarnik, 2010).  
1 – fminsearch (Matlab) found min RD or stopped close to it; 
2 – fminsearch failed to find RD; 
A, B, C – short, medium and long tests, respectively. 

In it, the abscissa axis represents the product TAb*TAn, which we term “density factor of test 
states”. The higher the latter, the denser the disposition of the test points in the search zone 
(see Figure 4), the smaller the changes in the test characteristics from point to point, and the 
closer the search to one over a continuous smooth surface. A small value of the product is 
associated with a short test, due to be completed at small sample size and moderate 
computation times for the characteristics; a large value – with long tests, completed on the 
average at large sample sizes and long computation times. 
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The ordinate axis represents the “acceleration factor of calculation”, which is the ratio of 
references to the WAS-function by fminsearch and the proposed algorithm respectively. The 
larger the ratio, the faster the algorithm compared with the standard Matlab function.  
The diagram shows that at low densities (short tests, zone A) fminsearch fails to find min Rd. 
In zone C (long tests) the command finds it or stops close to it, but with 3 to 6 times more 
references to WAS. In zone B (medium tests) the minimum is either not found, or found 
with 2.5 to 5 times more references to WAS. By contrast, the programme based on the 
proposed algorithm found the minimum in all cases. 
Accordingly, for the present task – searching for the optimum in a discrete space – the 
proposed algorithm accomplishes it much faster than the Matlab standard fminsearch 
command, thus saving computation time in long tests. Moreover, it guarantees a solution – a 
critical aspect in short tests, where fminsearch usually fails to find one. 

5. Estimates for boundary parameters 

5.1 Search methodology for optimal test boundaries 
In (Michlin & Grabarnik, 2007) it was established that for Φ0=1 and ǂ=ǃ, the OTA lie on the 
centreline (which runs through the origin parallel to the AL/RL), so that 

 n br s r   (29) 

This was checked for different Φ0. With given ǂtg=ǃtg, d, and RD≤1%, a search was conducted 
for three location zones of the TA – namely, with RASN≤5%, 5%<RASN≤10%, and RASN>10%, 
the last-named being restricted by the above requirement on RD, i.e. achievability of ǂtg and 
ǃtg. 
A typical example of such zones for ǂtg=ǃtg=0.05, d=2, and Φ0=1, 2, 3 is shown in Figure 9. 
The fan-shaped zones have their apices on the corresponding centrelines. These apices are 
the OTA locations, as with the imposed limits satisfied they are closest to the origin 
(heaviest truncation). In these circumstances the search zone is narrowed, the location 
problem being converted from two- to one-dimensional. 
To study the relationships between the sought boundary parameters (TA, ǂ*, ǃ*) and the 
specified test characteristics (Φ0, d, ǂtg=ǃtg, RASN max), a search was run over a large population 
of optimal tests with the characteristics given in the Table below. 
 

 Lower 
limit 

Upper 
limit 

Number of 
levels 

Φ0 0.3 5 9 
d 1.5 5 12 

ǂtg=ǃtg 0.05 0.25 5 
RASN max 5% 10% 2 

Table 1. Regions of characteristics covered by search 

5.2 Search results for OTA and their curve fitting 
The dots in Figure 10a mark the OTA for ǂtg=ǃtg=0.05, RASN≈10%, and wide intervals of d 
and Φ0. Figure 10b is a zoom on the domain in 3a representing the "short" tests, namely 
those with small ASN and – correspondingly – low TA coordinates. It is seen that all curves 
smooth out as the distance from the origin increases (the tests become longer), the reason 
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Fig. 9. TA zone boundaries for three 0 values and three RASN zones (Michlin et al., 2011): 
1 = Boundary beyond which RD≤1% is unachievable at any RASN; 2 = Boundary for 

RASN≤10%; 3 = Boundary for RASN≤5%; 4 = Centreline. Remark 1. 0=1 subgraph: OTA for 
each RASN zone circled. Remark 2. For this figure: d=2, ǂtg=ǃtg=0.05, RD =1%. 

being the weakening influence of discreteness of the test characteristics  (Michlin et al., 
2009). 
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Fig. 10. (a) OTA locations for different d and 0, and for ǂtg=ǃtg=0.05, RASN≈10%. (b) Zoom on 
short test zone. (Michlin et al., 2011). 

www.intechopen.com



 
Comparison Sequential Test for Mean Times Between Failures  

 

467 

The Φ0-isopleths in the figures are broken radial lines, whereas their d-counterparts are 
symmetrical about the rn= rb line and approximate neatly to a hyperbola: 

        11 1,n b ASN br r k d q x R r
        (30) 

where 

     1 4
exp 5.58 1 1k d d

     ;  (31) 

     1
, 1 1.10ln 0.41 1.03 ln

20
ASN ASN ASNq x R x R R x      (32) 

x – common target value for ǂ and ǃ, x= ǂtg=ǃtg; 
RASN – in relative units rather than in percent. 
The formulae indicate that the approximate curves differ only in the scale factor k(d), 
common to both axes – it remains the same for any pair (x, RASN). 
As the formulae do not contain Φ0, the OTA is searched for through its required adherence 
to the centreline, whose expression (29) is uniquely determined by d and Φ0. Accordingly, 
the sought OTA is the integer point closest to the intersection of the curve (30) and the 
centreline (29) (Figure 11). 
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Fig. 11. Determination of OTA. (Michlin et al., 2011).  
The coefficients in (31) and (32) were found through the requirement of minimal root mean 
square error (RMSE) – the difference between the OTA's found as per eqs. (29) and (30). For 
the data in the Table, RMSE=0.88, indicating high estimation accuracy for such a broad 
domain. 

5.3 Estimates for α* and β* 

As already mentioned, the problem of finding the oblique boundaries reduces to that of 

finding ǂ* and ǃ*. This Subsection presents regressional dependences of the latter on the test 

characteristics Φ0, d, x=ǂtg=ǃtg, and RASN max, as well as their counterparts for the upper and 

lower limits ( U
 and L

 , U
 and L

 ) of these parameters. These dependences, determined 

on the basis of the total data on optimal tests with the characteristics in the Table, were 

sought in the form: 

www.intechopen.com



 
Modern Approaches To Quality Control 

 

468 

 
;

.

M

M

c x

c x













 

 
 (33) 

The Matlab tool for stepwise regression yielded the coefficients for the above: 

   2 2
0 01.10 0.021 ln 0.0081 0.036 1.07 lnASNc x d R x         (34) 

where RMSE=0.061 and R2=0.83, the latter being the coefficient of determination, and 

  01.09 0.096ln 0.14 0.018 1.11 lnASNc x d d R x         (35) 

with RMSE=0.069 and R2=0.80. 
The limit formulae read 

   1U
B M

L

c










  


 (36) 

   1U
B M

L

c










  


 (37) 

where 

 0.045 0.14ln 0.031lnBc d x      (38) 

  0.059 0.16ln 0.048lnBc d x      (39) 

and such that all ǂ* and ǃ* obtained for the Table are included. 

Figure 12 shows example dependences for the regressional value M
 and the upper and 

lower limits, versus x=ǂtg for Φ0=3 and d=1.5, 3. Also included are the actual values of ǂ*. 

(The graphs for ǃ* are analogues). The bounded zone becomes narrower as d and ǂtg 

decrease. It is seen that at low d, M
 and M

  can serve as the calculation values without 

undue deviation of ǂreal and ǃreal from their targets. 

The search methodology for ǂ* and ǃ* of the optimal test, described in detail in Section 4, is 

based on knowledge of the limits (36), (37), which is one of the reasons for its high efficacy. 

5.4 Accuracy assessment of proposed planning 

The accuracy of the proposed planning, using eqs. (30) – (32) and (33) – (35) – was assessed 

by applying them in calculating the test boundaries for all characteristic values in the Table. 

This was followed by calculation of ǂreal, ǃreal and RASN for these tests and their deviation 

from the targets. The RMSE's of ǂreal and ǃreal decrease with decreasing d and RASN. For d≤2 

they do not exceed 3 to 4% of the target value and for large d they reach 8 and 10% at RASN=5 

and 10% respectively. In the former case this is very satisfactory accuracy, while in the latter 

case it may become necessary to find more accurate values of the boundary parameters – for 

which the methodology outlined in Section 4 is recommended, using eqs. (30) – (32) and (34) 

– (39) for the search limits. 
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Fig. 12. Actual  ǂ*, regressional dependence, and upper and lower search limits. RASN=5%. 
(a)  d=1.5.  (b) d=3. (Michlin et al., 2011). 

6. Group tests 

In this case the items are compared groupwise, which makes for economy in the time to a 
decision. The items of the respective subgroups, Nb and Nn in number, are drawn at random 
from their respective populations with exponential TBF's, and tested simultaneously. On 
failing, they are immediately replaced or repaired – just as in the two-item tests. The 
subgroup can be treated as a single item with an N-times shorter MTBF (Epstein & Sobel, 
1955). The planning procedure remains the same, except that Φ in the calculations is 
replaced by Φg: 
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 g b nN N     (40) 

Thus when Nb=Nn= N, the test boundaries remain as in the two-item case, except that the 
test duration is also N times shorter (see (18)). When Nb≠Nn, it is recommended to check the 
efficacy of larger groups, e.g. in terms of a shorter average test duration ATDg(Φ). By (18) 
and (40) we obtain: 

         1 1g g b b g g gATD N ASN       (41) 

where ASNg(Φg) is the ASN of the group test as per (17) or (22), except for Φg replacing Φ 
of (40). 
The planning example covers also the problem of choice of Nb and Nn, while ensuring min 
ATDg and satisfying additional essential test-planning conditions. 

7. Example of test planning 

A large organisation operates a correspondingly large body of mobile electronic apparatus 
whose MTBF is substantially shortened under the stressful exploitation conditions. The 
manufacturer offers to modify this equipment, thereby significantly improving its resistance 
to external impacts, albeit at increased weight and cost. 
In a fast laboratory test the modified (hereinafter "new") apparatus exhibits high reliability, 
but so does the original ("basic") one. Accordingly, it is decided to check the MTBF increase 
under field conditions on an experimental batch. 
The requirements regarding the test OC are established as follows. If the MTBF of the new 
product is 5 times that of the basic (Φ=5), replacement is beneficial; at Φ=2.5 it does no harm; 
but at Φ=1.5 it is unacceptable. These findings follow from the OCnTr of a non-truncated 
SPRT with ǂ==0.1, d=2, Φ0=5 (Figure 13), constructed as per (23) – (24). 
The apparatus are operated in sets of 28 items, so that conditions within a set are practically 
uniform. Each set comprises both new and basic items, so as to offset the influence of 
fluctuating conditions. 
A "failure" in this context is defined as any event that necessitates repair or re-tuning of the 
item, with enforced idleness for more than 20 seconds. The failed item is either treated in 
situ – or replaced by a spare, repaired and stored with the spares. Thus the size of the 
operative set remains 28. 
The assignment is – planning a truncated test with the proportions of new and basic items in 
the test group chosen so as to ensure a minimal ATD. Below is the planning procedure: 
a. As the OC's are practically the same for truncated and non-truncated tests when their 

Φ0, d, ǂreal and ǃreal coincide (Michlin & Grabarnik, 2007) – we chose the initial 
parameters given above: 

  Φ0=5, d=2, ǂtg=tg=0.1  (42) 

and specified   

 RASN  max =10% (43) 

Thus the test has an ASN and ATD close to that of the non-truncated SPRT, and at the 
same time its maximal duration is heavily restricted, a fact of practical importance for 
the organisation. 
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b. Eqs. (41) and (18) yielded the approximate dependences of ATDg(Φ)/ǉb on Nn for 
different Φ, given Nn+ Nb=28. A minimum was found at Nn≈18. Figure 14 shows 
examples of these dependences at Φ= Φ0 and Φ= Φ1, which are seem to be almost flat 
over a wide interval around the minimum, and Nn=15 was chosen accordingly. With 
this choice, ATDg(Φ) only slightly exceeds the minimum, while the number of new 
items is lower, with the attendant saving in preparing the experimental batch. By (40) 
we have 

  1
0 0 313 /15 4g      (44) 

 The values of ASNg(Φ) and ATD(Φ), obtained by (41) and (18) with allowance for (44) – 
confirmed the practicability of the test. 

c. Eq. (8) yielded s=0.330. Simultaneous solution of (29) and (30) yielded, after rounding-
off, the TA coordinates: rbMax=66, rnMax=22.  
Eqs. (33) through (35) yielded ǂ*=0.0909, ǃ*=0.074, which in turn, by (11) and (12), 
yielded h'b=4.804, hn=4.453. 

The decision boundaries for a test planed on the basis of these parameters are shown in 
Figure 2. 
Figure 13 shows the exact values of the functions OC(Φ) and ASN(Φ) as per eqs. (13) – (18), 
which in turn yield the test's real characteristics:  Φ0=5, d=2, ǂreal =0.098,  ǃreal =0.099,  
RASN=9.2%, in very close agreement with the given (42) and (43) – evidence of the high 
accuracy of eqs. (30) – (35). 
 

 

Fig. 13. OC and ASN of truncated group test and of non-truncated theoretical (subscript nTr) 

test; normalised expected duration of group test ATDg()/b for 0=5, 0g=41/3, d=2, 

real=0.098, real=0.099, rbMax=66, rnMax=22. (Michlin et al., 2011). 
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The OC(Φ) of the planned test (Figure 13) practically coincides with that of the non-

truncated test OCnTr(Φ) with the same ǂreal and  ǃreal. The ASN of the former is higher than 

that of the latter, in accordance with RASN=9.2%. The diagram also shows the estimate for the 

normalised ATD, i.e. the ratio ATDg(Φ)/ǉb. Assuming ˆ 10 hrb  , the time requirement of 

the test should be reasonable. In practice, it ended with acceptance of the null hypothesis in 

16 hr, following the twenty-first failure in the basic subgroup, by which time a total of 2 

failures in the new subgroup had been observed. 
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Fig. 14. Normalised expected group test duration vs. number of new devices, for =0, and 

=1. (Michlin et al., 2011). 

8. Conclusion 

The example in Section 7 demonstrated the potential of the proposed planning methodology 
for a truncated discrete SPRT. An innovative feature in it are the test-quality characteristics 
RASN and RD – which represent, respectively, increase of the ASN on truncation and 
closeness of the test OC to the non-truncated one. This innovation permitted comparison of 
different SPRT and automatisation of the optimum-choice process. It was found that over a 
large domain about the solution, the RASN and boundary parameters are linked 
monotonically and almost linearly. This implies sound choice of this characteristic and 
simplifies the planning. An efficacious search algorithm was developed for the optimal test 
boundaries, incorporating the obtained interrelationships. 
The findings can be summed up as follows: 

 A truncated SPRT was studied with a view to checking the hypothesis on the ratio of 
the MTBF of two objects with exponential distribution of TBF. 
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 It was established that the basic test characteristics ǂreal, ǃreal, RASN depend monotonically 

on the absolute terms in the equations of the oblique test boundaries. 

 At the search limits for these absolute terms, determined in Section 5, these 

dependences are almost plane. 

 ǂreal and ǃreal change stepwise with the smooth changes in the absolute terms of the 

oblique boundaries; expressions are derived for the minimal intervals of these terms, 

over which ǂreal and ǃreal remain unchanged.  

 These and other established regularities yielded an efficacious algorithm and 

programme for determining the optimal location of the test boundaries. 

 The found links between the input and output characteristics of the test, and the fast-

working algorithm for its planning, permit improvement of the planning methodology 

and its extension to all binomial truncated SPRT.  

 On the basis of the above body of information, regressional relationships were derived 

for determining the TA coordinates and oblique-boundary parameters of the optimal 

tests. Also derived were formulae for the limits of the latter parameters. These are very 

close at low d and RASN and draw apart as the characteristics increase; the reason being 

increasing influence of the test's discreteness. The regressional relationships and 

boundary-parameter limits permit quick determination of these boundaries for the 

optimal test with specified characteristics. 

 The methodology is also applicable in group tests, with the attendant time economy; 

moreover, it permits optimisation of the respective group sizes. 

 A planning and implementation example of this test is presented. 
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10. Acronyms 

ADP  accept decision point 

AL   accept line 

ASN  average sample number  

ATD  average test duration 

MTBF  mean TBF 

OC≡ Pa()  operating characteristic 

OTA  truncation apex of the optimal test  

RDP  reject decision point 

RL   reject line 

RMSE  root mean square error 

SPRT   sequential probability ratio test 
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TA  truncation apex 
TBF   time between failures or time to failure 
WAS  program name  

11. Notations 

ASN()  exact value of ASN for a truncated test, obtained recursively (17) 

ASNnTr() ASN calculated via an analytical formula (22) for a non-truncated test 

ATD()  ATD function for given  

c  with the appropriate subscripts, coefficients in the approximative  

          equations 

d= Φ0/ Φ1 discrimination ratio 

h’b, hn  absolute terms of Accept, and Reject oblique boundaries, respectively 

Nb, Nn  item numbers of "basic" and "new" subgroups in group test 

Pa()≡OC acceptance probability of H0 at given Φ 

PADP(rn,), PRDP(rb,)  probabilities of reaching the given points ADP, RDP 

PR()  probability of new system failing next during test 

rb, rn  system number of failures observed up to time T 

( )bADP nr r  rb-coordinates of ADP for given rn 

( )nRDP br r  rn-coordinates of RDP for given rb 

R2  coefficient of determination 

RASN   relative excess of the ASN of the truncated test over its non-truncated  

    counterpart 

RD  relative deviation ǂreal and ǃreal from their targets 

Rd0 and RASN0  threshold values of Rd and RASN 

s  slope of oblique boundaries 

T  current test time 

TAb, TAn  rb- and rn-coordinates of TA, respectively 

x   common target value for ǂ and ǃ,  x= ǂtg=ǃtg 

ǂ, ǃ  probabilities of I- and II-type errors in test 

ǂreal, ǃreal   exact real values of  and  computed for prescribed stopping boundaries 

ǂtg, ǃtg  target values of ǂ, ǃ   

ǂ*, ǃ*  parameters determining the constant terms of initial boundary lines  

,  ,  ,  ,  ,   M U L M U L           regressional value, upper and lower search limits of ǂ* and  ǃ* 

ǉ, ǉb, ǉn  MTBF, same for the basic system ǉb, and for the new system ǉn respectively 

/n b    true MTBF ratio 

Φ0   Φ value for which the null hypothesis is rejected with probability ǂ 
Φ1  Φ value for which the null hypothesis is rejected with probability 1-ǃ 
Φg   Φ for group test 
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