
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Real-Time Optimal Guidance and
Obstacle Avoidance for UMVs

Oleg A. Yakimenko and Sean P. Kragelund
Naval Postgraduate School Monterey, CA

USA

1. Introduction

The single most important near-term technical challenge of developing an autonomous
capability for unmanned vehicles is to assess and respond appropriately to near-field
objects in the path of travel. For unmanned aerial vehicles (UAVs), that near field may
extend to several nautical miles in all directions, whereas for unmanned ground and
maritime vehicles, the near field may only encompass a few dozen yards directly ahead of
the vehicle. Nevertheless, when developing obstacle avoidance (OA) manoeuvres it is
often necessary to implement a degree of deliberative planning beyond simply altering
the vehicle’s trajectory in a reactive fashion. For unmanned maritime vehicles (UMVs) the
ability to generate near-optimal OA trajectories in real time is especially important when
conducting sidescan sonar surveys in cluttered environments (e.g., a kelp forest or coral
reef), operations in restricted waterways (e.g., rivers or harbours), or performing feature-
based, terrain-relative navigation, to name a few. For example, a primary objective of
sidescan sonar surveys is 100% area coverage while avoiding damage to the survey
vehicle. Ideally, a real-time trajectory generator should minimize deviations from the pre-
planned survey geometry yet also allow the vehicle to retarget areas missed due to
previous OA manoeuvres. Similarly, for operations in restricted waterways, effective OA
trajectories should incorporate all known information about the environment including
terrain, bathymetry, water currents, etc.
In the general case, this OA capability should be incorporated into an onboard planner or

trajectory generator computing optimal (or near-optimal) feasible trajectories faster than in

real time. For unmanned undersea vehicles (UUVs) the planner should be capable of

generating full, three-dimensional (3D) trajectories, however some applications may require

limiting the planner’s output to two-dimensions (2D) for vertical-plane or horizontal-plane

operating modes. For unmanned surface vehicles (USVs) the latter case is the only mode of

operations.

Consider a typical hardware setup consisting of a UUV augmented with an autopilot (Fig.1).

The autopilot not only stabilizes the overall system, but also enables vehicle control at a

higher hierarchical level than simply changing a throttle setting ()T tδ , or deflecting stern

plane ()s tδ or rudder ()r tδ angles.

In Fig.1, WPx , WPy , WPz are the vectors defining x, y, and z coordinates of some points in

the local tangent (North-East-Down (NED)) plane for waypoint navigation. Alternatively a

www.intechopen.com

Autonomous Underwater Vehicles

68

typical autopilot may also accept some reference flight-path angle ()tγ (or altitude/depth)

command and heading ()tΨ (or yaw angle ()tψ), respectively. The motion sensors,

accelerometers, and rate gyros measure the components of inertial acceleration, ()Ix t$$, ()Iy t$$

and ()Iz t$$, and angular velocity – roll rate ()p t , pitch rate ()q t , and yaw rate ()r t .

Augmented Vehicle

Autopilot

Vehicle

Sensors

Reference Signal
Generator

Controller(), ()t tγ Ψ
(), ()z t tψ

, ,
WP WP WP
x y z

(), (), ()x t y t z t
()tδ

(), (), ()

(), (), ()

I I I
x t y t z t

p t q t r t

$$ $$ $$

Fig. 1. A. UUV augmented with an autopilot

A trajectory generator would consider an augmented UUV as a new plant (Fig.2) and

provide this plant with the necessary inputs based on the mission objectives (final

destination, time of arrival, measure of performance, etc.). Moreover, the reference signals,

()tγ and ()tΨ , are to be computed dynamically (once every few seconds) to account for

disturbances (currents, etc.) and newly detected obstacles.

Augmented Vehicle
(with Sensors and Controller)

() , ()
ref ref

t tγ Ψ
() , ()

ref refz t tψ
(), (), ()x t y t z t

Dynamic Trajectory
Generator

Mission

goals

Sensor Data

Position Estimate

Fig. 2. Providing an augmented UUV with a reference trajectory

Ideally, the trajectory generator software should also produce the control inputs ()ref tδ

corresponding to the feasible reference trajectory (Fig.3) (Basset et al., 2008). This enhanced

setup assures that the inner-loop controller deals only with small errors. (Of course this

setup is only viable if the autopilot accepts these direct actuator inputs.)

()
ref tδ

Augmented Vehicle
(with Sensors and Controller)

() , ()
ref ref

t tγ Ψ
() , ()

ref ref
z t tψ

(), (), ()x t y t z t
Dynamic Trajectory

Generator
Mission

goals

Sensor Data

Position Estimate

Fig. 3. Providing an augmented UUV with the reference trajectory and reference controls

The goal of this chapter is to present the dynamic trajectory generator developed at the

Naval Postgraduate School (NPS) for the UMVs of the Center for Autonomous Vehicle

Research (CAVR) and show how the OA framework is built upon it. Specifically, Section 2

formulates a general feasible trajectory generation problem, followed by Section 3, which

introduces the general ideas behind the proposed framework for solving this problem that

utilizes the inverse dynamics in the virtual domain (IDVD) method. Section 4 considers

simplifications that follow from reducing the general spatial problem to two planar

subcases. Section 5 describes the REMUS UUV and SeaFox USV and their forward looking

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

69

sonar (FLS) systems employed for OA research at NPS. Section 6 addresses path-following

considerations and practical implementation details for tracking nonlinear trajectories with

conventional vehicle autopilots. Section 7 presents results from computer simulations and

field experiments for several different scenarios which benefit from faster-than-real-time

computation of near-optimal trajectories.

2. Problem formulation

Let us consider the most general case and formulate an optimization problem for computing
collision-free trajectories in 3D (it can always be reduced to a 2D problem by eliminating
two states). We will be searching within a set of admissible trajectories described by the state
vector

 [] { }6 6
0() (), (), (), (), (), () , () , ,

T
ft x t y t z t u t v t w t S S t Z E t t t⎡ ⎤= ∈ = ∈ ⊂ ∈⎣ ⎦z z (1)

where the components of the velocity vector – surge u, sway v, and heave w, defined in the
body frame {b} – are added to the UUV NED coordinates x, y and z (0z = at the surface and
increases in magnitude with depth). While many UUVs are typically programmed to
operate at a constant altitude above the ocean floor, it is still preferable to generate vertical
trajectories in the NED local tangent plane because the water surface is a more reliable
absolute reference datum than a possibly uneven sea floor. In general, however, it is a trivial
matter to convert the resulting depth trajectory z(t) to an altitude trajectory h(t) for vehicles
equipped with both altitude and depth sensors. Section 6.2 describes such practical
considerations in detail.
The admissible trajectories should satisfy the set of ordinary differential equations
describing the UUV kinematics

() ()

() ()

() ()

u
b

x t u t

y t R v t

z t w t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$
$
$

 (2)

In (2) u
b R is the rotation matrix from the body frame {b} to the NED frame {u}, defined using

two Euler angles, pitch ()θ t and yaw ()ψ t , and neglecting a roll angle as

cos ()cos () sin () cos ()sin ()

() sin ()cos () cos () sin ()sin ()

sin () 0 cos ()

u
b

ψ t θ t ψ t ψ t θ t

R t ψ t θ t ψ t ψ t θ t

θ t θ t

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (3)

Although we are not going to exploit it in this study, admissible trajectories should also
obey UUV dynamic equations describing translational and rotational motion. This means
that the following linearized system holds for the vector ς(t), which includes speed
components u, v, w (being a part of our state vector z(t)) and angular rates p, q, r:

 () () ()t t t= +ς Aς Bδ$ (4)

Here A and B are the state and control matrices and [, ,]TT s rδ δ δ=δ is the control vector

(Healey, 2004).

www.intechopen.com

Autonomous Underwater Vehicles

70

Next, the admissible trajectories (1) should satisfy the initial and terminal conditions

0 0

()t =z z , ()f ft =z z (5)

Finally, certain constraints should be obeyed by the state variables, controls and their
derivatives. For example, in the case of a UUV these can include obvious constraints on the
UUV depth:

 min max()z z t z≤ ≤ (6)

where max(,)z x y describes a programmed operational depth limit. For vehicles

programmed to operate at some nominal altitude above the sea floor, the max(,)z x y

constraint can be converted into a minimum altitude min (,)h x y constraint as described in

Section 6.2.
A 3D OA requirement can be formulated as

 [(); (); ()] 0x t y t z t ℜ =∩ (7)

where ℜ is the set of all known obstacle locations. The constraints are usually imposed not

only on the controls themselves max≤δ δ but on their time derivatives as well max≤δ δ$ $ to

account for actuator dynamics. Knowing the system’s dynamics (4) (or simply complying

with the autopilot specifications), these latter constraints can be elevated to the level of the

reference signals, for instance

 max()tθ θ≤ and max()tψ ψ≤$ $ (8)

The objective is to find the best trajectory and corresponding control inputs that minimize

some performance index J. Typical performance index specifications include: i) minimizing

time of the manoeuvre 0ft t− , ii) minimizing the distance travelled to avoid the obstacle(s),

and iii) minimizing control effort or energy consumption. In addition, the performance

index may include some “exotic” constraints dictated by a sensor payload. For example, a

UUV may require vehicle trajectories which point a fixed FLS at specified terrain features or

minimize vehicle pitch motion in order to maintain level, horizontal flight along a survey

track line for accurate synthetic aperture sonar imagery (Horner et al., 2009).

Before we proceed with the development of the control algorithm, it should be noted that

quite often the UUV surge velocity is assumed to be constant, 0()u t U≡ , to provide enough

control authority in two other channels. This uniquely defines a throttle setting ()T tδ , and

leaves only two control inputs, ()s tδ and ()r tδ , for altering the vehicle’s trajectory. It also

allows us to consider matrices A and B in (4) to be constant (time- and states-independent).

If this assumption is not required, inverting kinematic and dynamic equations will differ

slightly from the examples presented in the next section. However, the general ideas of the

proposed approach remain unchanged.

3. Real-time near-optimal guidance

For the dynamic trajectory generator shown in Figs. 2 and 3, it is advocated to use the direct-

method-based IDVD (Yakimenko, 2000). The primary rationale is that this approach features

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

71

several important properties required for real-time implementations: i) the boundary

conditions including high-order derivatives are satisfied a priori; ii) the resulting control

commands are smooth and physically realizable, iii) the method is very robust and is not

sensitive to small variations in input parameters, iv) any compound performance index can

be used during optimization. Moreover, this specific method uses only a few variable

parameters, thus ensuring that the iterative process during optimization converges very fast

compared to other direct methods. The IDVD-based trajectory generator consists of several

blocks. The goal of the first block, to be discussed next, is to produce a candidate trajectory,

which satisfies the boundary conditions.

3.1 Generating a candidate trajectory

Again, consider the most general case of a UUV operating in 3D (as opposed to a USV).

Suppose that each coordinate ix , 1,2,3i = of the candidate UUV trajectory is represented as

a polynomial of degree M of some abstract argument τ , the virtual arc

0

()
M

k

i ik

k

x aτ τ
=

=∑ , (9)

(for simplicity of notation we assume
1
() ()x xτ τ≡ ,

2
() ()x yτ τ≡ and

3
() ()τ τ≡x z). In general,

analytic expressions for the trajectory coordinates can be constructed from any combination

of basis functions to produce a rich variety of candidate trajectories. For example, a

combination of monomials and trigonometric functions was utilized in (Yakimenko &

Slegers, 2009).

As discussed in (Yakimenko, 2000; Horner & Yakimenko, 2007) the degree M is determined

by the number of boundary conditions that must be satisfied. Specifically, it should be

greater or equal to the number of preset boundary conditions but one. In general the desired

trajectory includes constraints on the initial and final position, velocity and acceleration:
0ix ,

if
x ,

0ix′ ,
if
x′ ,

0ix′′ ,
if
x′′ . In this case the minimal order of polynomials (9) is 5, because all

coefficients in (9) will be uniquely defined by these boundary conditions, leaving the

“length” of the virtual arc
f

τ as the only varied parameter. For more flexibility in the

candidate trajectory, additional varied parameters can be obtained by increasing the order

of the polynomials (9). For instance, using seventh-order polynomials will introduce two

more varied parameters for each coordinate expression. Rather than varying two coefficients

in these extended polynomials directly, we will vary the initial and final jerk,
0ix′′′ and

if
x′′′ ,

respectively. In this case, coefficients ika in (9) can be determined by solving the obvious

system of linear algebraic equations equating polynomials (9) to
0ix ,

if
x ,

0ix′ ,
if
x′ ,

0ix′′ ,
if
x′′ ,

0ix′′′ and
if
x′′′ at two endpoints (0τ = and

f
τ τ=) (Yakimenko, 2000, 2008).

By construction, the boundary conditions (5) will be satisfied unconditionally for any value

of the final arc
f

τ . However, varying
f

τ will alter the shape of the candidate trajectory.

Figure 4 demonstrates a simple example whereby a UUV operating 2m above the sea floor

at 1.5m/s must perform a pop-up manoeuvre to avoid some obstacle. Even with a single

varied parameter, changing the value of
f

τ allows the UUV to avoid obstacles of different

heights. Similar trajectories could be produced solely in the horizontal plane or in all three

dimensions. It should be pointed out that even at this stage infeasible candidate trajectories

www.intechopen.com

Autonomous Underwater Vehicles

72

will be ruled out. (In Fig.4 the trajectory requiring the UUV to jump out of the water is

infeasible because it violates the constraint (6).)

Fig. 4. Varying the candidate trajectory while changing the value of τ
f

With six free parameters, which in our case are components of the initial and final jerk (
0ix′′′

and
if
x′′′ , 1,2,3i =) the trajectory generator can change the overall shape of the trajectory

even further. To this end, Fig.5 illustrates candidate trajectories for a UUV avoiding a 10m

obstacle located between its initial and final points. These trajectories were generated by

varying just two components of the jerk,
30
x′′′ and

3 f
x′′′ , and minimizing

f
τ . This additional

flexibility can produce trajectories which satisfy operational constraints (6), as well as OA

constraints (7).

Fig. 5. Candidate trajectories obtained by varying the terminal jerks

The selection of a specific trajectory will be based upon whether the trajectory is feasible

(satisfies constraints (8)) and if so, whether it assures the minimum value of the performance

index calculated using the values of the vehicle states (and controls) along that trajectory. As

an example, Fig.6 presents collision-free solutions for two different locations of a 10m-tall

obstacle when five varied parameters,
10
x′′′ ,

1 f
x′′′ ,

30
x′′′ ,

3 f
x′′′ and

f
τ , are optimized to assure

feasible minimum-path-length trajectories

Fig. 6. Examples of minimum-path-length trajectories

Now, let us address the reason for choosing some abstract parameter τ as an argument for

the reference functions (9) rather than time or path length, which are commonly used.

Assume for a moment that tτ ≡ . In this case, once we determine the trajectory we

unambiguously define a speed profile along this trajectory as well, since

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

73

 2 2 2 2 2 2() () () () () () ()V t u t v t w t x t y t z t= + + = + +$ $ $ (10)

Obviously, we cannot allow this to happen because we want to vary the speed profile
independently. With the abstract argument τ this becomes possible via introduction of a

speed factor λ such that

 ()
d

dt

τλ τ = . (11)

Now instead of (10) we have

 2 2 2() () () () ()V x y zτ λ τ τ τ τ′ ′ ′= + + (12)

and by varying ()λ τ we can achieve any desired speed profile.

The capability to satisfy higher-order derivatives at the trajectory endpoints, specifically at
the initial point, allows continuous regeneration of the trajectory to accommodate sudden
changes like newly discovered obstacles. As an example, Fig.7 demonstrates a scenario
whereby a UUV executing an OA manoeuvre discovers a second obstacle and must generate
a new trajectory beginning with the current vehicle states and control values (up to the
second-order derivatives of the states). The suggested approach enables this type of
continuous trajectory generation and ensures smooth, non-shock transitions.

Fig. 7. Example of dynamic trajectory reconfiguration

3.2 Inverse dynamics
The second key block inside the dynamic trajectory generator in Figs. 2 and 3 accepts the
candidate trajectory as an input and computes the components of the state vector and
control signals required to follow it. In this way we can ensure that each candidate trajectory
does not violate any constraints (including those of (8)).

First, using the following relation for any parameter ζ ,

 () () ()
d d

d dt

ζ τζ τ ζ τ λ τ
τ

′= =$ (13)

we convert kinematic equations (2) into the τ domain

0()

() () ()

() ()

u
b

x U

y R v

z w

τ
λ τ τ τ

τ τ

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

 (14)

Next, we assume the pitch angle to be small enough to let sin () 0tθ ≈ and cos () 1tθ ≈ , so

that the rotation matrix (3) becomes

www.intechopen.com

Autonomous Underwater Vehicles

74

cos () sin () 0

() sin () cos () 0

0 0 1

u

b

ψ ψ
R ψ ψ

τ τ
τ τ τ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (15)

While this step is not required, it simplifies the expressions in the following development.
Inverting (14) via the rotation matrix (15) yields

0 cos sin 0

sin cos 0

0 0 1

U ψ ψ x

v ψ ψ y

w z

λ
′⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥′= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (16)

Hereafter each variable’s explicit dependence on τ will be omitted from the notation.

Now the three equations of system (16) must be resolved with respect to three unknown

parameters, v, w and ψ. While the last one readily yields

 w zλ ′= (17)

the first two require more rigorous analysis.
Consider Fig.8. Geometrically, a scalar product of two vectors on the right-hand-side of the

first equation in (16) represents the length of the longest side of the shaded rectangle.

Similarly, the second equation expresses the length of the shortest side of this rectangle.

From here it follows that the square of the length of the diagonal vector can be expressed in

two ways: 2 2 2 2 2 2
0v U x yλ λ− − ′ ′+ = + . This yields

 2 2 2 2
0()v x y Uλ ′ ′= + − (18)

From the same figure it follows that

1

1 1

1

0 0

tan tan
λψ
λ

−
− −

−= Ψ − = Ψ −
v v

U U
, 1tan

y

x
− ′

Ψ =
′

 (19)

cos

sin

ψ
ψ

⎡ ⎤
⎢ ⎥
⎣ ⎦

x

y

′⎡ ⎤
⎢ ⎥′⎣ ⎦

1vλ −

ψ Ψ
1

=tan
y

x

− ′
Ψ

′

1

0
U λ −

Fig. 8. Kinematics of horizontal plane parameters

Now, using these inverted kinematic equations, we can check whether each candidate

trajectory obeys the constraints imposed on it (constraints (8)).

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

75

3.3 Discretization
We proceed with computing the remaining states along the reference trajectory over a fixed

set of N points (for instance, N=100) spaced evenly along the virtual arc [0;]fτ with the

interval

 1(1)f Nτ τ −Δ = − (20)

so that

 1j jτ τ τ−= + Δ , 2,...,j N= , (1 0τ =) (21)

In order to determine coefficients for polynomials (9) we will have to guess on the values of

the varied parameters fτ ,
0ix′′′ , 0ix′′′ ,

if
x′′′ , and ifx′′′ . These guesses will be used along with the

known or desired boundary conditions
0ix , 0ix′ ,

0ix′′ , ifx ,
if
x′ , and ifx′′ . The boundary

conditions on coordinates
0ix and ifx come directly from (5). According to (14), the given

boundary conditions on surge, sway, and heave velocities define the first-order time

derivatives of the coordinates as

0; 0
1

0; 0; 0; 0;

0; 0;

f

u
f f b f f

f f

x U

y R v

z w

λ−

⎡ ⎤ ⎡ ⎤′
⎢ ⎥ ⎢ ⎥
′ =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (22)

They also define the initial and final pitch and yaw angles used to compute 0;
u
b fR in (22) as

0;1

0; 0
2 2
0 0;

tan
f

f

f

w

U v
θ γ − −

= +
+

 and
0;1

0; 0
0

tan
f

f

v

U
ψ −= Ψ − (23)

In equation (22) we may use any value for the initial and final speed factor λ , for example,

0; 1fλ = . This value simply scales the virtual domain; the higher the values for λ , the larger

the values for fτ . This follows directly from equations (11) and (12) that 1 1
0; 0f f fU sλ τ − −= ,

where fs is the physical path length.

Finally, initial values for the second-order derivatives are provided by the UUV motion

sensors (see Figs. 1-3) (after conversion to the τ domain), while final values for the second-

order derivatives are usually set to zero for a smooth arrival at the final point. Having an

analytical representation of the candidate trajectory (9) defines the values of ij
x , and ijx′ ,

1,2,3i = , 1,...,j N= .

Now, for each node 1,...,j N= we compute

 1
1j jtλ τ −

−= Δ Δ (24)

where

2 2 2
1 1 1

1
2 2 2
0 1 1

() () ()j j j j j j

j

j j

x x y y z z
t

U v w

− − −
−

− −

− + − + −
Δ =

+ +
 (25)

www.intechopen.com

Autonomous Underwater Vehicles

76

and then use (17)-(19) to compute w, v, ψ and Ψ at each timestamp. The vertical plane
parameters, flight path angle γ and pitch angle θ, can be computed using the following
relations:

 1

2 2
tan

j
j

j j

z

x y
γ −

′−
=

′ ′+
, 1

2 2
0

tan
j

j j

j

w

U v
θ γ − −

≈ +
+

 (26)

In order to check the yaw rate constraints (8) we must first numerically differentiate the
expression for Ψ in (19).

3.4 Optimization
When all parameters (states and controls) are computed in each of N points, we can

compute the performance index J and the penalty function. For example, we can combine

constraints (6) and (8) into the joint penalty

 maxmin

2
min

2
max

2
max

2
max

min(0;)

max(0;)

, , ,
max(0;)

max(0;)

j
j

j
jzz

j
j

j
j

z z

z z

k k k kθ ψ

θ θ

ψ ψ

⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎢ ⎥

⎡ ⎤ ⎢ ⎥Δ = ⎣ ⎦ ⎢ ⎥−
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎣ ⎦

$ $

 (27)

with minz
k , maxzk , kθ and kψ$ being scaling (weighting) coefficients. Now the problem can be

solved using numerical methods such as the built-in fmincon function in the Mathworks’

MATLAB development environment. Alternatively, by combining the performance index J

with the joint penalty Δ we may exploit MATLAB’s non-gradient fminsearch function. For

real-time applications, however, the authors prefer to use a more robust optimization routine

based on the gradient-free Hooke-Jeeves pattern search algorithm (Yakimenko, 2011).

4. Planar cases

This section presents two simplified cases for a vehicle manoeuvring exclusively in either
the horizontal or vertical plane.

4.1 Horizontal plane guidance

For the case of a UUV manoeuvring in the horizontal plane or a USV, the computational

procedure is simplified. The trajectory is represented by only two reference polynomials for

coordinates x1 and x2. Hence, we end up having only five varied parameters, which

are:
f

τ , 10
x′′′ , 20

x′′′ ,
1 f
x′′′ and

2 f
x′′′ . The remaining kinematic formulas are identical to those

presented above with 0z ≡ , 0z′ ≡ and 0γ ≡ . Figure 9 shows an example of a planar

scenario in which a USV has to compute a new trajectory twice. First, after detecting an

obstacle blocking its original path, a new trajectory is generated to steer right and pass

safely in front of the object (dotted line). Second, while executing the first avoidance

manoeuvre the USV detects that the object has moved south into its path. It therefore

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

77

generates a new trajectory to steer left and pass safely behind the object’s stern. The

complete trajectory is shown as a solid line.

4.2 Vertical plane guidance

For the case of a UUV manoeuvring in the vertical plane, the 3D algorithm can be reduced

to the 2D case in a manner similar to the horizontal case. Specifically, using five varied

parameters,
f

τ ,
10
x′′′ ,

30
x′′′ ,

1 f
x′′′ and

3 f
x′′′ , we can develop reference trajectories for x1 and x3,

and then use the same general equations developed in Section 3, assuming 0y ≡ , 0y′ ≡ ,

and 0Ψ ≡ .

Fig. 9. Moving obstacle avoidance in a horizontal plane

Alternatively, we can use a single reference polynomial to approximate just 3x and then

integrate the third equation of (4) to get the heave velocity w . That allows computation of

the time period 1jt −Δ using

 1
1 1 1()j j j jt z z w−

− − −Δ = − (28)

instead of (25).

Another way of dealing with vertical plane manoeuvres is to invert the dynamic equations

(4) (Horner & Yakimenko, 2007). After developing the reference functions for two

coordinates,
1
x and

3
x , the stern plane sδ control input is computed subject to five variable

parameters:
f

τ ,
10
x′′′ ,

30
x′′′ ,

1 f
x′′′ , and

3 f
x′′′ .

In this case, the corresponding time period 1jt −Δ is computed similarly to (28):

1 1

1 1
1 1 0 1 1cos sin

j j j j
j j j

j j j j

z z z z
t t t

w u wθ θ
− −

− −
− − − −

− −
Δ = − = ≈

+
 (29)

and the heave velocity is calculated using the third equation of system (4) as

()

1
1 1 1 1 0 1 1 1

1
1 1 33 1 35 1 32 ; 1 1 1

(sin cos)

A A B

j j j j j j j j

j j j j s j j j j

x w U x x x

w w q w w w

λ θ θ τ

λ δ τ

−
− − − − − − −

−
− − − − − − −

′ ′= + = + Δ

′ ′= + + = + Δ
 (30)

The next step involves computing the pitch angle, pitch rate and pitch acceleration as

0 1 11

2 2
1 10

cos , ,
j j j j j j j

j j j j j j
j jj

u x w z q q
q q

t tw U

θ θ
θ λ θ θ− −−

− −

⎛ ⎞′ ′+ − −
⎜ ⎟= = ≈ = ≈
⎜ ⎟ Δ Δ+⎝ ⎠

$ $$$ (31)

Finally, we can compute the dive plane deflection required to follow the trajectory using the
5th equation of system (4) as

www.intechopen.com

Autonomous Underwater Vehicles

78

 1
; 53 55 52()s j j j jq A w A q Bδ −= − −$ (32)

In this case the last two terms in the joint penalty Δ , similar to that of (27) but developed for

the new controls, enforce maxs sδ δ≤ and
maxs s

δ δ≤$ $.

5. Test vehicles and sensing architecture

The preceding trajectory generation framework has been implemented on several UMVs.
Before presenting simulated and experimental results with specific vehicle platforms at sea,
we first introduce two such vehicles in use at CAVR - the REMUS UUV and SeaFox USV.
Both vehicles utilize FLS to detect and localize obstacles in their environment and employ
the suggested direct method to generate real-time OA trajectories. This section provides
system-level descriptions of both platforms including their sensors, and proposes a way of
building the OA framework on top of the trajectory generation framework, i.e. enhancing
the architecture of Figs. 2 and 3 even further.

5.1 REMUS UUV and SeaFox USV
Remote Environmental Monitoring UnitS (REMUS) are UUVs developed by Woods Hole

Oceanographic Institute and sold commercially by Hydroid, LLC (Hydroid, 2011). The NPS

CAVR owns and operates two REMUS 100 vehicles in support of various navy-sponsored

research programs. The REMUS 100 is a modular, 0.2m diameter UUV designed for

operations in coastal environments up to 100m deep. Typical configurations measure less

than 1.6m in length and weigh less than 45kg, allowing the entire system to be easily

transported worldwide and deployed by a two-man team (Fig.10a). Designed primarily for

hydrographic surveys, REMUS comes equipped with sidescan sonar and sensors for

collecting oceanographic data such as conductivity, temperature, depth or optical

backscatter. The REMUS 100 system navigates using a pair of external transponders for long

baseline acoustic localization or ultra-short baseline terminal homing, as well as an Acoustic

Doppler Current Profiler/Doppler Velocity Log (ADCP/DVL). The ADCP/DVL measures

vehicle altitude, ground- or water-relative vehicle velocity, and current velocity profiles in

body-fixed coordinates.

a) b)

Fig. 10. NPS REMUS 100 UUV (a) and FLS arrays (b)

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

79

To support ongoing CAVR research into sonar-based OA, terrain-relative navigation, and
multi-vehicle operations in cluttered environments, each NPS REMUS vehicle has been
modified to incorporate a FLS, multi-beam bathymetric sonar, acoustic communications
modem, navigation-grade inertial measurement system, and fore/aft horizontal/vertical
cross-body thrusters for hovering or precise manoeuvring. (Figure 10b provides a close up
of the NPS REMUS FLS arrays with nose cap removed.) To maximize the REMUS system’s
utility as a research platform, Hydroid developed the RECON communications interface so
that sensor and computer payloads can interact with the REMUS autopilot. Using this
interface, NPS payloads receive vehicle sensor data and generate autopilot commands based
on NPS sonar processing, trajectory generation, and path-following algorithms.
The SeaFox USV was designed and manufactured by Northwind Marine (Seattle, WA) as a
remote-controlled platform for intelligence, surveillance, reconnaissance, anti-terrorist force
protection, and maritime interdiction operations (Northwind Marine, 2011). SeaFox is a
4.88m long, aluminium, rigid-hulled inflatable boat with a 1.75m beam; 0.25m draft; fold-
down communications mast; and fully-enclosed electronics and engine compartments.
SeaFox’s water jet propulsion system is powered by a JP5-fueled, 185-HP V-6 Mercury
Racing engine, and can deliver a top speed of 74km/h. Standard sensing systems include
three daylight and three low light navigation cameras for remote operation, as well as twin
daylight and infrared gyro-stabilized camera turrets for video surveillance. All video is
accessible over a wireless network via two onboard video servers.
The NPS SeaFox was modified to enable fully-autonomous operations by integrating a

payload computer with the primary autopilot (Fig.11). Meanwhile, the original remote

control link was retained to provide an emergency stop function. NPS algorithms running

on the payload computer generate rudder and throttle commands that are sent directly to

the SeaFox autopilot. Recent navigational upgrades include a satellite compass that uses

differential Global Positioning System (GPS) navigation service for accurate heading

information, a tactical-grade inertial measurement unit for precise attitude estimation, and

an optional ADCP/DVL for water velocity measurements. To support ongoing CAVR

research into autonomous riverine navigation, the NPS SeaFox was further upgraded to

deploy a retractable, pole-mounted FLS system for underwater obstacle detection and

avoidance (Gadre et al., 2009). Figure 12 shows the SeaFox USV operating on a river with its

sonar system deployed below the waterline.

5.2 Sonar system
The NPS REMUS and SeaFox vehicles rely on FLS to detect and localize obstacles in their
environment. Both platforms utilize commercial blazed array sonar systems manufactured
by BlueView Technologies (BlueView Technologies, 2011). These sonar systems comprise
one or more pairs of arrays grouped into sonar “heads.” Each sonar head generates a 2D
cross-sectional image of the water column in polar coordinates, typically plotted as the
image plane’s field of view angle vs. range. Due to the sonar arrays’ beam width, the
resulting FLS imagery has a 12-degree out-of-plane ambiguity. The REMUS FLS system
consists of two fixed sonar heads, which provide a 90-degree horizontal field of view (FOV)
and a 45-degree vertical FOV. Similarly, the SeaFox FLS system is comprised of twin sonar
heads mounted on port and starboard pan/tilt actuators, providing each side with a 45-
degree FOV image at an adjustable mounting orientation that can be swept through the
water column for increased sensor coverage.

www.intechopen.com

Autonomous Underwater Vehicles

80

Process 1

MOOS
DB

SeaFox
Autopilot

DGPS Compass

Port
Sonar Head

Starboard
Sonar Head

Process 2

Process N

Secondary Controller
PC/104

Ethernet
Switch

HG1700
IMU

RS-422

RS-232

Water Speed
Sensor

RS-485

RS-232

DVL (Optional)

RS-232

RS-232
Switch

Radio
Modem
Radio

Modem

Remote
E-Stop
Remote
E-Stop

440MHz

Wave Relay
MANET

2.4GHz

Throttle and Rudder
Commands

Pa
n

an
d

Ti
lt

C
om

m
an

ds

RS-485

Fig. 11. SeaFox sensors and control architecture

Fig. 12. SeaFox USV navigating on the Sacramento River near Rio Vista, CA

5.3 Obstacle avoidance framework
The proposed OA framework built into the architecture of Figs. 2 and 3 is shown in Fig.13. It
consists of an environmental map, a planning module, a localization module, sensors and
actuators (Horner & Yakimenko, 2007). The environmental map can include a priori
knowledge, such as the positions of charted underwater obstacles, but also incorporate
unexpected threats discovered by sonar. The positions of all obstacles are eventually
resolved in the vehicle-centred coordinate frame with the help of the localization module.
The planning module is responsible for generating collision-free trajectories the vehicle
should follow. This reference trajectory, possibly with reference controls, is then used to
excite actuators.

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

81

Reference Trajectory

Reference Controls

Obstacle Avoidance Framework

Environmental

Map

Localization

Dynamic Trajectory Generator

Deliberative

Reactive

Sensor Data

Position Estimate
Augmented Vehicle

(with Sensors and Controller)

Mission goals

Fig. 13. Components of the NPS OA framework

The proposed OA framework supports both deliberative and reactive obstacle avoidance

behaviours. Deliberative OA involves the ability to generate and follow a trajectory that

avoids all known obstacles between an arbitrary start location and some desired goal

location, whereas reactive OA involves the ability to avoid any previously unknown

obstacles detected while following this trajectory. Since the sonar system continuously

resamples the environment, this reactive behaviour can be achieved by a deliberative

planner as long as i) it executes fast enough to incorporate all new obstacle information from

the sonar, and ii) it generates feasible trajectories which begin with the vehicle’s current state

vector. Specifically, since the REMUS and SeaFox FLS have limited range and limited fields

of view in both image planes, new trajectories must be generated continuously (e.g. on some

fixed time interval or upon detection of a new obstacle) during execution of the current

manoeuvre to ensure reactive avoidance of new obstacles.

As an example of deliberative OA, assume a REMUS vehicle is mapping a minefield with

sidescan sonar prior to a mine clearance operation. For this mission, the goal locations are

provided by the sequence of waypoints making up a typical lawn-mowing survey pattern. If

an obstacle is detected along a specified track line, the preferred OA manoeuvre for this

mission would be one that also minimizes the cumulative deviation from this track line,

since we desire 100% sensor coverage of the survey area. Hence, deliberative OA implies the

optimization of some performance index. Likewise, while digital nautical charts or previous

vehicle surveys can be used to identify some obstacles a priori, this data is usually

incomplete or outdated. Vehicles should be capable of storing in memory the locations of

any uncharted obstacles discovered during their mission so that subsequent trajectories can

avoid them—even when they are no longer in the sonar’s current field of view. Deliberative

OA, therefore, also entails the creation and maintenance of obstacle maps.

5.4 Obstacle detection and mapping
Detecting obstacles from sonar imagery is challenging because several factors affect the
intensity of sonar reflections off objects in the water column. These factors include the size,
material, and geometry of an object relative to the sonar head; interference from other
acoustic sensors; and the composition of the acoustic background (e.g. bottom type, amount
of sediment, etc.) to name a few (Masek, 2008). Once an obstacle has been detected, other
image processing algorithms must measure its size and compute its location within the
navigational reference frame. While localizing obstacles via the range and bearing data

www.intechopen.com

Autonomous Underwater Vehicles

82

embedded in the sonar imagery is straightforward, computing their true size is very
difficult. First, for the REMUS FLS, an obstacle’s height and width can be measured directly
by both sonar heads only when it is located within a narrow 12-degree by 12-degree
“window” directly ahead of the vehicle. Due to this narrow beam width, most obstacles are
not imaged by both the horizontal and vertical sonar at the same time. Moreover, FLS
images do not contain information in the region behind an obstacle’s ensonified leading
edge; this portion of the image is occluded. Therefore, the true horizontal and vertical extent
of each obstacle must be deduced from multiple views of the same object. For a vehicle with
a fixed sensor like the REMUS, this may be accomplished by deliberately inducing vehicle
motion to vary the sonar angle (Furukawa, 2006) or by generating trajectories that will
image the object from a different location at a later time. For these scenarios, it is desirable to
balance OA behaviours with exploration behaviours in order to maximize sensor coverage
and generate more complete obstacle maps. In this way, the proposed trajectory generation
framework can be adapted to produce exploratory trajectories which more accurately
measure the size and extent of detected obstacles (Horner et al., 2009). Nevertheless, due to
the uncertainty in sonar images arising from environmental factors, sensor geometry, or
obstacle occlusion, it is prudent to make conservative assumptions about an obstacle’s
boundaries until other information becomes available.
For the remainder of this section, we highlight different representations for incorporating

obstacle size, location, and uncertainty into an obstacle map for efficient collision detection

during the trajectory optimization phase. These representations can be tailored to the

working environment. For operations in a kelp forest, for example, kelp stalks often appear

as point-like features in horizontal-plane sonar imagery (Fig.14) but seldom appear in

vertical-plane images. By making the reasonable assumption (for this environment) that

these obstacles extend vertically from the sea floor to the surface, it may be simpler to

perform horizontal-plane OA through this type of obstacle field. Nevertheless, when

building an obstacle map comprised primarily of point features, mapping algorithms must

account for the uncertainty inherent in sonar imagery. One simple but effective technique

adds spherical (3D) or circular (2D) uncertainty bounds to each point feature stored in the

obstacle map. Candidate OA trajectories which penetrate these boundaries violate constraint

(7). Under this construct, collision detection calculations are reduced to a simple test to

determine whether line segments in a discretized trajectory intersect with the uncertainty

circle (2D) or sphere (3D) for each obstacle in the map. In general, when checking for line

segment intersections with a circle or sphere there are five different test cases to consider

(Bourke, 1992). Our application, however, requires only two computationally efficient tests

to determine: i) which line segment along a discretized trajectory contains the closest point

of approach (CPA) to an obstacle, and ii) whether this CPA is located inside the obstacle’s

uncertainty bound.

Most objects appear in sonar imagery not as point features, but as complex shapes. Unlike
point features, it is difficult and computationally expensive to determine exhaustively
whether or not a candidate vehicle trajectory will collide with these shapes. Instead, we can
bound an arbitrary shape with a minimal area rectangle (or box, in 3D) aligned with the
shape’s principle axes (Fig.15). This type of object, called an oriented bounding box, is
widely used in collision-detection algorithms for video games. One technique, based on the
Separating Axis Theorem from complex geometry, results in an extremely fast test for line
segment intersections with an oriented bounding box (Kreuzer, 2006). With slight

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

83

modification, this test can also be used to detect when a trajectory passes directly above a
bounding box. In our application, we use the OpenCV computer vision library to generate a
bounding box around each object detected in the horizontal image plane. For each box, we
then compute its centre point, length extent, and angle relative to the vehicle’s navigation
frame. Due to occlusion, the width extent produced from this rectangle does not accurately
convey the true size of the obstacle, so we assume a constant value for this parameter. To
create a 3D (actually 2.5D) bounding box around the object, we compute its vertical extents
from vertical sonar imagery. At this time, the assumption is that obstacles extend from the
ocean floor to its measured height above bottom, but this method can be generalized to
obstacles suspended in the water column or extending from the surface to a measured depth
(i.e. ships in a harbour).

Fig. 14. Horizontal FLS image of a kelp forest

Fig. 15. Example of the bounding boxes used in conservative collision detection calculations

While oriented bounding boxes work well for mapping discrete obstacles in open-water
environments, they require an additional image processing step and are not easily adapted
to operations in restricted waterways. For these environments, a probabilistic occupancy
grid is preferable for robustly mapping large continuous obstacles (e.g. harbour
breakwaters) or natural terrain (e.g., a river’s banks). Occupancy grids divide the
environment into a grid of cells and assign each cell a probability of being occupied by an
obstacle. Given a probabilistic sensor model, Bayes’ Theorem is used to compute the
probability that a given cell is occupied, based upon current sensor data. By extension, an

www.intechopen.com

Autonomous Underwater Vehicles

84

estimate for the occupancy state of each cell can be continually updated using an iterative
technique that incorporates all previous measurements (Elfes, 1989). Figure 16a shows an
occupancy grid map of a river generated by the SeaFox FLS system. In this image, each pixel
corresponds to a 1-metre square grid cell whose colour represents the cell’s probability of
being occupied (red) or empty (green). For comparison, the inset portion of the occupancy
grid map has been overlaid with an obstacle map of oriented bounding boxes in Fig.16b.
Clearly, using discrete bounding boxes to represent a long, continuous shoreline quickly
becomes intractable as more and more boxes are required. The occupancy grid framework is
a much more efficient obstacle map representation for wide area operations in restricted
waterways.

a) b)

Fig. 16. Occupancy grid for a river as generated by the SeaFox FLS system

NPS has developed probabilistic sonar models for the BlueView FLS and has successfully
combined separate 2D occupancy grids in order to reconstruct the 3D geometry of an
obstacle imaged by the REMUS UUV’s horizontal and vertical sonar arrays (Horner et al.,
2009). Using this occupancy grid framework, each candidate trajectory’s risk of obstacle
collision is computed using the occupancy probabilities (a direct lookup operation) of the
grid cells it traverses. Trajectory optimization for OA entails minimizing the cumulative risk
of collision along the entire trajectory.

6. Path following

While the REMUS UUV and SeaFox USV are both commercial vehicles with proprietary

autopilots, both provide communications interfaces that allow experimental sensor and

computer payloads to override the primary autopilot via high-level commands. The REMUS

RECON interface, for example, closely resembles the augmented autopilot depicted in Figs.

2 and 3 (although direct actuator inputs are only available for propeller and cross-body

thrusters settings). For full overriding control, a payload module must periodically send

valid commands containing all of the following: i) desired depth or altitude, ii) desired

vehicle or propeller speed, and iii) desired heading, turn rate, or waypoint location. The

developed trajectory generator (described in Section 3) outputs reference trajectories as

parameterized expressions for each coordinate in a spatial curve plus a speed factor to use

while traversing that curve. Using these expressions as reference trajectories, the 3D path

following controller developed earlier (Kaminer et al., 2007) can compute turn rate and pitch

rate commands required to drive a vehicle onto (and along) the desired trajectory. The

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

85

RECON interface, however, does not accept pitch rate commands (for vehicle safety

reasons). Therefore, in order to use the aforementioned path following controller to track 3D

trajectories with the REMUS UUV, controller outputs must be partitioned into horizontal

(turn rate) and vertical (depth or altitude) commands as described in the following section

(obviously, the SeaFox USV only uses the turn rate commands).

6.1 Horizontal plane
Consider the 2D problem geometry depicted in Fig.17, which defines an inertial {I} frame,
Serret-Frenet {F} error frame and body-fixed reference frame {b}. The kinematic model of the
vehicle (2)-(3) reduces to

 0

0

() cos ()

() sin ()

x t U t

y t U t

ψ
ψ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

$
$

 (33)

with dynamics described by

 rψ =$ (34)

c
p ψ

I
X

{ }I

IY

Fx

{ }F

Fy

N

IX

bx

b
y

I
X

{ }bIq

F
q

Fψ

T

Reference
Trajectory

Fig. 17. Horizontal path-following kinematics

By construction, the local trajectory planner produces an analytic expression for each

component of the spatial trajectory as a function of virtual arc length, ()c τp . We can also

compute analytic expressions for ()c τ′p and ()c τ′′p , the first and second derivatives,

respectively, of the spatial trajectory. Using the relationships in Fig.17, the errors can be

expressed in the Serret-Frenet frame {F} as

 ()F F
F I I c

F

x
R

y

⎡ ⎤
= = −⎢ ⎥
⎣ ⎦

q q p (35)

where [, ,]F T
I R = T N B is a rotation matrix constructed from the tangent, normal, and

binormal vectors of the Serret-Frenet error frame {F}. The tangent vector is computed from

the expression for the trajectory’s first derivative as:

www.intechopen.com

Autonomous Underwater Vehicles

86

()

()

c

c

τ
τ

′
=

′
p

T
p

 (36)

For the 2D problem, the normal vector components can be computed directly from the

tangent vector components: x yN T= − and y xN T= . Additionally, the signed curvature of

the trajectory can be computed using the expressions for the trajectory's first and second

derivatives as:

3

() () () ()
()

()

cy cx cx cy

c

p p p pτ τ τ τ
κ τ

τ

′′ ′ ′′ ′−
=

′p
 (37)

Taking the time derivative of Fq , we obtain the following state space representation for the

error kinematics (i.e. the position and heading of the vehicle’s body-fixed frame {b} relative
to the Serret-Frenet frame {F}, which follows the desired trajectory):

0

0

(1) cos

() sin

F F e

F F e

e F F

x l y U

y l x U

u u lψ ψ

κ ψ

κ ψ

ψ ψ ψ ψ κ

= − − +

= − +

= − = − = −

$$
$$

$$ $ $ $
 (38)

where l is the path length of the desired spatial curve and l$ describes the speed at which a

virtual target travels along this curve.

The goal is to drive the vehicle’s position error (Fq) and heading error (Ψe) to zero. This will

drive the vehicle to the commanded trajectory location (cp) and align its velocity vector

with the trajectory’s tangent vector (T). The control signal uψ must now be chosen to

asymptotically drive the vehicle position and velocity vectors onto the commanded

trajectory. We choose the candidate Lyapunov function

 ()2 2 21
()

2
F F eV x y ψψ δ= + + − (39)

where ψδ is a shaping function that controls the manner in which the vehicle approaches

the path

 1sin F

F

y

y d
ψδ

− ⎛ ⎞−
= ⎜ ⎟⎜ ⎟+⎝ ⎠

 (40)

with 0d > an arbitrary constant.

Using some algebra, we choose the following control laws to ensure that 0V <$:

1 0

2 0

cos

sin sin
()

F e

e
e F

e

l K x U

u l K U y
ψ

ψ ψ ψ
ψ

ψ
ψ δ

κ δ ψ δ
ψ δ

= +
−

= + + − −
−

$

$ $ (41)

In these expressions 1K , 2K , and d can be used as gains to tune the closed-loop

performance of the path following controller.

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

87

6.2 Vertical plane
Now consider the REMUS UUV manoeuvring in the vertical plane using altitude

commands. For survey operations, REMUS is typically programmed to follow a lawnmower

pattern at a constant altitude above the sea floor determined by the desired sidescan sonar

range. Since the ADCP/DVL sensor continuously measures vehicle altitude above the

bottom, this operating mode ensures safe operation over undulating bottoms with slopes of

up to 45 degrees (Healey, 2004). Obstacle avoidance manoeuvres are required to safely

negotiate steeper slopes, step-like terrain features (e.g. sand bars or coral heads), or objects

proud of the ocean floor. As described earlier, since the REMUS FLS is mounted in a fixed

orientation, it may detect new obstacles while executing a manoeuvre to avoid the current

obstacle threat. Periodic or detection-based replanning can handle these situations. This

scenario was illustrated conceptually in Fig.7.

When negotiating a step-up ridge or sand bar whose extent is not known due to sonar

occlusion at the time of detection, it may not be desirable to follow the planned vertical

trajectory to its completion. Between planning iterations, a simple yet safer approach is to

revert back to constant altitude control once the vehicle reaches a position directly above

the detected object boundaries. This condition can be checked using a 2.5D version of the

3D bounding box intersection test described above. Figure 18 illustrates a simulation

whereby the REMUS FLS detects the leading edge of a ridge at maximum sonar range.

Image processing algorithms compute range to the object (80m) as well as its width (W,

into the page) and its height above the seafloor (5.5m) but cannot determine the length of

the ridge since it is occluded by its own leading edge. Therefore, the obstacle detection

algorithm generates a 3D bounding box measuring W m wide x 1.0m long (assumed) x

5.5m high.

While the IDVD-method planner generates a vertical trajectory in NED coordinates,

in shallow water it is safer to operate the vehicle in an altitude control mode. Therefore,

the vertical coordinate trajectory is converted from a depth plan into an altitude

plan by assuming constant water depth over the planning horizon and using the

relationships

 (0) () ()

() () () ()

nom plan plan

plan plan nom cmd nom plan

D h z h D z

h h h h h h

τ τ

τ τ τ τ

= + = −

Δ = − = + Δ
 (42)

where D is the water depth computed at planner initialization time,
nomh is the nominal

altitude set point, and ()cmdh τ is the altitude command sent to the autopilot via the RECON

interface. The resulting altitude plan ()τΔ planh is shown in Fig.18 as a deviation from the

nominal mission segment altitude. As seen, sending this altitude command directly to the

vehicle autopilot would cause an undesirable jump in the altitude profile once the

ADCP/DVL sensor measures the vehicle’s true altitude above the ridge. Instead, switching

the altitude command to the nominal mission segment altitude once the vehicle reaches the

ridge will produce the desired altitude profile). Note that even though Fig.18 depicts a

sudden drop in altitude when the vehicle passes the ridge while commanding the nominal

mission segment altitude, in practice the vehicle dynamics will ensure that the UUV

executes a smooth transition back to its nominal survey altitude.

www.intechopen.com

Autonomous Underwater Vehicles

88

Fig. 18. Simulation results for vertical OA using UUV altitude control mode

7. Computer simulations and sea trials

The proposed path-planning method can be tailored to a specific vehicle or operational
domain by modifying the performance index J to incorporate vehicle or actuator dynamics
(feasibility constraints) and mission objectives such as OA or underwater rendezvous. This
section presents simulated and in-water experimental results for four different applications
which use the proposed trajectory optimization framework for UMV guidance: i)
underwater docking of a UUV with a mobile underwater recovery system (MURS); ii)
optimal exploitation of a terrain-relative feature map to improve UUV self-localization
accuracy; iii) 2D or 3D OA in cluttered environments; and iv) specific USV implementations
for sonar-based OA in riverine operations.

7.1 Underwater recovery
The goal of underwater recovery (Yakimenko et al., 2008) is to be able to compute a
rendezvous trajectory from any point on the UUV holding pattern to any point on the
MURS holding pattern as shown in Fig.19 (note hereinafter that depth values are shown as
negative numbers).
While the stochastic simulation shown in Fig.19 employs circular race tracks, in practice the

MURS would establish a race track that allowed it to travel back and forth along two long

track legs (see Fig.20). These legs are needed to allow sufficient time to contact the UUV

(which is assumed to be in its holding pattern somewhere within communication range) and

allow it to transit from its holding pattern to the rendezvous point. The proposed sequence

of events is to have the MURS (at position 1 in Fig.20) signal the UUV (at position 2) and

command it to proceed to a rendezvous point by a certain time. The UUV computes the

trajectory required to comply with the command. If the commanded rendezvous is feasible,

the UUV sends an acknowledgement message. Otherwise (i.e. the request violated some

constraint) the UUV sends a denial message (stage A in Fig.20) and requests that the MURS

command a different rendezvous point or time. The final point of the trajectory is located in

the approximate location of the MURS docking station at a given time. Knowing the

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

89

geometry of the MURS allows the planner to construct a “keep out” zone corresponding to

the MURS propeller and aft control surfaces. The UUV rendezvous trajectory must avoid

this area. Once the rendezvous plan has been agreed upon and acknowledged, both the

UUV and the MURS proceed to position 3 for rendezvous (stage B). Finally, at position 4 the

recovery operation (stage C) is completed.

Fig. 19. Manifold of initial and final conditions

Fig. 20. Proposed rendezvous scenario

The simulated rendezvous scenario assumes three stages: communication (A), execution (B),

and recovery (C), respectively. From the trajectory generation standpoint we are primarily

concerned with optimizing the path that would bring the UUV from its current position

(point 2) to a certain rendezvous state (point 3) in the preset time rT proposed by the MURS,

while obeying all possible real-life constraints and avoiding the MURS keep out zone.

Figures 21 and 22 present a computer simulation in which a MURS is moving due east at

1m/s (1.94kn) with the docking station at a depth of 15m. A UUV is located 800 meters

away. The MURS wishes to conduct a rendezvous operation rT minutes later and sends the

corresponding information to the UUV. This information includes the proposed final

position
f

x , fy ,
f

z rendezvous course, speed, and time. Figure 21 shows several generated

trajectories, which meet the desired objectives for this scenario and also avoid an obstacle

located along the desired path to MURS. These trajectories differ by the arrival time rT .
During handshaking communications with the MURS, the UUV determines whether the

suggested rT is feasible. Of the four trajectories shown, the trajectory generated for

www.intechopen.com

Autonomous Underwater Vehicles

90

450rT s= happens to be infeasible (the constraints on controls are violated). The solution of

the minimum-time problem for this scenario yielded 488 seconds as the soonest possible
rendezvous time.

The other three trajectories shown in Fig.21 are feasible. That means that the boundary

conditions are met (by construction) and all constraints including OA are satisfied (via

optimization). As an example, Fig.22 shows the time histories for the yaw rate cψ$ and flight

path angle cγ vehicle control parameters as well as the UUV’s speed as it followed the

trajectory for 600rT s= .

Fig. 21. Examples of rendezvous trajectories

Fig. 22. Constrained vehicle parameters for 600rT s=

Stochastic simulations of the manifolds shown in Fig.21 illustrate that a successful rendezvous

can take place in all cases as long as rT is greater than a certain value. Furthermore, they show

that minimization of the performance index using the IDVD method ensures that a smooth,

realizable trajectory is calculated in just a few seconds, regardless of the initial guess.

Converting code to an executable file in lieu of using an interpretative programming language

reduces execution time down to a fraction of a second.

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

91

7.2 Feature-based navigation
In the last decade, several different UUVs have been developed to perform a variety of
underwater missions. Survey-class vehicles carry highly accurate navigational and sonar
payloads for mapping the ocean floor, but these payloads make such vehicles very
expensive. Vehicles which lack these payloads can perform many useful missions at a
fraction of the cost, but their performance will degrade over time from inaccurate self-
localization unless external navigation aids are available. Therefore, it is interesting to
consider collaborative operations via a team of vehicles for maximum utility at reasonable
cost. The NPS CAVR has been investigating one such concept of operations called feature-
based navigation. This technique allows vehicles equipped only with a GPS receiver and
low cost imaging sonar to exploit an accurate sonar map generated by a survey vehicle. This
map is comprised of terrain or bottom object features that have utility as future navigational
references. This sonar map is downloaded to the low-cost follow-on vehicles before launch.
Starting from an initial GPS position fix obtained at the surface, these vehicles then navigate
underwater by correlating current sonar imagery with the sonar features from the survey
vehicle’s map. The localization accuracy of vehicles performing feature-based navigation
can be improved by maximizing the number of times navigational references are detected
with the imaging sonar. The following simulation demonstrates how the IDVD trajectory
generation framework can be tailored to this application. By incorporating a simple
geometric model of an FLS having a range of 60m, 30-degree horizontal FOV and operating
at a nominal ping rate of 1Hz, a new performance index was designed to favour candidate
trajectories, which point the sonar toward navigational references in the a priori feature map.
For this example, we sought trajectories that could obtain at least three sonar images of each
feature in the map. Figure 23 shows results of a computer simulation in which the number
of times each target was imaged by the sonar has been annotated. The resulting trajectory is
feasible (i.e. satisfies turn rate constraints) and yields three or more sonar images of all but
two targets.

Fig. 23. Simulation results for a feature-based navigation application

www.intechopen.com

Autonomous Underwater Vehicles

92

7.3 Obstacle avoidance in cluttered environments
Another application which benefits from the aforementioned trajectory generation

algorithm is real-time OA in a highly cluttered environment. Figure 24 illustrates simulated

trajectories for avoiding a field of point-like objects in the 2D horizontal plane (e.g. a kelp

forest) and in all three dimensions (e.g. a mine field). In both simulations, the performance

index was designed to minimize deviations from a predefined survey track line while

avoiding all randomly generated obstacles via a CPA calculation. Terminal boundary

conditions for the OA manoeuvre were chosen to ensure the UUV rejoined the desired track

line before reaching the next waypoint (i.e. the manoeuvre terminated at a position 95%

along the track segment). Initial boundary conditions were chosen to simulate a random

obstacle detection which triggers an avoidance manoeuvre after the UUV has completed

about 10% of the predefined track segment. For illustration purposes, Fig.24 includes several

candidate trajectories evaluated during the optimization process although the algorithm

ultimately converged to the trajectory depicted with a thicker (red) line (CPA distances to

each obstacle appear as dashed lines).

Figure 25 shows the results from an initial sea trial of 3D OA that took place in Monterey

Bay on 9 December 2008. This experiment tested periodic trajectory generation and

replanning on the REMUS UUV using a simulated obstacle map comprised of oriented

bounding boxes. As seen in Fig.25, initially the REMUS UUV follows a predefined track

segment (dash-dotted line) at 4 meters altitude. At some point the vehicle’s FLS simulator

”detects” an obstacle (i.e. the current REMUS position and orientation place the virtual

obstacle within the range and aperture limits of the FLS). This activates the OA mode, and

the planner generates an initial trajectory (green) from the current vehicle position to the

final waypoint. REMUS follows this trajectory until the next planning cycle (4 seconds later)

when the vehicle generates a new trajectory and continues this path planning-path

following cycle.

7.4 Obstacle avoidance in restricted waterways
The NPS CAVR in collaboration with Virginia Tech (VT) is developing technologies to

enable safe, autonomous navigation by USVs operating in unknown riverine environments.

This project involves both surface (laser) and subsurface (sonar) sensing for obstacle

detection, localization, and mapping as well as global-scale (wide area) path planning, local-

scale trajectory generation, and robust vehicle control. The developed approach includes a

hybrid receding horizon control framework that integrates a globally optimal path planner

with a local, near-optimal trajectory generator (Xu et al., 2009).

The VT global path planner uses a Fast Marching Method (Sethian, 1999) to compute the
optimal path between a start location and a desired goal location based on all available map
information. While resulting paths are globally optimal, they do not incorporate vehicle
dynamics and thus cannot be followed accurately by the USV autopilot. Moreover, since
level set calculations are computationally expensive, global plans are recomputed only
when necessary and thus do not always incorporate recently detected obstacles. Therefore, a
complimentary local path planner operating over a short time horizon is required to
incorporate current sensor information and generate feasible OA trajectories. The IDVD-
based trajectory generator described above is ideally suited for this purpose. VT has
developed a set of matching conditions which guarantee the asymptotic stability of this

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

93

a)

b)

Fig. 24. Simulated 2D (a) and 3D (b) near-optimal OA trajectories

Fig. 25. REMUS sea trial results demonstrating periodic planning and path following

www.intechopen.com

Autonomous Underwater Vehicles

94

framework. When these matching conditions are satisfied, the sequence of local trajectories
will converge to the global path’s goal location. If the local trajectories no longer satisfy
these conditions (usually because the global path is no longer compatible with recently
detected obstacles), the global path is recomputed.
Simulation results demonstrate the need for local trajectories that incorporate vehicle

dynamics and real-time sensor data (Fig.26). For this simulation, an initial level set map was

computed using an occupancy grid created by masking land areas as occupied and water

areas as unoccupied in an aerial image of the Sacramento River operating area. Performing

gradient descent on the level set from the USV’s initial position produces an optimal path

shown in blue. To simulate local trajectory generation with a stale global plan, the initial level

set map was not updated during the entire simulation. Meanwhile, to simulate access to real-

time sensor data, the local planner was provided with a complete sonar map generated during

a previous SeaFox survey of the area. In Fig.26, this sonar map has been overlaid on the a priori

a)

b)

Fig. 26. Simulated local OA trajectories

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

95

map with red and green colour channels representing the probability that a cell is occupied
or unoccupied, respectively. Black pixels represent cells with unknown status. A short green
line segment depicts the USV’s orientation when the local planner is invoked, and the
resulting trajectory is shown in yellow. The first simulation (Fig.26a) shows a local trajectory
which deviates from the stale global plan to avoid a sand bar detected with sonar. In the
second simulation (Fig.26b) the USV is initially heading in a direction opposite from the
global path, but the local planner generates a dynamically feasible trajectory to turn around
and rejoin the global path later.
To track these local trajectories, the 2D controller described in Section 6.1 was implemented

on the SeaFox USV by mapping the controller’s turn rate commands into rudder commands

understood by the SeaFox autopilot. After validating the turn rate controller design during

sea trials on Monterey Bay, the direct method trajectory generator and closed-loop path

following controller were tested on the Pearl River in Mississippi on 22 May 2010 (Fig.27).

For this test, the local planner used a sonar map of the operating area to generate the

trajectory (the cyan line) from an initial orientation (depicted by the yellow arrow) to a

Fig. 27. Path-following controller test on the Pearl River

www.intechopen.com

Autonomous Underwater Vehicles

96

desired goal point (depicted by a circle). The SeaFox USV then followed it almost precisely

(the magenta line). As seen from Fig.27 the trajectory generator was invoked at an arbitrary

location while the USV was performing a clockwise turn. Since the USV was commanded to

return to its start location upon completion of this manoeuvre, the magenta line includes a

portion of this return trajectory as well (otherwise, the actual USV track would be nearly

indistinguishable from the reference trajectory on this plot).

8. Conclusion

An onboard trajectory planner based on the Inverse Dynamics in the Virtual Domain direct

method presented in this chapter is an effective means of augmenting an unmanned

maritime vehicle’s autopilot with smooth, feasible trajectories and corresponding controls. It

also facilitates incorporation of sophisticated sensors such as forward-looking sonar for

deliberative and reactive obstacle avoidance. This approach has been implemented on both

unmanned undersea and surface vehicles and has demonstrated great potential. Beyond its

ability to compute near-optimal collision-free trajectories much faster than in real time, the

proposed approach supports the utilization of any practically-sound compound

performance index. This makes the developed control architecture quite universal, yet

simple to use in a variety of applied scenarios, as demonstrated in several simulations and

preliminary sea trials. This chapter presented results from only a few preliminary sea trials.

Future research will continue development of the suggested trajectory framework in

support of other tactical scenarios.

9. Acknowledgements

The authors wish to gratefully acknowledge the support of Doug Horner, Co-Director of the

CAVR and Principle Investigator for the REMUS UUV and SeaFox USV research programs

at NPS. In addition, Sean Kragelund would like to thank his CAVR colleagues Tad Masek

and Aurelio Monarrez. Mr. Masek’s outstanding software development work to implement

obstacle detection and mapping with forward looking sonar made possible the OA

applications described herein. Likewise, the tireless efforts of Mr. Monarrez to continually

upgrade, maintain, and operate CAVR vehicles in support of field experimentation have

made a lasting contribution to this Center.

10. References

Basset, G., Xu, Y. & Yakimenko, O. (2010). Computing short-time aircraft maneuvers using

direct methods,” Journal of Computer and Systems Sciences International, 49(3), 145-176

BlueView Technologies, Inc. (2011). 2D Imaging sonar webpage. Available from:

www.blueview.com/2d-Imaging-Sonar.html

Bourke, P. (1992). Intersection of a line and a sphere (or circle). Professional webpage.

Available from: http://paulbourke.net/geometry/sphereline

Elfes, A. (1989). Using occupancy grids for mobile robot perception and navigation.

Computer, 22(6), 46-57

www.intechopen.com

Real-Time Optimal Guidance and Obstacle Avoidance for UMVs

97

Furukawa, T. (2006). Reactive obstacle avoidance for the REMUS underwater autonomous vehicle

using a forward looking sonar. MS Thesis, NPS, Monterey, CA, USA

Gadre, A., Kragelund, S., Masek, T., Stilwell, D., Woolsey, C. & Horner, D. (2009).

Subsurface and surface sensing for autonomous navigation in a riverine

environment. In: Proceedings of the Association of Unmanned Vehicle Systems

International (AUVSI) Unmanned Systems North America convention, Washington, DC,

USA

Healey, A. J. (2004). Obstacle avoidance while bottom following for the REMUS

autonomous underwater vehicle. In: Proceedings of the IFAC conference, Lisbon,
Portugal

Horner, D. & Yakimenko, O. (2007). Recent developments for an obstacle avoidance system

for a small AUV. In: Proceedings of the IFAC conference on Control Applications in

Marine Systems, Bol, Croatia

Horner, D., McChesney, N., Kragelund, S. & Masek, T. (2009). 3D reconstruction with an

AUV-mounted forward-looking sonar. In: Proceedings of the International symposium

on Unmanned Untethered Submersible Technology (UUST09), Durham, NH, USA

Hydroid, Inc. (2011). REMUS 100 webpage. Available from:

 www.hydroidinc.com/remus100.html

Kaminer, I., Yakimenko, O., Dobrokhodov, V., Pascoal, A., Hovakimyan, N., Cao, C., Young,

A. & Patel, V. (2007). Coordinated path following for time-critical missions of

multiple UAVs via L1 adaptive output feedback controllers. In: Proceedings of the

AIAA Guidance, Navigation, and Control conference, Hilton Head, SC, USA

Kreuzer, J. (2006). 3D programming – weekly: Bounding boxes. Collision detection tutorial

webpage. Available from: www.3dkingdoms.com/weekly/weekly.php?a=21

Masek, T. (2008). Acoustic image mModels for navigation with forward-looking sonars. MS Thesis,

NPS, Monterey, CA, USA

Northwind Marine. (2011). SeaFox webPage. Available from:

 www.northwindmarine.com/military-boats

Sethian, J. (1999). Fast marching method. SIAM Review, 41(2), 199-235

Xu, B., Kurdila, A. J. & Stilwell, D. J. (2009). A hybrid receding horizon control method for

path planning uncertain environments. In: Proceedings of the IEEE/RSJ International

conference on Intelligent Robots and Systems, St. Louis, MO, USA

Yakimenko, O. & Slegers, N. (2009). Optimal control for terminal guidance of autonomous

parafoils. In: Proceedings of the 20th AIAA Aerodynamic Decelerator Systems Technology

conference, Seattle, WA, USA

Yakimenko, O. (2000). Direct method for rapid prototyping of near optimal aircraft

trajectories. Journal of Guidance, Control, and Dynamics, 23(5), 865-875

Yakimenko, O. (2011). Engineering computations and modeling in MATLAB/Simulink. AIAA

Education Series, ISBN 978-1-60086-781-1, Arlington, VA, USA

Yakimenko, O. A. (2008). Real-time computation of spatial and flat obstacle avoidance

trajectories for AUVs. In: Proceedings of the 2nd IFAC workshop on Navigation, Guidance

and Control of Underwater Vehicles (NGCUV’08), Killaloe, Ireland

www.intechopen.com

Autonomous Underwater Vehicles

98

Yakimenko, O.A., Horner, D.P. & Pratt, D.G. (2008). AUV rendezvous trajectories generation

for underwater recovery, In: Proceedings of the 16th Mediterranean conference on

Control and Automation, Corse, France

www.intechopen.com

Autonomous Underwater Vehicles

Edited by Mr. Nuno Cruz

ISBN 978-953-307-432-0

Hard cover, 258 pages

Publisher InTech

Published online 17, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Autonomous Underwater Vehicles (AUVs) are remarkable machines that revolutionized the process of

gathering ocean data. Their major breakthroughs resulted from successful developments of complementary

technologies to overcome the challenges associated with autonomous operation in harsh environments. Most

of these advances aimed at reaching new application scenarios and decreasing the cost of ocean data

collection, by reducing ship time and automating the process of data gathering with accurate geo location. With

the present capabilities, some novel paradigms are already being employed to further exploit the on board

intelligence, by making decisions on line based on real time interpretation of sensor data. This book collects a

set of self contained chapters covering different aspects of AUV technology and applications in more detail

than is commonly found in journal and conference papers. They are divided into three main sections,

addressing innovative vehicle design, navigation and control techniques, and mission preparation and

analysis. The progress conveyed in these chapters is inspiring, providing glimpses into what might be the

future for vehicle technology and applications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Oleg A. Yakimenko and Sean P. Kragelund (2011). Real-Time Optimal Guidance and Obstacle Avoidance for

UMVs, Autonomous Underwater Vehicles, Mr. Nuno Cruz (Ed.), ISBN: 978-953-307-432-0, InTech, Available

from: http://www.intechopen.com/books/autonomous-underwater-vehicles/real-time-optimal-guidance-and-

obstacle-avoidance-for-umvs

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

