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1. Introduction 

The are approx. 177 million people suffering from diabetes worldwide and this number will be 
doubled by 2030.  Patients with type 1 diabetes require multiple injections of insulin daily with 
doses careful adjusted on carbohydrate intake, level of activity and stress. Often there is a 
mismatch between insulin requirements and the calculated dose, resulting in hyper or hypo-
glycaemia.  Between 20-30% of patients however suffer from recurrent hypoglycaemia, which 
may require third party help (Geddes et al. 2008). Islet transplantation has been a promising 
therapy since the “Edmonton protocol” was published in 2000 (Shapiro et al. 2000). However, 
numbers of transplants remain low for a variety of reasons (Shapiro et al. 2006). One major 
hurdle to more widespread provision of this treatment remains a shortage of supply of donor 
organs, with only 25-30% of isolations resulting in islets of sufficient quantity and quality to be 
used in clinical transplantation, indicating a huge waste of valuable resources (Nano et al. 
2005). Studies using animal models have found the evidences of neogenisis of beta cells under 
non-physiological condition as well the limited proliferation capacity of beta cells. 
Unfortunately, human beings cannot be manipulated to generate insulin-producing cells. 
There are increasing evidence suggested that glucose response insulin-producing cells could 
be generated in large quantity for human use. The following are a few possible aspects that can 
be explored for this purpose. 

1.1 Beta cell replication and regeneration 
There are substantial evidences suggesting that the adult pancreas can generate new ǃ-cells 
in response to pancreatic damage or increased demand for insulin (Wang  et al., 1995; 
Bonner-Weir et al., 1993; Guz  et al., 2001). The source of new ǃ-cells is thought to be the 
replication of existing ǃ-cells under normal growth condition (Dor et al., 2004). However, 
the capacity of mature ǃ-cells to proliferation and then re-differentiate back into ǃ-cells has 
not been demonstrated in vitro and it still remains a challenge. In addition to the replication, 
there are mounting evidences indicated that regeneration of beta cells also contribute 
significantly to the new beta cells when pancreas is under non-physiological conditions such 
as partial pancreas duct ligation (Wang et al., 1995) or partial pancreatectomy (Finegood et 
al., 1999). However, such mechanisms are believed to have little implication to diabetes 
patients, as it is not possible to mimic the situations in animals to humans. Furthermore, 
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even though there is regeneration of beta cells; the patients need immunosuppressive drugs 
to control the self-destruction of beta cells by autoimmune mechanisms. In addition to the 
beta cell proliferation, whether there are other cell sources for the beta cell neogenesis is not 
clear. It has been shown that human adult pancreases contain cells expressing Oct4 and Sox2 
proteins (Zhao et al., 2007). The expression of Oct4 and Sox2 is thought to be related to the 
stemness of stem cells in human pancreas. The location of these cells in the small ducts is 
interesting (Fig 1) as it reflects the development of pancreas. Whether these cells are a part of 
the undifferentiated stem cells retained in ducts during the formation of pancreas and are 
the sources of new beta cells in adulthood remains unknown to us. The question is whether 
these cells are truly functional adult stem cells? If they are, how these cells contribute to the 
balance of beta cell number warrants further investigations. Insulin positive cells were 
indeed observed in the pancreas ducts (Bonner-Weir et al., 1993; Dudek et al., 1991; Pour 
1994; Bouwens and Pipeleers 1998; li et al., 2010) and the findings that cells derived from 
rodent and human islets were multiple potency (Smukler et al., 2011) have further 
confirmed the possibility of presence of stem cells in adult pancreas. For this reason, human 
pancreatic ducts have been the target material for insulin-producing cells (Gmyr et al., 2004). 
Unfortunately the experiment protocol seemed not be optimal enough and generating 
insulin-producing cells from these duct cells is remaining illusive. Further investigation is 
required to determine whether there would be possible means to increase beta cells from the 
stem cells to treat diabetes in newly diagnosed diabetes patients together with immune 
modulation drugs.  

1.2 Immunosuppression approach 
When the patient is newly diaganisd as type 1 diabetes, there is often associated with a 
“honey-noon” phenominon.  It is thought that there are new beta cells generated during this 
transient phase of disease. Earlier clinical trial using immunosuppressive drugs to inhibit 
the T cells did show the improvement in insulin secretion but at the price of worsening renal 
functions (Mirouze et al., 1986; Mandrup-Poulsen et al., 1990). These are believed to be the 
side effects of the immunosuppressive drugs to the kidneys while modulating the 
autoimmunity to protect beta cells. In 1990s, the most widely used drugs is cyclosporine, 
which is known to be toxic to beta cells (Hahn et al., 1986), will also damage the beta cells 
overtime. The trials with less cell toxic drugs such as anti-CD3 or anti-CD4 antibodies also 
showed some benefits in altering the disease course (Chatenoud et al., 1993; Phillips et al., 
2000; Herold et al., 2002) but the hope of increasing new beta cells suficient to cure the 
disease still meets difficulty (Keymeulen et al., 2005). It is believed that the time to initiate 
such treatment is crucial as the ability to increase new beta cells is limited. This treatment 
could be used to prevent type 1 diabetes in risk population when there is still a surficient 
number of beta cells and with potential renewing beta cells, if such a population is 
identified. 

1.3 Pancreas organ transplantation vs. islet cell transplantation 
Human pancreas transplantation has been the main option for replacing the lost beta cells in 
type 1 diabetes patients since 1960s (Kelly et al., 1967; Hermon-Taylor 1970). Even now it is 
still the best option to treat diabetes. The insulin independency following pancreas organ 
transplantation is around 70-90% when the surgical procedures are successful. However, it 
is a major surgical procedure and is normally reserved for kidney and pancreas 
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Typical immunohistochemical staining images of human pancreas sections for the Oct4, Sox2 
expressing cells and their localization relevant to CK19+ve cells. Panel A and G show Oct4+ve cells (green) 
within the ductal structures and their surrounding area in a scattering pattern. Majority Oct4+ve cells 
were shown cytopalsmic staining with only small number cells shown nuclei staining (arrowed). B and 
E show the CK19+ve duct cells (red) and C is the merged of A and B. Panel D (green) and H (red) show 
Sox2 positive cells. F is the merge of D and E. Panel I is the merged of G (Oct4+ve, Green) and H (Sox2+ve 
Cells, Red), showing the colocalization of Oct4 and Sox2 positive cells.  

Fig. 1. Immunohistochemical statining of the Oct-4 and Sox2 cells in human adult pancreas 
sections  
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simultaneous transplantations just because it is a big operation procedure. Most old patients 
are not suitable for this approach as they are unable to tolerate the surgical procedures. The 
operation itself is associated with 10% mortality and mobility; often the patients need a 
second or third operation to correct the problem of exocrine enzyme leakage. 
Human islet transplantation provides an alternative mean to restore the lost beta cells and it 
become a realistic option for a group of type 1 diabetes patients with bristle diabetes 
condition, especially for the group of patients with hypoglycaemia unawareness (Shapiro et 
al. 2000). The advantage for this approach is that it is a minor and less invasive procedure 
and a more safe approach for the replacement of lost beta cells. The disadvantages are that 
human pancreas is to be digested with a blend of collagenases and specialized proteases and 
human islets are purified from the exocrine tissues (Ricordi et al., 1989). Some islets are 
damaged during the isolation procedures. In addition, approximately 20-50% islets are lost 
under current density centrifugation purification techniques, which is based on the density 
differential between endocrine cells and exocrine cells. Therefore, it needs 2-3 pancreases to 
provide enough islet cell mass (~10,000 Islet IEQ/kg body weight) for one recipient. The 
human islets are then transplanted into the patient’s liver via port vein, where the islets will 
set down in liver. The islets will function in the higher insulin concentration environment as 
comparison with those within pancreas. Therefore, this will require islets to work harder 
and lead to exhaustion of islets themselves. As the islets are digested away from the 
exocrine tissues, they are also cut away from the vascular system, which provides islets with 
essential nutrients, oxygen and neuron-regulating molecules and need to be revisualization 
following transplant. During the period of avascular state, the islets are very vulnerable to 
any attack, such as inflammatory factors and the cytotoxicity of the immunosuppressive 
drugs, as the cells take in nutrients and oxygen through passive perfusion, which is very 
inefficient. Since the body immune system destroys tissues it recognises as “foreign” and the 
nature of autoimmune disease in the patients, immunosuppressive drugs are given to the 
patients before, during and after transplant to protect the grafts from allo-rejection and the 
reoccurrence of autoimmunity. The immune regulation medication has several drawbacks 
currently. First, the immunosuppressive drugs have significant side effects and some 
patients cannot tolerate one or another immunosuppressive regimens. The patients have to 
take the drugs life long in order to protect the islet grafts and to prevent from getting 
sensitisation against donor tissues. There would be some implications for the risk of tumour 
generation, as the recipients may not have the full immune capacity to fight tumour cells 
although there is no such report yet. For the reason of toxicity of the immunosuppressive 
drugs, this approach is only suitable for a small group of patients. It is not yet suitable for 
young children simply it is not worthy taking immunosuppressive drugs. Secondly, the 
drugs also show some degrees of toxicity to beta cells and the drugs will reduce the islet cell 
mass overtime. The long-term prospect of islet transplantation currently is not yet 
satisfactory, with only ~13% of transplant patients remaining insulin independence for >5 
years, although most patients still have endogenous C-peptide product and benefit from the 
better control of their blood glucose (Ryan et al., 2005). Thirdly, as to the drawback 
mentioned above, it requires 2-3 donor organs to generate enough islet cell mass to reach to 
>10,000 islet IEQ/kg body weight of the recipient. The large islet IEQ is needed because 
some islets will not survive during the avascular state, which deprive themselves of 
essential nutrients and oxygen, and the toxicity of immune modulation agents. This will 
obviously worsen the situation on the already limited supply of donor organs. Fourthly, the 
reoccurrence autoimmune attack on the grafts developed overtime, which seemed to be able 
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to escape the current immunosuppressive regimens applied. The future work should 
concentrate on protecting islets during and post-transplantation and development of less 
toxic immune suppression drugs.  
Despite the drawback mentioned above, for patients with bristle diabetic conditions and 
patients with pancreatectomy (due to prolonged pancreatitis), the beta cell replacement still 
remains the best option. To make this beta cell replacement as a wider applicable approach 
for the treatment of diabetes patients, the limitation of glucose responsive insulin-producing 
cells is the key obstacle and must be addressed. For patients with type 2 diabetes, current 
islet cell transplantation is insufficient as the demand for insulin-producing cells for these 
patients is far greater than type 1 diabetes patients. However, this approach could be 
applied to patients with type 2 diabetes, if the cell source of insulin surrogates is unlimited. 
For the later, there is only one need, that is, to prevent the allo-graft rejection.  

2. Generation of glucose responsive insulin-producing cells 

Many type of cells have been used to generate glucose responsive insulin-producing cells 
with limited success. These include the differentiation of embryonic and adult stem cells and 
transdifferentiation from other types of cells into insulin producing cells (Fujikawa et al., 
2005; Zhao et al., 2005 and 2008; Kroon  et al., 2008; Boyd et al., 2009; Tateishi et al., 2008; 
Zhou et al., 2008; Gabr et al., 2008; Zhang et al., 2009; Cai et al., 2010). However, the success 
has been limited to small animal models. The focus of this chapter is to briefly discuss the 
potentiality involved in our laboratories.  

2.1 Islet cells replication in vitro 
Islets of Langerhans are the endocrine mini-organs consisted of 4 major different endocrine 
cells: ǂ-cells controlling the release of glucagon; ǃ-cells for insulin, δ-cells for somatostatin 
and the pp cells-polypeptide. These 4 types of endocrine cells work together in a complex 
interplay in the maintaining of homeostasis of blood glucose level.  Islet cells need to stay 
together as a cluster to function better as indicated by the finding that single Min 6 (mouse 
beta cell line) cells do not express and secret insulin as well as those when the Min 6 cells are 
forming as a cluster-called pseudoislets (Hauge-Evans et al., 1999). Human islets cultured in 
monolayer tend to lose the capacity gradually to express insulin within 5 weeks (Fig.2). 
Human islet cells cultured in 3-dimension seemed to be able to retain beta cell phenotype. 
However cells, particularly those at the centre of the clusters, will die due to necrosis if the 
cells cultured as 3-dimensional manner for too long. This is because that cells located in the 
centre of the 3-dimension will depend on the perfusion of nutrients and oxygen, which is 
very insufficient. We therefore developed a method to culture the cells in a rotation manner 
between monolayer culture (2-dimension) and cluster culture (3-dimension), the cells have 
acquired the survive signal through the 2-dimensional culture and can also maintain the 
capacity to express insulin through the 3-dimensional culture. The cells can maintain this 
capacity to express insulin and respond to glucose challenge for >4 months in vitro. When 
the cells were transplanted into SCID (an immune deficient mouse) mice, rendered diabetes 
by the injection of straptozotosin (STZ), they were able to correct the hyperglycaemia and 
maintaining the homeostasis of blood glucose (Fig. 3; Zhao et al., 2002). The beauty of this 
model is to provide a prototype model to analyse beta cell differentiation. The ability of beta 
cells to proliferate in vitro has been demonstrated in many studies (Beattie et al., 1999; 2000 
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Semi-quantitative RT- PCR analysis. 5 weeks continuously monolayer cultured human islet cells were 
induced to express insulin. Total RNA were isolated from each different condition. cDNA derived from 
4ng of total RNA were used to amplify preproinsulin and actin. 5 = 5weeks monolayer cultured human 
islet cells.  

Fig. 2. Analyses the expression of insulin in continual monolayer culture 

and 2002; Halvorsen et al., 2000; Gershengorn et al., 2004; Lechner et al., 2005; Ouziel-
Yahalom  et al., 2006;) and was directly confirmed in a study with GFP labelled beta cells 
using a lentinvirus system (Russ et al., 2008). However, the purpose of ex vivo expansion of 
human islets is to increase the glucose responsive insulin-producing cells for research and 
eventually for transplantation to treat diabetes. Unfortunately, making the proliferated 
insulin-producing cells to express insulin again in a glucose responsive manner is still a big 
challenge to us. Using a lentinvirus labelling system developed by Russ and colleagues, we 
were able to show that a small percentage of beta cells (GFP expressing cells) were found to 
be positive for insulin and Ki67--a proliferation marker in vitro (Fig. 4; Zhao et al., 
unpublished). This result illustrated that beta cells have the potential to be expanded ex vivo. 
The question is how to make this more efficient to achieve large number of cells for the treat 
of diabetes patients.    

2.2 Human exocrine cells 
From the development point of view, exocrine cells are the excellent candidate materials for 
insulin-producing cells as they share the same origin with the pancreatic endocrine cells 
(Slack 1995). Mouse exocrine cells have shown the flexibility to be converted into insulin-
producing cells following chemical treatment (Lardon at al., 2004; Baeyens et al., 2005; Zhou 
et al., 2008). Therefore, there is good reason to believe that it is possible to convert human 
exocrine cells into endocrine cells. In terms of cell number, exocrine cells consist of 90% 
pancreatic cells with approximate 40-50 folds of their endocrine cell count apart, which 
consists of less than ~2% of total pancreatic cells. Secondly, it is already available. Following 
human islet isolation, the exocrine cells will be the waste material and are discarded at end. 
Thirdly, following dedifferentiation there is no obvious difference between the two types of 
cells. Both cells began to express CK19—a ductal cell marker. This is interesting because that 
both types of cells are derived from ductal cells during pancreas development (Slack 1995). 
Whether to differentiate into exocrine cells or into endocrine cells is under the complex 
interplays of complex genes at that stage. Gene Ptf1a may play a big role in the 
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Blood glucose level (mM) of the STZ induced diabetic SCID mice before and after transplantation of 
long term cultured islets or sham control. Time of transplantation and sham was assigned as 0 day (d) 
and the time before surgery was indicated as –d. A shows the overnight fasting blood glucose level, 
solid square = islet cell transplanted (Tx), and the solid diamond shape = sham control. B shows the 
non-fasting blood glucose levels, solid square = islet cell transplanted (Tx), and solid diamond shape = 
sham control. The decrease in blood glucose levels was significant in both fasting and non-fasting with 
student t pair-test at P<0.023 and P<0.002 respectively. The difference in blood glucose levels between 
transplantation and sham groups was also significant (P<0.02and 0.023 respectively).  

Fig. 3. Analyses of the blood glucose levels in mice transplanted with long term cultured 
human islet cells 

determination of cells to exocrine cell fate (Dong et al., 2008). The mechanism of how 
exocrine cells being converted into endocrine cells is not clear and under our experimental 
conditions, it requires the gene products from beta cells and the right differentiation 
environments. Under the Pdx-1 gene influence, exocrine cells express some beta cell 
phenotype marker following differentiation induction with a cocktail of differentiation 
inducers (GLP-1, activin A, betacellulin, nicotinamide and glucose, Zhao et al., 2005) and 
expressed low level of insulin (Fig. 5) in vitro. The time to introduce Pdx-1 is seemed to be 
critical, although we did not have biomarkers to match this window exactly for the gene 
induction. We speculated that a short window existed during the dedifferentiation of 
exocrine cells. During which, exocrine cells would be more ready to be induced to express 
beta cell markers.  The cells showed a glucose response in vitro when challenged with 
glucose. But the response was not typical as the background secretion is too high and the 
challenge secretion is too low in comparison with islet cells, suggesting the insulin-
producing cells were immature. As predicted, these cells matured further following 
transplant in SCID mice, rendered diabetes with the injection of STZ solution. This approach 
is sufficient to work in small laboratory animals with ~40% mice recovered from the mild 
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Genomic labelling of human beta cells and differentiation induction assessment. Panel A: the methed 
used in the labelling of human beta cells (Russ et al., 2008). Panel B: Control experiment of 
differentiation induction in the labelling beta cells. Beta cells were labelled as green and the cells were 
staining for insulin (Red). Panel D, E, F were images catched for red (insulin, D), green (beta cells, E) 
and blue (for Ki67 protein F). Panel C was the merged images of D,  E, F. The proliferated beta cell was 
indicated by  the arrow.  

Fig. 4. Analyses the potential of proliferated adult human beta cells to reexpress insulin  
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The dedifferentiated human pancreatic exocrine cells expressed insulin and NeuroD1/Beta 2 genes after 
transfection with Pdx-1 gene and differentiation induction, analysed by semi-quantitative RT-PCR. 

Fig. 5. Expression of beta cell phenotype genes in manipulated human non-endocrine 
pancreatic cells in vitro 

diabetes. The grafts showed that glucagon and somatostatin were also expressed in addition 
to the insulin (Fig.6), indicating that exocrine cells can be converted into whole pancreatic 
endocrine cells, not just insulin producing cells. Further works are required to explore the 
full potential of exocrine cells in order to create enough insulin producing materials for the 
treatment of diabetes.  
 

A. B. C.

 
Immunohistochemical staining of the grafts (visulised by confocal microscope) for markers of the 
pancreatic endocrine cells. Insulin (A, 15±6.7% ), Glucagon (B, 8±2.3% ) and Somatostatin (C, 3±1.85% ) 
positive cells are shown in green (FITC) and nuclei are stained with propidium iodide (red). Original 
amplification x40  

Fig. 6. The expression of pancreatic endocrine cell hormones in the transdifferentiated cells. 
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2.3 Mesenchymal stem cell 
Mesenchymal stem cells (MSCs) are the nonhematopoietic multipotent progenitor cells 
found in various adult tissues. Bone marrow derived MSC cells are those cells can adhere to 
plastic culture flask and proliferate in vitro (Kadiyala et al., 1997).  The cells have the 
potential to be expanded in vitro in large quantity. MSC under specific differentiation 
environments can differentiate into cells with phenotypes of many specific tissues, such as 
bone, adipose and neurons (Pittenger et al., 1999; Deans and Moseley 2000; Deng et al., 2006; 
Gabr et al., 2008). MSC has the capacity to modulate host immune cells (see review papers in 
Bunnell et al., 2011) and express molecule help themselves evade the immune attack (El 
Haddad et al., 2011). The ability of MSC to become insulin-producing cells has been in 
debates and been controversy (Lechner et al., 2004; Taneera et al., 2006; Butle et al., 2007; 
Moriscot et al., 2005; Timper et al., 2006; Lee  et al., 2006; Karnieli et al., 2007; Lavazais et al., 
2007; Hasegawa et al., 2007; Denner et al., 2007). Human bone marrow MSC express low 
level of Oct4 and Sox2 as well Pdx-1—an important gene involve in the development of beta 
cells and the maintaining of beta cell phenotype in adult, indicative that these cells could be 
differentiated into glucose responsive insulin- producing cells. Under the influence of the 
gene products of Pdx-1, NeuroD1/BETA2 and Ngn3, the MSC express insulin gene in vitro 
following differentiation induction with a cocktail of differentiation inducers (GLP-1, activin 
A, betacellulin, nicotinamide and glucose). The cells seemed lacking insulin storage capacity 
and secreted insulin as it was synthesised. Therefore these cells were not glucose responsive 
in vitro. Following transplantation into SCID diabetes mice, the cells were able to mature 
further and expressed most beta cell phenotype gene markers, such as Glut-2 and Kir6.2 
(Fig. 7A) and insulin processing enzymes, but the cells did not express Sur1 gene and 
therefore did not have a functional K-ATP channel. Interestingly the cells also expressed 
glucagon gene, indicating that some cells also differentiated into ǂ-cells (Fig.7B) in addition 
to insulin producing cells. Nevertheless, the hyperglycaemia in the transplanted mice was 
corrected despite that the transplanted mice had some impairment in glucose tolerant in 
comparison with mice transplanted with human islets (Fig. 8 and Zhao et al., 2008). These 
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Analyses of the expression of ǃ and ǂ cell genes by  semi-quatatative RT-PCR on kidneys transplanted 
with the cells.  

Fig. 7. Gene expression  analyses on the transplanted kidneys by semi-quatative RT-PCR 
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data suggested that the MSC achieve partial glucose responsiveness through non-ATP K 
channel mechanism. The MSC did not form any teratoma structures in vivo; making it an 
idea candidate to be beta cell surrogates for the treatment of diabetes. 
 
 

 
 

 
Panel A. Mice transplanted wtih the Pdx-1, Ngn3 and  euroD1/Beta2 genes shows response to glucose 
challenge During a glucose tolerlant test. Panel B shows the manipulated human MSC expressing 
insulin (green fluorescence) in diabetic mice.  

Fig. 8. Functional analyses in mice transplanted with human MSC cells  
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3. Conclusion and future direction of investigation 

There are mounting evidences including our own data described above suggested that 
insulin-producing cells can be generated from many cells through the differentiation of stem 
cells (embryonic stem cells to adult stem cells) or via the transdifferentiation mechanisms. 
However, there are challenges ahead. The most urgent tasks are 1) to optimise the 
differentiation protocols to make them more efficiency by optimising the differentiation 
inducers and the extracellular environments; 2) to identify the molecular mechanisms 
associated with the differentiation to allow the translation of bench discovery to bedside 
treatments; 3) to enhance the efficacy to increase the cell mass for human usage. 
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