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Multi-Layered Learning System for Real Robot 
Behavior Acquisition 

Yasutake Takahashi & Minoru Asada 

1. Introduction 

One of the main issues of autonomous robots is how to implement a system with learning 
capability to acquire both varieties of knowledge and behaviors through the interaction 
between the robot and the environment during its lifetime.  There have been a lot of different 
works on learning approaches for robots to acquire behaviors based on the methods such as 
reinforcement learning, genetic algorithms, and so on.  Especially, reinforcement learning 
has recently been receiving increased attention as a method for behavior learning with little 
or no a priori knowledge and higher capability of reactive and adaptive behaviors.  
However, a simple and straightforward application of reinforcement learning methods to real 
robot tasks is considerably difficult due to its almost endless exploration of which time easily 
scales up exponentially with the size of the state/action spaces, which seems almost 
impossible from a practical viewpoint. 
One of the potential solutions might be application of so-called “mixture of experts” 
proposed by Jacobs and Jordan (Jacobs & Jordan, 1991), in which a set of expert modules 
learn and one gating system weights the output of the each expert module for the final 
system output.  This idea is very general and has a wide range of applications. However, we 
have to consider the following two issues to apply it to the real robot tasks: 

Task decomposition: how to find a set of simple behaviors and assign each of them to a 
learning module or an expert in order to achieve the given initial task. Usually, human 
designer carefully decomposes the long time-scale task into a sequence of simple behaviors 
such that the one short time-scale subtask can be accomplished by one learning module. 
Abstraction of state and/or action spaces for scaling up: the original “mixture of experts” 
consists of experts and a gate for expert selection. Therefore, no more abstraction beyond 
the gating module. In order to cope with complicated real robot tasks, more abstraction of 
the state and/or action spaces is necessary.  

Connell and Mahadevan (Connell & Mahadevan, 1993) decomposed the whole behavior into 
sub-behaviors each of which can be independently learned.  Morimoto and Doya (Morimoto 
& Doya 1998) applied a hierarchical reinforcement learning method by which an appropriate 
sequence of subgoals for the task is learned in the upper level while behaviors to achieve the 
subgoals are acquired in the lower level.  Hasegawa and Fukuda (Hasegawa & Fukuda, 
1999, 2001) proposed a hierarchical behavior controller, which consists of three types of 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.

O
pe

n 
A

cc
es

s 
D

at
ab

as
e 

w
w

w
.i-

te
ch

on
lin

e.
co

m



358

modules, behavior coordinator, behavior controller and feedback controller, and applied it to 
a brachiation robot.  Kleiner et al. (Kleiner et al., 2002) proposed a hierarchical learning 
system in which the modules at lower layer acquires low level skills and the module at higher 
layer coordinates them.  However, in these proposed methods, the designers have done the 
task decomposition very carefully in advance, or the constructions of the state/action spaces 
for higher layer modules are independent from the learned behaviors of lower modules.  As 
a result, it seems difficult to abstract situations and behaviors based on the already acquired 
learning/control modules. 
There are a number of works of automatic task decomposition. Digney (Digney, 1996, Digney, 
1998) has proposed Nested Q-learning algorithm that generates hierarchical control 
structures in a learning system. The task decomposition has been done under two criteria; one 
criterion is based on the received reinforcement signals, and the other is on the frequency of 
visits to particular state space locations. However, this work has been applied in a simple grid 
maze world, therefore the state space is fixed and its size is relatively small so that the 
frequency heuristics can work. In the case of real robots, the size of state space is huge if the 
state space consists of all sensory information, and it is very rare to visit the same state 
frequently. Hengst (Hengst, 2000, Hengst 2002) has proposed a method of generating 
hierarchical structure from state variables based on a heuristics that the almost constant 
variables represent higher-level states while the frequently changing variables represent 
lower level states. However, the designer gives these hierarchized variables and usually we 
cannot expect that real robots have such abstracted variables beforehand. 
A basic idea to cope with the above two issues is that any learning module has limited 
resource constraint, and this constraint of the learning capability leads us to introduce a 
multi-module and multi-layered learning system. That is, one learning module has a compact 
state-action space and acquires a simple map from the states to the actions, and a gating 
system enables the robot to select one of the behavior modules depending on the situation.  
More generally, the higher module controls the lower modules depending on the situation.  
The definition of this situation depends on the capability of the lower modules because the 
gating module selects one of the lower modules based on their acquired behaviors.  From the 
other viewpoint, the lower modules provide not only the rational behaviors but also the 
abstracted situations for the higher module; how feasible the module is, how close to its 
subgoal, and so on.  It is reasonable to utilize such information in order to construct 
state/action spaces of higher modules from already abstracted situations and behaviors of 
lower ones.  Thus, the hierarchical structure can be constructed with not only experts and 
gating module but also more layers with multiple homogeneous learning modules. 
In this paper, we show a series of studies towards the construction of such hierarchical 
learning structure developmentally. The first one (Takahashi & Asada, 2000) is automatic 
construction of hierarchical structure with purely homogeneous learning modules. Since the 
resource (and therefore the capability, too) of one learning module is limited, the initially 
given task is automatically decomposed into a set of small subtasks each of which 
corresponds to one of the small learning modules, and also the upper layer is recursively 
generated to cover the whole task. In this case, the all learning modules in the one layer share 
the same state and action spaces although some modules need the part of them. Then, the 
second work (Takahashi & Asada, 2001) and third one (Takahashi et al., 2003a) focused on the 
state and action space decomposition according to the subtasks to make the learning much 
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more efficient. Further, the forth one (Takahashi et al, 2003b) realized unsupervised 
decomposition of a long time-scale task by finding the compact state spaces, which 
consequently leads the subtask decomposition. We have applied these methods to simple 
soccer situations in the context of RoboCup (Asada et al., 1998) with real robots, and show the 
experimental results. 

2. Multi-Layered Learning System 

Figure 1. Hierarchical architecture in multi-layered learning system 

Figure 2. Behavior Learning Module 

Figure 3. Sketch of a state value function 

Figs. 1 and 2 show the architecture of the multi-layered reinforcement learning system, in 
which indicate a hierarchical architecture with two levels, and an individual learning module 
embedded in the layers are indicated. Each module has its own goal state in its state space, 
and it learns the behavior to reach the goal, or maximize the sum of the discounted reward 
received over time, using Q-learning method. The state and the action are constructed using 
sensory information and motor commands, respectively at the bottom level. The input and 
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output to/from the higher level are the goal state activation and the behavior activation, 
respectively, as shown in Fig. 2. The goal state activation g is a normalized state value1, and g
= 1 when the situation is the goal state. When the module receives the behavior activation b
from the higher modules, it calculates the optimal policy for its own goal, and sends action 
commands to the lower module. The action command at the bottom level is translated to an 
actual motor command, and then the robot takes the action in the environment. 
One basic idea is to use the goal state activations g of the lower modules as the representation 
of the situation for the higher modules. Fig. 3 shows a sketch of a state value function where a 
robot receives a positive reward one when it reaches to a specified goal. The state value 
function can be regarded as closeness to the goal of the module. The states of the higher 
modules are constructed using the patterns of the goal state activations of the lower modules. 
In contrast, the actions of the higher-level modules are constructed using the behavior 
activations to the lower modules. 

3. Behavior Acquisition on Multi-Layered System (Takahashi & Asada 2000) 

Figure 4. Experimental instruments 

Figure 5. Overview of the robot system 

Fig. 4 shows a picture of a mobile robot that we designed and built, a ball, and a goal, and Fig. 
shows an overview of the robot system. It has two TV cameras: one has a wide-angle lens, 
and the other an omni-directional mirror. The driving mechanism is PWS (Powered Wheels 
Steering) system, and the action space is constructed in terms of two torque values to be sent 
to two motors that drive two wheels. These parameters of the system are unknown to the 
robot, and it tries to estimate the mapping from the sensory information to the appropriate 
motor commands by the method. The environment consists of the ball, the goal, and the 
mobile robot. 

1
The state value function estimates the sum of the discounted reward received over time when the robot takes the optimal 

policy, and is obtained by Q learning. 
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Figure 6. A hierarchical architecture on a monolithic state space 

Figure 7. The distribution of learning modules at bottom layer on the normal camera image 

Figure 8. The distribution of learning modules at bottom layer on the omni-directional camera image 
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In this experiment, the robot receives the information of only one goal, for the simplicity. The 
bottom of Fig. 6. show a sketch of the state and action spaces of the bottom layer in the multi-
module learning system. The state space is constructed in terms of the centroids of goal 
images of the two cameras and is tessellated both into 9 by 9 grids each. The action space is 
constructed in terms of two torque values to be sent to two motors corresponding to two 
wheels and is tessellated into  3 by 3 grids. Consequently, the numbers of states and actions 
are 162(9 x 9 x 2) and 9(3 x 3), respectively. The state and action at the upper layer is 
constructed by the learning modules at the lower layer which are automatically assigned. 
The experiment is constructed with two stages: the learning stage and the task execution one. 
First of all, the robot moves at random in the environment for about two hours. The system 
learns and constructs the four layers and one learning module is assigned at the top layer 
(Fig. 6). We call each layer from the bottom, “bottom”, “middle”, “upper”, and ”top” layers. 
In this experiment, the system assigned 40 learning modules at the bottom layer, 15 modules 
at the middle layer, and 4 modules at the upper layer. Figs. 7 and 8 show the distributions of 
goal state activations of learning modules at the bottom layer in the state spaces of wide-angle 
camera image and omni-directional mirror image, respectively. The x and y axes indicate the 
centroid of goal region on the images. The numbers in the figures indicate the corresponding 
learning module numbers. The figures show that each learning module is automatically 
assigned on the state space uniformly. 
Fig. 9 shows a rough sketch of the state transition and the commands to the lower layer on the 
multi-layer learning system during navigation task. The robot was initially located far from 
the goal, and faced the opposite direction to it. The target position was just in front of the 
goal. The circles in the figure indicate the learning modules and their numbers. The empty up 
arrows (broken lines) indicate that the upper learning module recognizes the state which 
corresponds to the lower module as the goal state. The small solid arrows indicate the state 
transition while the robot accomplished the task. The large down arrows indicate that the 
upper learning module sends the behavior activation to the lower learning module. 

Figure 9. A rough sketch of the state transition on the multi-layer learning system 

4. State Space Decomposition and Integration (Takahashi & Asada, 2001) 

The system mentioned in the previous section dealt with a whole state space from the lower 
layer to the higher one. Therefore, it cannot handle the change of the state variables because 
the system suppose that all tasks can be defined on the state space at the bottom level. 
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Further, it is easily caught by a curse of dimension if number of the state variables becomes 
large. Here, we introduce an idea that the system constructs a whole state space with several 
decomposed state spaces. At the bottom level, there are several decomposed state spaces in 
which modules are assigned to acquire the low level behaviors in the small state spaces. The 
modules at the higher level manage the lower modules assigned to different state spaces. In 
this paper, we define the term “layer” as a group of modules sharing the same state space, 
and the term “level” as a class in the hierarchical structure. There might be several layers at 
one level (see Fig. 10). 

Figure 10. A hierarchical structure of learning modules 

When the higher layer constructs its state-action space based on situations and behaviors 
acquired by the modules of several lower layers, it should consider that the layers are 
independent from each other, or there is dependence between them. The layer might be 
basically independent from each other when the each layer's modules recognize different 
objects and learn behaviors for them. For example, in the case of robot in the RoboCup field, 
one layer's modules could be the experts of ball handling and the other layer's modules the 
one of navigation on the field. In such a case, the state space is constructed as direct product 
of module's activations of lower layers. We call this way of state space construction “a 
multiplicative approach”. 
On the other hand, there might be dependence between the layers when modules on both 
layers recognize the same object in the environment with different logical sensor outputs. For 
example, our robot recognizes an object with both perspective vision system and omni-
directional one. In such a case, the system can recognize the situation complementary using 
plural layers' outputs even if one layer loses the object on its own state spaces. We call this 
way of state space construction “a complementary approach”. 
Fig. 10 shows an example hierarchical structure. At the lowest level, there are four learning 
layers, and each of them deals with its own logical sensory space (ball positions on the 
perspective camera image and omni one, and goal position on both images). At the second 
level, there are three learning layers in which one adopts the multiplicative approach and the 
two others adopt the complementary approach. The multiplicative approach of the “ball pers. 
x goal pers” layer deals with lower modules of “ball pers.” and “goal pers.” layers. The arrows 
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in the figure indicate the flows from the goal state activations to the state vectors. The arrows 
from the action vectors to behavior activations are eliminated. At the third level, the system 
has three learning layers in which one adopts the multiplicative approach and the others 
adopt the complementary approach, again. At the levels higher than third layer, the learning 
layer is constructed as described in the previous section. 

Figure 11. A sequence of the behavior activation of learning modules and the commands to the lower layer 
modules

After the learning stage, we let our robot do a couple of tasks. One of them is shooting a ball 
into the goal using this multi-layer learning structure. The target situation is given by reading 
the sensor information when the robot pushes the ball into the goal; the robot captures the 
ball and goal at center bottom in the perspective camera image. As an initial position, the 
robot is located far from the goal, faced opposite direction to it. The ball was located between 
the robot and the goal. Fig. 11 shows the sequence of the behavior activation of learning 
modules and the commands to the lower layer modules. The down arrows indicate that the 
higher learning modules fire the behavior activations of the lower learning modules. 

5. Behavior Segmentation and Coordination 

Fig. 12 shows a picture of a soccer robot for middle size league of RoboCup we designed and 
built, recently. The driving mechanism is PWS, and it equips a pinball like kicking device in 
front of the body (see Fig. 13). These days, many robots have number of actuators such as 
navigation devices and object manipulators, and have a capability of execution of many kinds 
of tasks by coordinating these actuators. If one learning module has to manipulate all 
actuators simultaneously, the exploration space of action scales up exponentially with the 
number of the actuators, and it is impractical to apply a reinforcement learning system. 
Fortunately, a complicated behavior which needs many kinds of actuators might be often 
generally decomposed into some simple behaviors each of which needs small number of 
actuators. The basic idea of this decomposition is that we can classify them based on aspects 
of the actuators. For example, we may classify the actuators into navigation devices and 
manipulators, then the some of behaviors depend on the navigation devices tightly, not on 
the manipulators, while the others depend on manipulators, not on the navigation. The action 
space based on only navigation devices seems to be enough for acquisition of the former 
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behaviors, while the action space based on manipulator would be sufficient for the 
manipulation tasks. If we can assign learning modules to both action spaces and integrate 
them at higher layer, much smaller computational resources is needed and the learning time 
can be reduced significantly. 

Figure 12. Robot with kicking devices 

Figure 13. Configuration of kicking device and wheels 

We have implemented two kind of hierarchical system to check the basic idea. Each system 
has been assigned a task. One is placing the ball in the center circle (task 1), and the other is 
shooting the ball into the goal (task2).  

Figure 14. Hierarchical learning system for task 1 
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Figure 15. Hierarchical learning system for task 2 

We have prepared the following subtasks for the vehicle: ``Chasing a ball'', ``Looking the goal in 
front of the body'', ``Reaching the center circle'', and ``Reaching the goal''. We have also prepared 
the following subtasks for the kicking device: ``Catching the ball'', ``Kicking the ball'', and 
``Setting the kicking device to the home position''. Then, the upper layer modules integrates these 
lower ones. 
After the learner acquired low level behaviors, it puts new learning modules at higher layer 
as shown in Figs. 16 and 17, and learn two kinds of behaviors. 
Fig. 16 shows the sequence of the goal state activations of lower modules and behavior 
commands to the lower ones. At the start of this behavior, the robot activates the module of 
setting home position behavior for the kicking device and ball chasing module for the vehicle 
at lower layer. The robot reaches the ball, then it activates the module of catching the ball for 
kicking device and the module of reaching the center circle. Then, it achieves the task of 
placing a ball to the center circle. 

Figure 16. A sequence of the goal state activations and behavior commands (Task 1) 
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Figure 17. A sequence of the goal state activation and behavior activation (Task 2) 

Figs. 17 and 18 shows the sequence of the goal state activations of lower modules and 
behavior commands to the lower ones and the scene sequence of a real robot experiment 
while the robot shoots a ball into a goal. At the start of this behavior (Fig.18-1), the robot 
activates the module of setting home position behavior for the kicking device and ball chasing 
module for the vehicle at lower layer (Fig.18-2,3). The robot reaches the ball (Fig.18-4,5), then 
it activates the module of catching the ball for kicking device and the module of reaching the 
goal for the vehicle (Fig.18-6). When the robot captures the goal in front of the body and gets 
near to the goal (Fig.18-7), it activates the module of kicking the ball, then successfully shoots 
the ball into the goal (Fig.18-7). 

Figure 18. A sequence of an acquired behavior (Shooting) 
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6. Task Decomposition Based on Self-interpretation of Instruction by Coach 
(Takahashi & Asada 2003) 

When we develop a real robot which learns various behaviors in its life, it seems reasonable 
that a human instructs or shows some example behaviors to the robot in order to accelerate 
the learning before it starts to learn. We proposed a behavior acquisition method based on 
hierarchical multi-module leaning system with self-interpretation of coach instructions. The 
proposed method enables a robot to 
1. decompose a long term task into a set of short term subtasks,  
2. select sensory information needed to accomplish the current subtask,  
3. acquire a basic behavior to each subtask, 
4. and integrate the learned behaviors to a sequence of the behaviors to accomplish the given 

long term task. 

Figure 19. Basic concept: A coach gives instructions to a learner. The learner follows the instruction and finds 
basic behaviors by itself 

Fig.19 shows a rough sketch of the basic idea. There are a learner, an opponent, and a coach in 
a simple soccer situation. The coach has a priori knowledge of tasks to be played by the 
learner. The learner does not have any knowledge on tasks but just follows the instructions. 
In Fig. 19, the coach shows a instruction of shooting a ball into a goal without collision to an 
opponent. After some instructions, the learner segments the whole task into a sequence of 
subtasks, acquires a behavior for each subtask, finds the purpose of the instructed task, and 
acquire a sequence of the behaviors to accomplish the task by itself. When the coach gives 
new instructions, the learner reuses the learning modules for familiar subtasks, generates new 
learning modules for unfamiliar subtasks at lower level. The system generates a new module 
for a sequence of behaviors of the whole instructed task at the upper level.  
Fig. 20 shows a rough sketch of the idea of the task decomposition procedure. The top of the 
Fig. 20 shows a monolithic state space that consists of all state variables (x1, x2, …, xn). The 
red lines indicate sequences of state value during the given instructions. As we assume 
beforehand, the system cannot have such a huge state space, then, decomposes the state space 
into subspaces that consist of a few state variables. The system regards that the ends of the 
instructions represent goal states of the given task. It checks all subspaces and selects one in 
which the most ends of the instruction reach a certain area (Gtask in Fig. 20). The system 
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regards this area as the subgoal state of a subtask which is a part of the given long-term task. 
The steps of the procedure are as follows: 

1) find module unavailable areas in the instructions and regard them as unknown subtask. 
2) assign a new learning module. 

a) list up subgoal candidates for the unknown subtasks on the whole state space. 
b) decompose the state space into subspaces that consist of a few state variables. 
c) check all subspaces and select one in which the subgoal candidates reach a certain 

area best (Gsub in Fig. 3). 
d) generate another learning module with the selected subspace as a state space and the 

certain area as the goal state. 
3) check the areas where the assigned modules are available. 
4) exit if the generated modules cover all segments of instructed behaviors. Else goto 1. 

Figure 20. Rough sketch of the idea of task decomposition procedure 
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The details are described in (Takahashi & Asada, 2003).Fig. 21 shows the mobile robot and a 
situation with which the learning agent can encounter. The robot has an omni-directional 
camera system. A simple color image processing is applied to detect the ball area and an 
opponent one in the image in real-time (every 33ms). 

Figure 21. A real robot and a ball (left), and a top view of the simulated environment (right) 

The robot receives instructions for the tasks in the order as follows: 
Task 1: chasing a ball  
Task 2: shooting a ball into a goal without obstacles 
Task 3: shooting a ball into a goal with an obstacle 

Figs. 22, 23, and 24 show the ones of the example behaviors for task 1, 2, and 3, respectively. 
Figs. 25, 26, and 27 show the constructed systems after the learning of the tasks. First of all, 
the coach gives some instructions for the ball chasing task (task 1). The system produce one 
module which acquired the behavior of ball chasing (Fig.25). At the second stage, the coach 
gives some instructions for the shooting task (task 2). The learner produces another module 
which has a policy of going around the ball until the directions to the ball and the goal 
become same (Fig.26). At the last stage, the coach gives some instructions for the shooting 
task with obstacle avoidance (task 3). The learner produces another module which acquired 
the behavior of going to the intersection between the opponent and the goal avoiding the 
collision (Fig.27). Fig.28 shows a sequence of a acquired behavior of the real robot for task 3. 

Figure 22. One of the example behaviors for task 1 
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Figure 23. One of the example behaviors for task 2 

Figure 24. One of the example behaviors for task 3 

Figure 25. Acquired learning module for task 1 
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Figure 26. Acquired hierarchical structure for task 2 

Figure 27. Acquried heirarchical structure for task 3 
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Figure. 28. A sequence of real robot behavior : shooting a ball into a goal with an obstacle (task3) 

7. Discussion 

We showed a series of approaches to the problem of decomposing the large state action space 
at the bottom level into several subspaces and merging those subspaces at the higher level. As 
future works, there are a number of issues to extend our current methods. 
Interference between modules 
One module behavior might have inference to another one which has different actuators. For 
example, the action of a navigation module will disturb the state transition from the view 
point of the kicking device module; the catching behavior will be success if the vehicle stays 
while it will fail if the vehicle moves. 
Self-assignment of modules
It is still an important issue to find a purposive behavior for each learning module 
automatically. In the paper (Takahashi & Asada, 2000), the system distributes modules on the 
state space uniformly, however, it is not so efficient. In the paper (Takahashi & Asada, 2003), 
the system decomposes the task by itself, however, the method uses many heuristics and 
needs instruction from a coach. In many cases, the designers have to define the goal of each 
module by hand based on their own experiences and insights. 
Self-construction of hierarchy
Another missing point in the current method is that it does not have the  mechanism that 
constructs the learning layer by itself.  
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robotics are explored in the last chapter of the book.
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