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1. Introduction 

5Ǐ/ǐ-Reduced progesterone metabolites (PM) including pregnanolone isomers (PI) and their 

polar conjugates (PIC), are efficient neuromodulators operating in a number of physiological 
and pathological processes including psychiatric diseases or problems connected with 
pregnancy, parturition and postpartum period. The substances mostly belong to the group 
of neuroactive steroids. 
The neuroactive steroids (including PI) originating directly in the central and peripheral 
nervous system are called neurosteroids. They have a wide variety of functions. Some 
neuroactive steroids are able to easily pass through the blood-brain barrier (Bixo, 
Andersson, Winblad, Purdy, & Backstrom, 1997; Kancheva, et al., 2010; M. D. Wang, 
Wahlstrom, & Backstrom, 1997). Disorders in their biosynthesis or malfunctions in 
interactions with the target sites can be the cause of many pathologies, including 
psychiatric illnesses (Backstrom, et al., 2003; Backstrom, Carstensen, & Sodergard, 1976). 
In contrast with the most common steroid hormones acting, neuroactive steroids largely 
affect non-genomic mechanisms and influence nerve excitability in both directions. Some 
neuroactive steroids, such as allopregnanolone and its derivates, also show neuro-
protective effects (Ciriza, Azcoitia, & Garcia-Segura, 2004; Morfin & Starka, 2001; Shi, 
Schulze, & Lardy, 2000). 
The enzymes involved in the neurosteroidogenesis can be classified in two main groups: the 

cytochrome P450 and the non-P450 group. Experiments proved the direct biosynthesis of 

steroids in the brain independent of the periphery (Corpechot, Leclerc, Baulieu, & Brazeau, 

1985; Corpechot, Robel, Axelson, Sjovall, & Baulieu, 1981). Three years later, Harrison and 

Simmonds published their work on the anesthetic effect of the synthetic pregnane steroid 

ganaxalone through modulation of the stimulation of the Ǒ-aminobutyric acid receptor 

(GABA-r) (Harrison & Simmonds, 1984). The following year Majewska and coworkers 

published the first study on the modulation effect of endogenous steroids on GABA-r, and 

thereby initiated an intense research effort focused on the mechanisms of action of 

neuroactive steroids (Majewska, Bisserbe, & Eskay, 1985). 
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This chapter is focused on the origin and the physiological impact of endogenous 
neuroactive PI and PIC in humans, respecting the status of sex, menstrual cycle and 
pregnancy. Particular attention is paid on the role of PI in pregnancy and parturition 
respecting their extensive production in this period. 

2. The neuromodulating effects of 5α/ȕ-reduced pregnanes 

2.1 Effects of 5α/ȕ-reduced pregnanes on Ȗ-aminobutyric acid receptors 

Pregnanolone isomers are known to modulate ionotropic receptors on neuronal membranes 

(Pisu & Serra, 2004). 3Ǐ-PI shorten the paradoxical sleeping, reduce the acetylcholine in 

neocortex and hippocampus, suppress the neurogenesis and deteriorate the spatial memory 

(Mayo, et al., 2003). From the membrane receptors influenced by PI, the most familiar are 

the type-A Ǒ–aminobutyric acid receptors (GABAA-r) that control the influx of chloride ions 

into the neuronal cells. 5Ǐ/ǐ-Reduced pregnane (and androstane) steroids with a hydroxy-

group in the 3Ǐ-position positively modulate the GABAA-r. The maximum sensitivity to 3Ǐ-

PI and namely to pregnanolone (3Ǐ-hydroxy-5ǐ-pregnane-20-one, 3Ǐ,5ǐ-THP) was observed 

in the receptor subtype Ǐ4ǐ3ǒ (A. J. Smith, et al., 2001). Alternatively, inactive 3ǐ-PI compete 

with the 3Ǐ-PI on GABAA-r (Lundgren, Stromberg, Backstrom, & Wang, 2003; Prince & 

Simmonds, 1992; M. Wang, et al., 2002). While the 3Ǐ-PI are potent endogenous 

neuroinhibitory substances, the PIC are their antagonists. Conjugation counteracts the effect of 

3α-PI, and further amplifies the antagonistic effect of the 3β-PI on GABAA-r (Park-Chung, 

Malayev, Purdy, Gibbs, & Farb, 1999). 

2.2 Effects of 5α/ȕ-reduced pregnanes on N-methyl-D-aspartate receptors 

Further receptors, which are influenced by steroid polar conjugates, are the N-methyl-D-

aspartate receptors (NMDA-r). The NMDA-r are responsible for Ca2+ influx into the neurons 

inducing their rapid activation. 5Ǐ-PIC operate as activators of NMDA-r like the sulfates of 

3ǐ-hydroxy-5-en-steroids but the 5ǐ-PIC are the antagonists of 5Ǐ-PIC. Besides the effects on 

neuronal membranes, some PI bind to progesterone intracellular receptors and influence 

also the gene expression of GABAA-r subunits (Dubrovsky, 2005). Apart from the central 

nervous system (CNS), both NMDA-r and GABA-r are present in the peripheral neurons 

(Leung, et al., 2002; Majewska, Falkay, & Baulieu, 1989). 

2.3 Effects of 5α/ȕ-reduced pregnanes on T-type calcium channels  

5ǐ-PM block calcium channels of T-type in the rat peripheral neurons playing a significant 

role in pain perception and transmission (Todorovic, et al., 2004). The aforementioned 

mechanism indicates an antinociceptive action of 5ǐ-PM on the peripheral level. 

2.4 Effects of 5α/ȕ-reduced pregnanes on L-type calcium channels  

Factors regulating intracellular calcium concentration are known to play a critical role in the 
brain function and neural development, including neural plasticity and neurogenesis. 3Ǐ,5Ǐ-
THP-induced intracellular calcium concentration increase may serve as the initiation 
mechanism whereby 3Ǐ,5Ǐ-THP promotes neurogenesis. 3Ǐ,5Ǐ-THP induces a rapid, dose-
dependent, stereo-specific, and developmentally regulated increase in intracellular calcium 
in (rat embryonic) hippocampal neurons via a mechanism that requires both the GABAA-r 
and L-type calcium channels (J. M. Wang & Brinton, 2008). 
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3. 5α/ȕ-Reduced pregnanes in non-pregnant subjects 

3.1 Sources of 5α/ȕ-reduced pregnanes in non-pregnant subjects 

The results in the literature show the necessity to differentiate between men, women in 

follicular phase of the menstrual cycle (FP), women in luteal phase of the menstrual cycle (LP), 

and pregnant women when evaluating changes of circulating PI that are linked to various 

pathologies. The neuroexcitatory PIC (acting via GABAA-r) strikingly prevail over the 

neuroinhibitory unconjugated 3Ǐ-PI irrespectively of the subject status. On the other hand, the 

proportions in the circulating levels of neuroactive steroids do not necessarily have to reflect 

steroid ratios at the sites where they have an effect. It is likely that the pronounced excess of 

polar PI conjugates in the circulation is principally connected to their higher solubility in 

comparison with their non-polar free analogs. However, the chances of overcoming the blood-

brain barrier generally increase with the decreasing polarity of the substance (Oren, Fleishman, 

Kessel, & Ben-Tal, 2004). This means that the transport of free PI would be preferred over that 

of the conjugates, despite their striking excess as reported in the  model focused on the 

transport of free and conjugated pregnenolone from circulation into the brain in rats (M. D. 

Wang, et al., 1997). The conjugation of PI is also important for regulating the proportion 

between neuroexcitatory and neuroinhibitory pregnane steroids or, at least as a key metabolic 

step responsible for the elimination of neuroactive PI. Figure 1 demonstrates a simplified 

scheme of the biosynthesis and catabolism of 5Ǐ/ǐ-reduced pregnanes. 

3.1.1 Biosynthesis of neuroactive steroids in the cells of neuronal system 

The 3Ǐ,5Ǐ-THP is present in human post-mortem brain tissue at considerably higher 

concentrations than typically observed in blood (Marx, et al., 2006). These neurosteroids are 

synthesized in brain, peripheral glial cells and neurons (Schumacher, et al., 2000). As 

demonstrated on rats, the enzymes that are necessary for synthesis of neuroactive 5Ǐ/ǐ-PM 

as type 2 3ǐ-hydroxysteroid dehydrogenase (HSD3B2) and 5Ǐ-reductase of types 1 

(SRD5A1) and 2 (SRD5A2) are present in the CNS. While the SRD5A1 was identified for the 

most part in glial cells of white matter, SRD5A2 was found in oligodendrocytes, neurons 

and astrocytes of the grey matter. The enzyme isoforms, which are effective as the 3Ǐ-

hydroxysteroid dehydrogenase are present in oligodendrocytes, neurons and astrocytes of 

white and grey matter (Patte-Mensah, Penning, & Mensah-Nyagan, 2004; Schumacher, et al., 

2004; Stoffel-Wagner, et al., 2000; Tsuruo, 2005). The important system mediating changes or 

even reversion of neuromodulating activity involves a steroid sulfatase (STS) and 

sulfotransferases controlling the balance between neuroinhibitory 3Ǐ-PI and PIC that exert 

an opposite effect. However, relatively high STS activity but very low sulfotransferase 

activity were detected in the brain (Compagnone, Salido, Shapiro, & Mellon, 1997; Kriz, 

Bicikova, Hill, & Hampl, 2005). 

The GABAergic steroids can be inactivated by their 3Ǐ-oxidation to yield 5Ǐ-

dihydroprogesterone (5Ǐ-DHP). It was found that 5Ǐ-DHP levels in HEK293 cells expressing 

type 10 17ǐ-hydroxysteroid dehydrogenase (HSD17B10) increased as 3Ǐ,5Ǐ-THP was added 

to culture media. Brain astrocytes contain a moderate level of HSD17B10, which is elevated 

in activated astrocytes of brains with Alzheimer type pathology. Cerebral cortex has the 

lowest level of HSD17B10; whereas the hippocampus, hypothalamus, and amygdala possess 

relatively higher levels of this enzyme. The catalysis of HSD17B10 appears to be essential for 

maintaining normal functions of GABAergic neurons (He, Wegiel, & Yang, 2005). 
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Fig. 1. Simplified scheme of the biosynthesis and catabolism of 5Ǐ/ǐ-reduced pregnanes 

3.1.2 Gonadal function and neuroactive steroids 

The most part of neuroactive steroids in women in the luteal phase of menstrual cycle (LP) 
consists of metabolites of progesterone, which is formed in corpus luteum (Ottander, et al., 
2005). The levels of PI and PIC strongly depend on the menstrual cycle, reflecting changes in 
progesterone formation. The mRNA of 5Ǐ-reductase (SRD5A), 5ǐ-reductase (AKR1D1) and 
3Ǐ-hydroxysteroid oxidoreductase (3Ǐ-HSOR) mRNA are all expressed in human corpus 
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luteum and the release of 3Ǐ,5Ǐ-THP and 3Ǐ,5ǐ-THP herein is stimulated by a trophic 
hormone. The dominant PI is the 3Ǐ,5Ǐ-THP (Havlikova, et al., 2006; M. Hill, et al., 2005). In 
women, progesterone and its reduced metabolites exhibit a decrease with increasing age 
and a qualitative change after menopause (Genazzani, et al., 1998). It is likely that the 
gonadal 5Ǐ/ǐ-PM easily overcome the blood-brain-barrier (Bixo, et al., 1997; Kancheva, et 
al., 2010). 

3.1.3 The role of adrenals in the biosynthesis of neuroactive steroids 

Zona glomerulosa controlled by the renin-angiotensin axis produces deoxycorticosterone 
(DOC), the metabolites of which are neuroactive like the 3Ǐ,5Ǐ-tetrahydro-DOC (3Ǐ,5Ǐ-
THDOC) and its isomers. However, DOC is produced in substantially greater quantities in 
zona fasciculata, which is controlled by the CRH-ACTH system. In contrast to the 3Ǐ,5Ǐ-THP 
reaching about 10% of progesterone concentration, the basal levels of DOC and 3Ǐ,5Ǐ-
THDOC are almost comparable (<0.5 nmol/L) (Reddy, 2006). 
Zona fasciculata primarily produces cortisol in relatively high amounts. 3Ǐ-5Ǐ/ǐ-Reduced 
metabolites of cortisol are GABAergic such as the 3Ǐ-PI. The 3Ǐ,5Ǐ-tetrahydrocortisol and 
3Ǐ,5Ǐ-THP posses a comparable activity on GABAA-r (Stromberg, Backstrom, & Lundgren, 
2005). In addition, adrenal zona fasciculata produces relatively abundantly pregnenolone 
sulfate (PregS) (20-400 nmol/l), which, like the cortisol, readily reacts to adrenocorticotropin 
(ACTH) stimulation (de Peretti, et al., 1986). PregS appears to be the most important 
precursor of progesterone and DOC of adrenal origin. Growing formation of PregS in 
adrenals that is further metabolized up to neuroactive PI may explain the increased levels of 
brain 5Ǐ/ǐ-PM in patients with diagnoses associated with stress (Higashi, Takido, & 
Shimada, 2005). Increasing peripheral production of pregnane steroids and their precursors 
and their subsequent transport across the blood-brain-barrier could contribute to the 
physiological compensation of stress. Most probably, the peripheral levels of pregnane 
steroids primarily depend on adrenal activity in women in FP (Havlikova, et al., 2006; M. 
Hill, et al., 2005), postmenopausal women, children and men (Fig. 2A,B). However, the 
proportion of 5Ǐ/ǐ-PM derived from the adrenal activity is pronouncedly lower compared 
to the quantity originating in the corpus luteum (Meczekalski, et al., 2000) (Fig. 2C). 

3.2 Human CNS-related pathologies that are linked to the 5α/ȕ-reduced pregnanes 
3.2.1 Premenstrual syndrome 

Changes in progesterone levels and respective changes in its neuroactive metabolites are 
apparently the cause of premenstrual dysphoric disorder in women (PMDD). Withdrawal 
effect in case of abrupt drop of steroid positive modulators rapidly supervenes like the 
addiction effect while increasing the steroid levels. Changing 5Ǐ/ǐ-PI concentrations induce 
a decreased affinity of GABAA-r for these steroids due to the changed expression of the 
receptor subunits and/or as a result of the changed phosphorylation status of the specific 
sites on the GABAA-r (Brussaard, Wossink, Lodder, & Kits, 2000; Koksma, et al., 2003; Leng 
& Russell, 1999; Maguire & Mody, 2009). The aforementioned mechanism requires 
synchronization, the disturbances of which could have significant neuropsychiatric 
consequences in physiological and pathological situations like pregnancy, parturition, onset 
of menopause, traumas, endocrine diseases, and stress. Several GABAA-r modulators, 
including 3Ǐ,5Ǐ-THP, exert biphasic effect. The low concentrations induce an adverse, 
anxiogenic effect whereas the higher concentrations decrease this effect and show calming 
properties (Andreen, et al., 2009). The severity of these mood symptoms is related to the 
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Fig. 2. Origin of pregnanolone isomers 
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3Ǐ,5Ǐ-THP serum concentrations in a manner similar to a bell-shaped curve. Negative mood 
symptoms occur when the serum concentration of 3Ǐ,5Ǐ-THP is similar to the endogenous 
LP levels, while low and high concentrations have no such effect. Progesterone/3Ǐ,5Ǐ-THP 
treatment in women increases the activity in the amygdala in a similar manner as the 
changes seen during anxiety reactions. Women with PMDD in LP show changes in GABAA-
r sensitivity and GABA concentrations that are related to the severity of the condition 
(Andreen, et al., 2009). 

3.2.2 Chronic fatigue syndrome 

Increased inhibition through GABAA-r due to the accumulation of neuroinhibitory steroids 
may represent an important pathophysiological mechanism of fatigue in chronic liver 
diseases. The levels of 3Ǐ,5Ǐ-THP and 3ǐ,5Ǐ-THP are increased in plasma of patients with 
chronic fatigue syndrome (Ahboucha, et al., 2008).  

3.2.3 Depression 

Antidepressants elevate 3Ǐ-PI levels in rodent brain (Uzunova, et al., 1998). However, recent 
studies suggest that changes in plasma neuroactive steroid levels may not be a general 
mandatory component of clinically effective antidepressant treatment per se, but may reflect 
distinct properties of pharmacotherapy only (Uzunova, Sampson, & Uzunov, 2006). 

3.2.4 Epilepsy 

Women with epilepsy show reduced progesterone levels in the LP. The progesterone deficit 
results in the debit of neuroinhibitory 3Ǐ-hydroxy- 5Ǐ/ǐ-reduced progesterone metabolites 
(Stoffel-Wagner, 2001). Rat models of catamenial epilepsy exhibit an abstinence effect at 
lowered 3Ǐ,5Ǐ-THP concentrations, which however results in higher sensitivity after 
restitution of its original levels. Various authors demonstrate that catamenial epilepsy is 
linked to the disturbed biosynthesis of progesterone and its reduced metabolites 
(Backstrom, et al., 2003), particularly in the LP (Bonuccelli, et al., 1989). 

3.2.5 Schizophrenia 

GABAergic steroids may be candidate modulators for the pathophysiology of schizophrenia 
and bipolar disorder, and relevant to the treatment of these disorders. 3Ǐ,5Ǐ-THP levels 
tend to be decreased in parietal cortex in subjects with schizophrenia compared to control 
subjects (Marx, et al., 2006). 

3.2.6 Neurodegenerative disorders 

3Ǐ,5Ǐ-THP is reduced in prefrontal cortex in male patients with Alzheimer disease (AD) 
compared to male cognitively intact control subjects, and inversely correlated with 
neuropathological disease stage. 3Ǐ,5Ǐ-THP levels are reduced in temporal cortex in 
patients with AD compared to control subjects and inversely correlated with 
neuropathological disease stage. Patients carrying an APOE4 allele demonstrate reduced 
3Ǐ,5Ǐ-THP levels in temporal cortex (Naylor, et al., 2010). 

3.2.7 Eating disorders 

Compared with healthy women, the patients with eating disorders exhibit increased plasma 
levels of 3Ǐ,5Ǐ-THP. However, the relevance of such hormonal alteration to the 

www.intechopen.com



 
Update on Mechanisms of Hormone Action – Focus on Metabolism, Growth and Reproduction 

 

360 

pathophysiology of eating disorders remains to be elucidated (Monteleone, et al., 2001) 
(Monteleone, et al., 2003). 

4. 5α/ȕ-Reduced pregnanes in human pregnancy 

4.1 Fetal adrenal is the primary source of pregnancy steroids 
4.1.1 Placental CRH controls the steroid biosynthesis in the fetal adrenal 

The machinery regulating production of pregnancy steroids (including pregnanolone 
isomers and their polar conjugates) is based on the excessive placental production of 
corticoliberin (CRH) (Goland, Wardlaw, Stark, Brown, & Frantz, 1986; Rainey, Rehman, & 
Carr, 2004; R. Smith, et al., 2009). CRH in non-pregnant subjects is a hypothalamic hormone 
controlling the pituitary secretion of adrenocorticotropic hormone (ACTH) and, in turn, the 
corticosteroid production in adult adrenal. The hypothalamic-pituitary-adrenal axis in these 
subjects is based on a negative feedback loop between the final active hormone, ACTH and 
CRH. Alternatively, the pregnant women after luteo-placental shift produce CRH primarily 
in placenta and instead of the negative feedback loop cortisol-ACTH-CRH; there is a 
positive one between cortisol and CRH, while the ACTH production stagnates. The rising 
CRH levels in the last four weeks of pregnancy stimulate the synthesis of conjugated Δ5 
steroids (Sirianni, Mayhew, Carr, Parker, & Rainey, 2005; R. Smith, Mesiano, Chan, Brown, 
& Jaffe, 1998) in the fetal zone of the fetal adrenal (FZ), which is a specific transient tissue 
gradually converting to zona reticularis after labor. The excessive production of placental 
CRH is unique for primates and the boosting CRH production near term is exclusive for 
humans and great apes (Power & Schulkin, 2006). 
The sulfated Δ5 steroids, originating in the FZ represent the largest fraction of steroids in 
pregnancy (Ingelman-Sundberg, Rane, & Gustafasson, 1975; Lacroix, Sonnier, Moncion, 
Cheron, & Cresteil, 1997; Leeder, et al., 2005; Moghrabi, Head, & Andersson, 1997) (Fig. 2D). 
Sulfotransferase 2A1 (SULT2A1) transcript shows even 13-fold higher levels in the fetal 
adrenal. Alternatively, HSD3B2 mRNA expression in midgestation is 127-fold lower than 
the one in the adult adrenal due to preferential synthesis of the Δ5 C-21 steroids over 
corticoids. The FZ is similar to the adult zona reticularis but unlike the adult zona reticularis, 
the FZ produces excessive amounts of sulfated C-21 Δ5 steroids, including pregnenolone 
sulfate (PregS) (M. Hill, Parizek, Cibula, et al., 2010; M. Hill, Parizek, Jirasek, et al., 2010; 
Rainey, et al., 2004). The Δ5 steroid sulfates (originating in the FZ) serve as precursors for the 
placental production of estradiol (Sirianni, et al., 2005; R. Smith, et al., 1998) and 
progesterone (M. Hill, Parizek, Jirasek, et al., 2010; Jaffe & Ledger, 1966; Komatsuzaki, et al., 
1987; Walsh, 1988). 

4.2 Steroid metabolism in the fetal and maternal liver 
4.2.1 C-3, C-17 and C-20 oxidoreductive conversions 

Human liver contains various isoforms of pluripotent aldoketo reductases (AKR1C1, 

AKR1C2, AKR1C3, and AKR1C4) with 20Ǐ-, 17ǐ-, 3Ǐ- or 3ǐ-hydroxysteroid dehydrogenase-

like activity (Jin, et al., 2009; Penning, et al., 2001; Shiraishi, et al., 1998). The enzyme 

activities could control the occupancy of GABAA-receptors (Penning, 1999) via reduction of 

oxo-groups in the steroid C3 position. In vivo, all AKR1Cs preferentially work as reductases 

(Steckelbroeck, Jin, Gopishetty, Oyesanmi, & Penning, 2004) and are capable of reducing 

estrone, progesterone, and 3-oxo- pregnane (androstane) steroids to estradiol, 20Ǐ-

dihydroprogesterone, and GABAergic 3Ǐ-hydroxy-5Ǐ/ǐ- pregnane (androstane) steroids, 
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respectively. On the other hand, AKR1Cs may decrease the neurosteroid concentrations by 

inactivating 3Ǐ,5Ǐ-THP and eliminating the precursors like progesterone from the synthetic 

pathways via reduction of the 20-oxo-steroid group (Penning, et al., 2000; Usami, et al., 

2002). The AKR1C2 preferring 3Ǐ-reduction over the 3ǐ-reduction may catalyze 3Ǐ-, 17ǐ-, 

and 20Ǐ-HSD reactions (Jin, et al., 2009; Jin, et al., 2001; Penning, et al., 2000; Usami, et al., 

2002). From the family of short chain dehydrogenases (SDRs), type 7 17ǐ-hydroxysteroid 

dehydrogenase (HSD17B7), preferring the reduction of the oxo-groups in 20-, 17- or 3-

position to the corresponding 20Ǐ-hydroxy-, 17ǐ-hydroxy- or 3Ǐ-hydroxy-counterparts, is 

also significantly expressed in the liver (Krazeisen, et al., 1999; Torn, et al., 2003). 

Instead, other SDRs like type 2 HSD17B (HSD17B2), type 10 17ǐ-HSD (HSD17B10) and 
type 11 17ǐ-HSD (HSD17B11), which are also highly expressed in the liver, prefer the 
oxidative direction. HSD17B2 may contribute to the formation of 20-oxo- and 17-oxo-
steroids from their 20Ǐ- and 17ǐ- counterparts (Moghrabi, et al., 1997). Type 6 17ǐ-HSD 
(HSD17B6) prefers oxidoreductase and 3(Ǐ-->ǐ)-hydroxysteroid epimerase activities and 
acts on both C-19 and C-21 3Ǐ-hydroxysteroids (Huang & Luu-The, 2000). HSD17B10 
being abundantly expressed in the liver, is capable of catalyzing the oxidation of steroid 
modulators of GABAA-r (He, et al., 2001). HSD17B10 catalyzes the conversion of 3Ǐ,5Ǐ-
THP and 3Ǐ,5Ǐ-THDOC to the corresponding inactive 3-oxo steroids (He, et al., 2003). The 
catalysis of HSD17B10 appears to be essential for maintaining normal functions of 
GABAergic neurons (Shafqat, et al., 2003). 

4.2.2 5α/ȕ-Reductases 

The liver has also high activity of SRD5A and AKR1D1 (Charbonneau & The, 2001; Meikle, 

Stringham, Wilson, & Dolman, 1979). From the two isoforms of SRD5A, SRD5A1 is widely 

distributed in the body, with the highest levels in the liver and converts testosterone into 5Ǐ-

dihydrotestosterone and progesterone, and corticosterone into their corresponding 3-oxo-

5Ǐ-reduced steroids. In the androgen-dependent structures, 5Ǐ-DHT is almost exclusively 

formed by SRD5A2 (Poletti, et al., 1998). In the peripheral tissues, including the liver, 

SRD5A1 and 3Ǐ-HSD reductive AKR1Cs and HSD17Bs work consecutively eliminating the 

androgens, protecting against the hormone excess (Jin & Penning, 2001) and producing 

GABAergic steroids, which are, however, extensively sulfated in the liver. 
Liver AKR1D1 efficiently catalyzes the reduction of both C-19 and C-21 3-oxo-Δ4 steroids to 
the corresponding 5ǐ-PM (Kochakian, 1983; Okuda & Okuda, 1984). The higher levels of 5ǐ-
PM in the fetus than in maternal compartment as well as the arteriovenous differences in the 
fetus indicate that steroid 5ǐ-reduction in the fetal liver (but not in the placenta) is important 
for production of 5ǐ-PM in both maternal and fetal compartment (M. Hill, Parizek, Cibula, 
et al., 2010).  

4.2.3 Balance between polar conjugates and unconjugated steroids 

The sulfotransferase SULT2A1 is highly expressed in human liver (Comer & Falany, 1992; 
Geese & Raftogianis, 2001; Meloche & Falany, 2001; Zhang, Varlamova, Vargas, Falany, & 
Leyh, 1998). However, the liver also strongly expresses the STS (Selcer, Difrancesca, 
Chandra, & Li, 2007) like the placenta. The formation of sulfated steroids with a 3Ǐ-
hydroxy-5Ǐ configuration may account for 50% of the metabolism of progesterone in late 
pregnancy (Anderson, et al., 1990). The sulfation of 3ǐ,5Ǐ-THP is an important metabolic 
step contributing to progesterone catabolism and significantly affecting the balance between 
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neuroinhibitory steroids and their antagonists in pregnant women. The further major 
pathway of progesterone catabolism in the maternal compartment proceeds in the sequence 
progesterone → 5ǐ-DHP → 3Ǐ,5ǐ-THP→ conjugated 3Ǐ,5ǐ-THP (Kancheva, et al., 2007), 
which is analogous to the situation out of pregnancy (Havlikova, et al., 2006). In this 
pathway, the 5ǐ-reduction and the reduction of the 3-oxo-group in 5ǐ-DHP, resulting in the 
synthesis of 3Ǐ,5ǐ-THP, appear to be critical metabolic steps (Kancheva, et al., 2007). 
Humans with low progesterone production exhibit very low concentrations of unconjugated 
3Ǐ,5ǐ-THP (men, women in the FP). In these subjects, the 3Ǐ,5ǐ-THP is rapidly conjugated. 
Alternatively, in woman in the LP and so much the more in pregnant women, the 
conjugation capacity for 3Ǐ,5ǐ-THP may be limited. The increased conjugation of 5Ǐ-PI 
probably further diminishes the difference between the 3Ǐ,5Ǐ-THP and 3Ǐ,5ǐ-THP levels in 
pregnant women and may also regulate the proportions between neuroinhibitory 3Ǐ,5Ǐ-
THP and antagonistic conjugated 5Ǐ-PI (Kancheva, et al., 2007). 

4.3 5α/ȕ-Reductases in the liver, placenta and fetal membranes 

Placental SRD5A1 and  SRD5A1 may provide precursors for 3Ǐ,5Ǐ-THP synthesis in fetal 

brain (Vu, et al., 2009). Milewich, et al. reported in vitro synthesis of 5Ǐ-reduced pregnanes 

[3H]5Ǐ-DHP and [3H]3ǐ,5Ǐ-THP from [3H]progesterone by a placental tissue (Milewich, 

Gant, Schwarz, Chen, & Macdonald, 1978). Although AKR1D1, catalyzing the 5ǐ-reduction 

is primarily expressed in the liver, its activity was also detected in other tissues including 

placenta (Sheehan, Rice, Moses, & Brennecke, 2005). However, AKR1D1 activity in 

extrahepatic tissues appears to be minor in comparison with that found in the liver (M. Hill, 

Parizek, Cibula, et al., 2010; Milewich, Gant, Schwarz, Chen, & MacDonald, 1979).  

4.4 Steroid metabolism in placenta 
4.4.1 Steroid sulfatases and placental production of sex hormones 

The principal metabolic step that is indispensable for placental metabolism of sulfated Δ5 
steroids originating in FZ is their desulfation, which is catalyzed by the placental STS. 
Placental STS activity is independent of substrate concentration (Watanabe, et al., 1990) and 
of gestational age (GA) (Fukuda, Okuyama, & Furuya, 1986; Ishida, et al., 1985; Leslie, et al., 
1994). The placental STS expression in pregnancy explicitly outweighs the production in 
other tissues (Miki, et al., 2002) and allows access of Δ5 steroids to the HSD3B1 and 
CYP19A1 within the syncytiotrophoblast layer and their conversion to estrogens (Siiteri, 
2005) and progestogens (M. Hill, Parizek, Cibula, et al., 2010; M. Hill, Parizek, Jirasek, et al., 
2010). The latter substances are subsequently converted to 5Ǐ/ǐ-PM by placental and liver 
enzymes. 

4.4.2 Reversible C-3, C-17 and C-20 oxidoreductive inter-conversions in placenta and 
fetal membranes 

The cytoplasmic type 1 HSD17B (HSD17B1) is highly expressed in syncytiotrophoblast 
(Moghrabi, et al., 1997). Besides catalyzing the conversion of estrone and progesterone to 
estradiol and 20Ǐ-dihydroprogesterone, respectively, HSD17B1 may also catalyze the 
formation of 5-androstene-3ǐ,17ǐ-diol from dehydroepiandrosterone (Lin, et al., 2006; 
Peltoketo, Nokelainen, Piao, Vihko, & Vihko, 1999). Syncytiotrophoblast, coming directly 
into contact with maternal blood, converts estrone to estradiol. In contrast to HSD17B1 
mRNA, HSD17B2 mRNA is not detectable in cell cultures of human cytotrophoblast nor 
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syncytiotrophoblast (Bonenfant, Provost, Drolet, & Tremblay, 2000). Besides HSD17B1, the 
AKR1C3, HSD17B7 and type 12 HSD17B (HSD17B12) may also catalyze progesterone 
deactivation to 20Ǐ-dihydroprogesterone and conversion of inactive estrone to bioactive 
estradiol (Li, et al., 2005; Peltoketo, et al., 1999; Penning, et al., 2001; Sakurai, et al., 2006). 
AKR1C3 functions as a bi-directional 3Ǐ-, 17ǐ- and 20Ǐ-HSD and can interconvert active 
androgens, estrogens, progestins and their 5Ǐ/ǐ reduced metabolites with their cognate 
inactive metabolites. However, like other AKR1Cs in vivo, AKR1C3 preferentially works as a 
reductase (Matsuura, et al., 1998; Penning, et al., 2001; Steckelbroeck, et al., 2004). Although 
this enzyme is expressed in placenta, its importance appears to be secondary to the 
HSD17B1. 
HSD17B2 (preferring the oxidative direction) converts inactive 20Ǐ-dihydroprogesterone to 
bioactive progesterone as well as the bioactive estradiol to inactive estrone (Moghrabi, et al., 
1997). HSD17B2 may also convert the GABAergic 3Ǐ-hydroxy-5Ǐ/ǐ-PM to inactive and 
antagonistic substances but, on the other hand, may transform the less active GABAergic 
3Ǐ,20Ǐ-dihydroxy-5Ǐ/ǐ-isomers to the more active 3Ǐ-hydroxy-5Ǐ/ǐ-20-oxo-isomers. The 
site of expression of HSD17B2 was identified in endothelial cells of fetal capillaries and some 
stem villous vessels (Moghrabi, et al., 1997; Takeyama, et al., 1998) and in endothelial cells of 
villous arteries and arterioles (Bonenfant, Blomquist, et al., 2000) in the close proximity of 
the fetal circulation. The reversible oxido-reductive interconversion of GABAergic C21 and 
C19 3Ǐ-hydroxy-5Ǐ/ǐ-reduced metabolites to the corresponding inactive 3-oxo-metabolites 
and antagonistic 3ǐ-hydroxy-metabolites (catalyzed by HSD17Bs an AKR1C1s) may also 
influence the balance between neuroinhibitory and neuroexcitatory steroids (Lundgren, et 
al., 2003). While the reductive conversion in the C3 position produce GABAergic steroids, 
the conversion of 20-oxo- to 20Ǐ-hydroxy-group or a modification of the C17,20 side chain in 
the 3Ǐ-hydroxy-5Ǐ/ǐ C21 steroids result in subtype dependent reduction of positive 
allosteric modulation of GABAA-r (Belelli, Lambert, Peters, Gee, & Lan, 1996). 
In all probability, the distribution of placental oxidoreductase isoforms controls the 
reductive and oxidative status of steroid inter-conversions in maternal and fetal 
compartment, respectively (Fig. 3). Therefore the difference between oxidative fetal- and 
reductive maternal steroid metabolomic status is the most apparent when comparing 
umbilical venous blood, containing placental steroids before their further metabolism in 
other fetal tissues and maternal venous blood. The umbilical venous blood contains higher 
proportions of 20-oxo-steroids including progesterone, 17-oxo steroids (e.g. estrone and 
dehydroepiandrosterone), 3-oxo-steroids like 5Ǐ/ǐ-DHP, and 3ǐ-hydroxy-steroids (3ǐ,5Ǐ-
THP and 3ǐ,5ǐ-THP), while maternal venous blood contains higher proportions of 20Ǐ-
hydroxy-steroids (like 20Ǐ-dihydroprogesterone), 17ǐ-hydroxy-steroids (such as estradiol 
and androstenediol) and 3Ǐ-hydroxy-5Ǐ/ǐ-reduced steroids (like GABAergic 3Ǐ,5Ǐ-THP 
and 3Ǐ,5ǐ-THP). Even the levels of conjugated 3Ǐ-hydroxy-5Ǐ/ǐ-reduced-17-oxo C-19 
steroids in maternal venous blood are pronouncedly higher than in the fetal circulation, 
while the 3ǐ-isomers does not significantly differ (M. Hill, Parizek, Cibula, et al., 2010) 
(Fig. 3). 
Some authors report that the metabolism of placental sex steroids in the reductive direction 
increases as pregnancy advances and significantly rises during human parturition (Diaz-
Zagoya, Wiest, & Arias, 1979; Milewich, et al., 1978). This phenomenon may be of an 
importance in the mechanism of initiation and continuation of labor and might indicate a 
mechanism of progesterone withdrawal and estradiol rise in association with the onset of 
human parturition. 
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AKR1Cs

17β-OH → 17-oxo

20α-OH → 20-oxo
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HSD17B6, HSD17B10, HSD17B11
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20α-OH → 20-oxo

3α-OH → 3-oxo → 3β-OH 

AKR1Cs

17β-OH ←17-oxo
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3α-OH←3-oxo

estradiol ← estrone

20α-dihydroprogesterone← progesterone

(relaxant) 20α-dihydropregnenolone← pregnenolone

(GABA-ergic) allopregnanolone← 5α-DHP

(GABA-ergic) pregnanolone ← 5β-DHP

estradiol → estrone

20α-dihydroprogesterone→ progesterone

(relaxant) 20α-dihydropregnenolone→ pregnenolone

(GABA-ergic) allopregnanolone→ 5α-DHP

(GABA-ergic) pregnanolone → 5β-DHP

 

Fig. 3. Steroid conversion during the transplacental passage 

4.5 Levels of 5α/ȕ-reduced pregnanes in pregnant women and fetuses 
4.5.1 5α/ȕ-Reduced pregnanes in pregnant and non-pregnant women 

In pregnant women, the levels of 5Ǐ/ǐ-PM including the GABAergic 3Ǐ-PI are persistently 
elevated (M. Hill, et al., 2007; M. Hill, Parizek, Kancheva, et al., 2010; Kancheva, et al., 2007; 
Luisi, et al., 2000; Mickan & Zander, 1979; Parizek, et al., 2005; Pearson Murphy, Steinberg, Hu, 
& Allison, 2001). Their concentrations in women after luteo-placental shift reach values about 
two orders of magnitude higher than the concentrations detected in the FP (Parizek, et al., 
2005). Pearson Murphy et al. show that the levels of C21 steroids including 5α/β-PM rise 
greatly during pregnancy, being the highest for progesterone (562-fold the FP level), 5Ǐ-DHP 
(161-fold), 3ǐ,5Ǐ-THP (56-fold), 3Ǐ,5Ǐ-THP (37-fold), pregnenolone (30-fold), 5ǐ-DHP (16-fold) 
and 3ǐ,5ǐ-THP (16-fold) at 37th week of gestation (Pearson Murphy, et al., 2001). As already 
mentioned, these conditions induce a decreased affinity of GABAA-r for the 5Ǐ/ǐ-PI.  

4.5.2 5α/ȕ-reduced progesterone metabolites around parturition 

Pearson Murphy et al. demonstrate that during the period 2-7 day postpartum, the level of 
progesterone fall precipitously, whereas those of pregnenolone and the metabolites decrease 
more slowly and their levels are still elevated compared with FP levels 2 weeks after 
delivery. By the 7th week postpartum only 3Ǐ,5Ǐ-THP and 3ǐ,5ǐ-THP remains slightly 
elevated (Pearson Murphy, et al., 2001). Our recent report (M. Hill, Parizek, Cibula, et al., 
2010; M. Hill, Parizek, Kancheva, et al., 2010) as well as our previous data for PI around 
parturition display significantly lower PIC/PI ratios in the umbilical venous plasma than in 
the maternal plasma (M. Hill, et al., 2001; Klak, et al., 2003). Changes in concentrations of PI 
in the maternal serum exhibit a similar pattern, falling mostly within the first hour after the 
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delivery. The decrease in PIC is shifted to the interval within the first hour and first day 
after delivery (M. Hill, et al., 2001; Klak, et al., 2003). The PIC/PI ratios significantly decrease 
within the first hour and the first day after delivery in all PI (M. Hill, et al., 2001; Klak, et al., 
2003). These results indicate an intensive sulfation of GABAergic substances in the maternal 
compartment during pregnancy but attenuating sulfation activity shortly after labor. The 
sulfation of GABAergic steroids (transforming them to antagonistic substances) might 
represent a mechanism counterbalancing their placental overproduction. The ratios of 
3Ǐ/3ǐ-PI decrease around parturition (M. Hill, et al., 2001; Klak, et al., 2003), which may 
indicate that the placental and possibly also the liver reductive conversion of the 3-oxo- and 
3ǐ-hydroxy-5Ǐ/ǐ-PI to the 3Ǐ-isomers may be of importance for pregnancy sustaining. 

4.6 Effects of 5α/ȕ-reduced pregnanes in pregnant women and fetuses 
4.6.1 The role of progestogens and their 5α/ȕ-reduced metabolites in pregnancy 
sustaining and induction of labor 

Pregnant women and fetuses have exceedingly elevated levels of steroids positively 
modulating NMDA-r (including the  5Ǐ-PIC) (M. Hill, et al., 2007; M. Hill, Parizek, Cibula, 
et al., 2010; M. Hill, Parizek, Kancheva, et al., 2010; Malayev, Gibbs, & Farb, 2002; Weaver, et 
al., 2000). On the other hand, the 5ǐ-PIC exert an antagonistic effect on NMDA-r (Malayev, 
et al., 2002; Park-Chung, et al., 1997; Weaver, et al., 2000) and promote their desensitization 
(Kussius, Kaur, & Popescu, 2009). Like the levels of other PIC, the levels of conjugated 
3Ǐ,5ǐ-THP are also extremely elevated in pregnant women and (in contrast to slightly 
increasing, stagnating or even decreasing levels of GABAergic PI) pronouncedly rise in the 
late pregnancy (Gilbert Evans, Ross, Sellers, Purdy, & Romach, 2005; M. Hill, et al., 2007; M. 
Hill, Parizek, Cibula, et al., 2010; M. Hill, Parizek, Kancheva, et al., 2010; Luisi, et al., 2000; 
Parizek, et al., 2005; Pearson Murphy, et al., 2001). These findings allow a speculation 
whether the conjugated 3Ǐ,5ǐ-THP might serve as an endogenous antinociceptive agent 
around parturition (Hering, et al., 1996; Kallela, Haasio, & Korttila, 1994). 
On the other hand, rising steroid sulfation that catabolizes both 3Ǐ,5Ǐ-THP and 5ǐ-reduced 
steroids, produces high amounts of PIC. PIC induce neuroexcitatory effect via GABAA-r and 
may shift the biological activity towards induction of labor (Park-Chung, et al., 1999). 
Majewska and Vaupel (Majewska & Vaupel, 1991) reported that 3Ǐ,5Ǐ-THP interact with 
GABAA-r to modulate uterine contractility: 3Ǐ,5Ǐ-THP inhibits while PregS increases 
contractions. Further, 3Ǐ,5Ǐ-THP rapidly antagonizes the stimulatory effect of PregS, but 
progesterone inhibits the contractions after a delay, suggesting that the known pregnancy 
sustaining effect of progesterone on the uterus is at least partly mediated via the metabolite 
3Ǐ,5Ǐ-THP, which potentiates the neuroinhibitory function of GABAA-r (Majewska & 
Vaupel, 1991). On the other hand, Lofgren et al. (Lofgren, Holst, & Backstrom, 1992) 
reported contradictory data. Concerning the 3Ǐ-hydroxysteroid oxidoreductase-mediated 
turnover of 5Ǐ-DHP and 5ǐ-DHP to their metabolites 3Ǐ,5Ǐ-THP and 3Ǐ,5ǐ-THP, 
respectively, which reflects the ratios between these GABAergic 3Ǐ-PI and their inactive 
precursors, Gilbert Evans et al. (Gilbert Evans, et al., 2005) reported that the turnover of 5Ǐ-
DHP to 3Ǐ,5Ǐ-THP rise during pregnancy and drops at the late prenatal visit. At 6 weeks 
postpartum, all steroids are significantly reduced compared with late prenatal values. 
Although, we have found no significant change of the ratio 3Ǐ/3ǐ-PI during pregnancy 
(Parizek, et al., 2005), our more recent study shows contradictory results to the data of 
Gilbert Evans et al. and demonstrates a moderate but significant shift from the 3Ǐ-PI to the-
3-oxo-isomers (M. Hill, Parizek, Cibula, et al., 2010). 
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When testing the capacity to inhibit the in vitro motility of rat uterus, progestins with their 
ring A reduced in the 5ǐ-position are significantly more potent than Δ4-3-oxo and 5Ǐ-
reduced progestins (Kubli-Garfias, Medrano-Conde, Beyer, & Bondani, 1979; Perusquia & 
Jasso-Kamel, 2001). The 5Ǐ/ǐ-PM elicit an immediate relaxing effect that is dose-dependent. 
With the exception of two 5Ǐ/ǐ-PM (5Ǐ-DHP and 3ǐ,5Ǐ-THP), the remaining ones used in 
the present study are more potent than progesterone. It is important that when the tissues 
are washed, the contractile activity is recovered. This rapid and reversible relaxing effect is 
not blocked by antiprogestin RU 486, which suggests its independence of receptor-mediated 
genomic action (Perusquia & Jasso-Kamel, 2001). 
Being already mentioned, the abundance of progesterone, 3Ǐ-hydroxy-5Ǐ/ǐ-pregnane-
steroids and estradiol levels in pregnancy is high. Some of them like 3Ǐ,5Ǐ-THDOC, 3Ǐ,5Ǐ-
THP and progesterone induce opening of voltage-dependent K+ channels and relaxes 
myometrium while estradiol is their antagonist (Knock, Tribe, Hassoni, & Aaronson, 2001; 
Perusquia & Jasso-Kamel, 2001; Yoshihara, et al., 2005). Therefore the ratios 
progesterone/estradiol and 3Ǐ-PI/estradiol may be of importance for sustaining the uterine 
quiescence. Whereas 3Ǐ,5Ǐ-THP stagnates from the 36th week of gestation (M. Hill, et al., 
2007), estradiol still shows an increasing trend (Buster, et al., 1979; Parizek, et al., 2005; 
Turnbull, et al., 1974), which might induce uterine contractions resulting in parturition 
onset. 
Whereas the turnovers of 5Ǐ-DHP/progesterone and 5ǐ-DHP/progesterone in the 3rd 
trimester show that the metabolism of progesterone to 5Ǐ-DHP inconspicuously culminates 
in the 35th week, the conversion of progesterone to 5ǐ-DHP significantly declines from the 
31st week of gestation (M. Hill, et al., 2007). This is in accordance with results of other 
authors as well as with our current data (Gilbert Evans, et al., 2005; M. Hill, Parizek, Cibula, 
et al., 2010; M. Hill, Parizek, Kancheva, et al., 2010; Sheehan, 2006; Sheehan, et al., 2005). 
Besides the modulation of ionotropic receptors, the 5ǐ-reduced metabolites of progesterone 
may act chronically in pregnancy as uterine relaxants through a mechanism mediated by 
pregnane X-type receptors. Moreover, acute in vitro treatment with 5ǐ-DHP causes rapid 
uterine relaxation that is independent of pregnane X-type receptors (Mitchell, et al., 2005; 
Putnam, Brann, Kolbeck, & Mahesh, 1991). The aforementioned data demonstrate that the 
progesterone metabolite 5ǐ-DHP is a potent tocolytic (Mitchell, et al., 2005). In the placenta 
and myometrium, the relative expression of AKR1D1 decreases in association with labor by 
about two-fold and 10-fold, respectively (Sheehan, et al., 2005). Therefore, it is likely that the 
decrease in AKR1D1 activity during the third trimester is associated with a reduced ability 
to sustain the pregnancy (Gilbert Evans, et al., 2005; M. Hill, et al., 2007; M. Hill, Parizek, 
Cibula, et al., 2010; M. Hill, Parizek, Kancheva, et al., 2010; Sheehan, et al., 2005). AKR1D1 
activity participates in the formation of almost 40% of pregnancy- sustaining PI. 

4.7 Effects of 5α/ȕ-reduced pregnanes on pain perception, induction of tolerance, 
receptor plasticity 
4.7.1 The effects of 5α/ȕ-reduced pregnanes in the fetal CNS 

3Ǐ,5Ǐ-THP may interact with GABAA-r to inhibit fetal CNS activity from mid-gestation. This 
inhibition may contribute to maintaining the sleep-like behavior and low incidence of 
arousal-type activity typical of fetal life (Crossley, et al., 2003). Mellor et al. reviewed the role 
of endogenous neuro-inhibitors that contribute to fetal sleep states, and thus mediate the 
suppression of fetal awareness. The authors show that there are several suppressors in utero, 
which inhibits neural activity in the fetus to a far greater degree than is seen postnatally in 
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the infant. The authors suggest that the uterus plays a key role in keeping the fetus 
continuously asleep. Despite the presence of intact nociceptive pathways from around mid-
gestation, the critical aspect of cortical awareness in the process of pain perception is 
missing. The mechanism providing the permanent sleeping status in the fetus combines 
neuroinhibitory actions of a powerful EEG suppressor and sleep inducing agent 
(adenosine), two GABAergic steroids anesthetics (3Ǐ,5Ǐ-THP, 3Ǐ,5ǐ-THP) and a potent 
sleep-inducing hormone (prostaglandin D2), acting together with a putative peptide 
inhibitor and other factors produced by the placenta (Mellor, Diesch, Gunn, & Bennet, 2005). 
Concerning the role of GABAergic steroids in suppressing the nociceptive pathways in the 

fetus, our current data shows 2-3 times lower 3Ǐ,5Ǐ-THP levels in the fetal circulation than 

in the maternal one, while 3Ǐ,5ǐ-THP levels in UV exceed those in MV 1-2.5 times (M.  Hill, 

et al., 2011). The total amount of GABAergic PI is only slightly higher in the fetal 

compartment than in the maternal, mainly due to the contribution of unconjugated 3Ǐ,5ǐ-

THP. These results indicate that the peripheral GABAergic steroids exert a comparable effect 

on the maternal and fetal CNS. Even when considering the 1.5-3 fold excess of progesterone 

in the fetal circulation when compared to the maternal blood, a possibility of progesterone 

transport into the brain, and its conversion to the GABAergic steroids herein, the resulting 

contribution of GABAergic steroids originating from peripheral sources do not 

pronouncedly differ between mother and fetus. Therefore the importance of GABAergic 

steroids for maintenance of permanent fetal sleeping is open to discussion. 

4.7.2 The effects of 5α/ȕ-reduced pregnanes in the maternal CNS 

Increases in the brain levels of 5Ǐ/ǐ-PM during pregnancy are causally related to changes in 
the expression of specific GABAA-r subunits and the function of extrasynaptic GABAA-r in 
the cerebral cortex and hippocampus (Concas, Follesa, Barbaccia, Purdy, & Biggio, 1999; 
Mostallino, Sanna, Concas, Biggio, & Follesa, 2009). Turkmen et al. demonstrated that 3Ǐ,5Ǐ-
THP treatment induce a partial tolerance against acute 3Ǐ,5Ǐ-THP effects in the Morris 
water maze (Turkmen, Lofgren, Birzniece, Backstrom, & Johansson, 2006). Alterations in 
ǒGABAA-r expression during pregnancy result in region-specific increases in neuronal 
excitability in brain that are restored by the high levels of 3Ǐ,5Ǐ-THP under normal 
conditions. On the contrary, under pathological conditions may result in neurological and 
psychiatric disorders associated with pregnancy and postpartum period (Maguire, Ferando, 
Simonsen, & Mody, 2009). Besides the GABAergic effects in the CNS and periphery, 5ǐ-PM 
also exert peripheral analgesic effects via blockade of testosterone-type calcium channels 
controlling pain perception (Todorovic, et al., 2004). These data as well as those mentioned 
previously, allow a speculation, whether these steroids might operate as endogenous 
analgesics around parturition. 

4.7.3 Neuroprotective and excitotoxic effects of 5α/ȕ-reduced pregnanes 

The synthesis of neurosteroids from cholesterol in late gestation persists into neonatal life 
but SRD5A expression is greater in the fetus compared to the neonate. Fetuses exposed to 
stress during labor produce higher progesterone, which may protect them against the 
sequelae of hypoxia (Antonipillai & Murphy, 1977; Shaxted, Heyes, Walker, & Maynard, 
1982). It is likely that the increasing fetal progesterone levels in stressful situations are 
associated with increased activity of the FZ producing extreme amounts of PregS. 
Physiologic concentrations of progesterone metabolite 3Ǐ,5Ǐ-THP provide protection 
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against both necrotic and apoptotic injury induced by NMDA excitotoxicity via positive 
modulation of GABAA-r (Yawno, Hirst, Castillo-Melendez, & Walker, 2009). This 
modulation limits excitatory neurotransmission (Crossley, et al., 2003; Lockhart, et al., 2002). 
Growth restriction is a potent stimulus for neurosteroid synthesis in the fetal brain in late 
pregnancy. The low concentrations of 3Ǐ,5Ǐ-THP in the growth-restricted postnatal brain 
suggest a delay in the capacity of the adrenal gland or brain to synthesize pregnane steroids 
or their precursors and may render the postnatal brain vulnerable to hypoxia-induced injury 
(Westcott, Hirst, Ciurej, Walker, & Wlodek, 2008). At birth, the 3Ǐ,5Ǐ-THP concentrations in 
the brain fall markedly, probably due to the loss of placental precursors; however, stressors, 
including hypoxia and endotoxin-induced inflammation, lift up 3Ǐ,5Ǐ-THP concentrations 
in the newborn brain. (Hirst, Yawno, Nguyen, & Walker, 2006). Abrupt changes in neonatal 
levels of 3Ǐ,5Ǐ-THP could be related to the susceptibility to neurodevelopmental disorders 
(Darbra & Pallares, 2010). 
GABAergic PI may reduce the excitotoxicity induced by N-methyl-D-aspartate (Lockhart, et 
al., 2002). In pregnant women and fetuses, this effect might be of importance when 
considering exceedingly elevated levels of steroids, which positively modulate N-methyl-D-
aspartate receptors (NMDA-r). The positive NMDA-r modulators (like the sulfated Δ5 
steroids and sulfates of 5Ǐ-PI) may induce excitotoxic effect (Guarneri, et al., 1998; M. Hill, et 
al., 2007; M. Hill, Parizek, Cibula, et al., 2010; M. Hill, Parizek, Kancheva, et al., 2010; 
Malayev, et al., 2002; Weaver, et al., 2000). Moreover, the sulfated 5ǐ-PI, 3Ǐ,5ǐ-THP, the 
levels of which pronouncedly rise in the late pregnancy (M. Hill, et al., 2007; M. Hill, 
Parizek, Kancheva, et al., 2010), have also antagonistic effect on NMDA-r (Malayev, et al., 
2002; Park-Chung, et al., 1997; Weaver, et al., 2000) and promote their desensitization 
(Kussius, et al., 2009).  

5. Summary 

Although the effects of bioactive reduced progesterone metabolites in human and laboratory 

animals were extensively studied, their physiological importance remains commonly 

uncertain due to the lack of metabolomic data. Therefore, we focused on the intersection 

between steroid metabolomics and neurophysiology so as to give a comprehensive insight 

into the physiological and pathophysiological relevance of the aforementioned compounds. 
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