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Real-Time Optimal Guidance and  
Obstacle Avoidance for UMVs 

Oleg A. Yakimenko and Sean P. Kragelund 
Naval Postgraduate School Monterey, CA 

USA 

1. Introduction 

The single most important near-term technical challenge of developing an autonomous 
capability for unmanned vehicles is to assess and respond appropriately to near-field 
objects in the path of travel. For unmanned aerial vehicles (UAVs), that near field may 
extend to several nautical miles in all directions, whereas for unmanned ground and 
maritime vehicles, the near field may only encompass a few dozen yards directly ahead of 
the vehicle. Nevertheless, when developing obstacle avoidance (OA) manoeuvres it is 
often necessary to implement a degree of deliberative planning beyond simply altering 
the vehicle’s trajectory in a reactive fashion. For unmanned maritime vehicles (UMVs) the 
ability to generate near-optimal OA trajectories in real time is especially important when 
conducting sidescan sonar surveys in cluttered environments (e.g., a kelp forest or coral 
reef), operations in restricted waterways (e.g., rivers or harbours), or performing feature-
based, terrain-relative navigation, to name a few. For example, a primary objective of 
sidescan sonar surveys is 100% area coverage while avoiding damage to the survey 
vehicle. Ideally, a real-time trajectory generator should minimize deviations from the pre-
planned survey geometry yet also allow the vehicle to retarget areas missed due to 
previous OA manoeuvres. Similarly, for operations in restricted waterways, effective OA 
trajectories should incorporate all known information about the environment including 
terrain, bathymetry, water currents, etc. 
In the general case, this OA capability should be incorporated into an onboard planner or 

trajectory generator computing optimal (or near-optimal) feasible trajectories faster than in 

real time. For unmanned undersea vehicles (UUVs) the planner should be capable of 

generating full, three-dimensional (3D) trajectories, however some applications may require 

limiting the planner’s output to two-dimensions (2D) for vertical-plane or horizontal-plane 

operating modes. For unmanned surface vehicles (USVs) the latter case is the only mode of 

operations. 

Consider a typical hardware setup consisting of a UUV augmented with an autopilot (Fig.1). 

The autopilot not only stabilizes the overall system, but also enables vehicle control at a 

higher hierarchical level than simply changing a throttle setting ( )T tδ , or deflecting stern 

plane ( )s tδ  or rudder ( )r tδ  angles. 

In Fig.1, WPx , WPy , WPz  are the vectors defining x, y, and z coordinates of some points in 

the local tangent (North-East-Down (NED)) plane for waypoint navigation. Alternatively a 
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typical autopilot may also accept some reference flight-path angle ( )tγ  (or altitude/depth) 

command and heading ( )tΨ  (or yaw angle ( )tψ ), respectively. The motion sensors, 

accelerometers, and rate gyros measure the components of inertial acceleration, ( )Ix t$$ , ( )Iy t$$  

and ( )Iz t$$ , and angular velocity – roll rate ( )p t , pitch rate ( )q t , and yaw rate ( )r t . 
 

Augmented Vehicle

Autopilot

Vehicle

Sensors

Reference Signal 
Generator

Controller( ), ( )t tγ Ψ
( ), ( )z t tψ

, ,
WP WP WP
x y z

( ), ( ), ( )x t y t z t
( )tδ

( ), ( ), ( )

( ), ( ), ( )

I I I
x t y t z t

p t q t r t

$$ $$ $$

 

Fig. 1. A. UUV augmented with an autopilot 

A trajectory generator would consider an augmented UUV as a new plant (Fig.2) and 

provide this plant with the necessary inputs based on the mission objectives (final 

destination, time of arrival, measure of performance, etc.). Moreover, the reference signals, 

( )tγ  and ( )tΨ , are to be computed dynamically (once every few seconds) to account for 

disturbances (currents, etc.) and newly detected obstacles. 
 

Augmented Vehicle
(with Sensors and Controller)

( ) , ( )
ref ref

t tγ Ψ
( ) , ( )

ref refz t tψ
( ), ( ), ( )x t y t z t

Dynamic Trajectory 
Generator

Mission 

goals

Sensor Data

Position Estimate  

Fig. 2. Providing an augmented UUV with a reference trajectory 

Ideally, the trajectory generator software should also produce the control inputs ( )ref tδ  

corresponding to the feasible reference trajectory (Fig.3) (Basset et al., 2008). This enhanced 

setup assures that the inner-loop controller deals only with small errors. (Of course this 

setup is only viable if the autopilot accepts these direct actuator inputs.) 
 

( )
ref tδ

Augmented Vehicle
(with Sensors and Controller)

( ) , ( )
ref ref

t tγ Ψ
( ) , ( )

ref ref
z t tψ

( ), ( ), ( )x t y t z t
Dynamic Trajectory 

Generator
Mission 

goals

Sensor Data

Position Estimate  

Fig. 3. Providing an augmented UUV with the reference trajectory and reference controls 

The goal of this chapter is to present the dynamic trajectory generator developed at the 

Naval Postgraduate School (NPS) for the UMVs of the Center for Autonomous Vehicle 

Research (CAVR) and show how the OA framework is built upon it. Specifically, Section 2 

formulates a general feasible trajectory generation problem, followed by Section 3, which 

introduces the general ideas behind the proposed framework for solving this problem that 

utilizes the inverse dynamics in the virtual domain (IDVD) method. Section 4 considers 

simplifications that follow from reducing the general spatial problem to two planar 

subcases. Section 5 describes the REMUS UUV and SeaFox USV and their forward looking 
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sonar (FLS) systems employed for OA research at NPS. Section 6 addresses path-following 

considerations and practical implementation details for tracking nonlinear trajectories with 

conventional vehicle autopilots. Section 7 presents results from computer simulations and 

field experiments for several different scenarios which benefit from faster-than-real-time 

computation of near-optimal trajectories. 

2. Problem formulation 

Let us consider the most general case and formulate an optimization problem for computing 
collision-free trajectories in 3D (it can always be reduced to a 2D problem by eliminating 
two states). We will be searching within a set of admissible trajectories described by the state 
vector 

 [ ] { }6 6
0( ) ( ), ( ), ( ), ( ), ( ), ( ) ,  ( ) ,  ,

T
ft x t y t z t u t v t w t S S t Z E t t t⎡ ⎤= ∈ = ∈ ⊂ ∈⎣ ⎦z z  (1) 

where the components of the velocity vector – surge u, sway v, and heave w, defined in the 
body frame {b} – are added to the UUV NED coordinates x, y and z ( 0z =  at the surface and 
increases in magnitude with depth). While many UUVs are typically programmed to 
operate at a constant altitude above the ocean floor, it is still preferable to generate vertical 
trajectories in the NED local tangent plane because the water surface is a more reliable 
absolute reference datum than a possibly uneven sea floor. In general, however, it is a trivial 
matter to convert the resulting depth trajectory z(t) to an altitude trajectory h(t) for vehicles 
equipped with both altitude and depth sensors. Section 6.2 describes such practical 
considerations in detail. 
The admissible trajectories should satisfy the set of ordinary differential equations 
describing the UUV kinematics 

 

( ) ( )

( ) ( )

( ) ( )

u
b

x t u t

y t R v t

z t w t

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

$
$
$

  (2) 

In (2) u
b R  is the rotation matrix from the body frame {b} to the NED frame {u}, defined using 

two Euler angles, pitch ( )θ t  and yaw ( )ψ t , and neglecting a roll angle as 

 

cos ( )cos ( ) sin ( ) cos ( )sin ( )

( ) sin ( )cos ( ) cos ( ) sin ( )sin ( )

sin ( ) 0 cos ( )

u
b

ψ t θ t ψ t ψ t θ t

R t ψ t θ t ψ t ψ t θ t

θ t θ t

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

  (3) 

Although we are not going to exploit it in this study, admissible trajectories should also 
obey UUV dynamic equations describing translational and rotational motion. This means 
that the following linearized system holds for the vector ς(t), which includes speed 
components u, v, w (being a part of our state vector z(t)) and angular rates p, q, r: 

 ( ) ( ) ( )t t t= +ς Aς Bδ$   (4) 

Here A and B are the state and control matrices and [ , , ]TT s rδ δ δ=δ  is the control vector 

(Healey, 2004). 
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Next, the admissible trajectories (1) should satisfy the initial and terminal conditions 

 
0 0

( )t =z z , ( )f ft =z z   (5) 

Finally, certain constraints should be obeyed by the state variables, controls and their 
derivatives. For example, in the case of a UUV these can include obvious constraints on the 
UUV depth: 

 min max( )z z t z≤ ≤   (6) 

where max( , )z x y  describes a programmed operational depth limit. For vehicles 

programmed to operate at some nominal altitude above the sea floor, the max( , )z x y  

constraint can be converted into a minimum altitude min ( , )h x y  constraint as described in 

Section 6.2. 
A 3D OA requirement can be formulated as 

 [ ( ); ( ); ( )] 0x t y t z t ℜ =∩   (7) 

where ℜ is the set of all known obstacle locations. The constraints are usually imposed not 

only on the controls themselves max≤δ δ  but on their time derivatives as well max≤δ δ$ $  to 

account for actuator dynamics. Knowing the system’s dynamics (4) (or simply complying 

with the autopilot specifications), these latter constraints can be elevated to the level of the 

reference signals, for instance 

 max( )tθ θ≤   and  max( )tψ ψ≤$ $   (8) 

The objective is to find the best trajectory and corresponding control inputs that minimize 

some performance index J. Typical performance index specifications include: i) minimizing 

time of the manoeuvre 0ft t− , ii) minimizing the distance travelled to avoid the obstacle(s), 

and iii) minimizing control effort or energy consumption. In addition, the performance 

index may include some “exotic” constraints dictated by a sensor payload. For example, a 

UUV may require vehicle trajectories which point a fixed FLS at specified terrain features or 

minimize vehicle pitch motion in order to maintain level, horizontal flight along a survey 

track line for accurate synthetic aperture sonar imagery (Horner et al., 2009). 

Before we proceed with the development of the control algorithm, it should be noted that 

quite often the UUV surge velocity is assumed to be constant, 0( )u t U≡ , to provide enough 

control authority in two other channels. This uniquely defines a throttle setting ( )T tδ , and 

leaves only two control inputs, ( )s tδ  and ( )r tδ , for altering the vehicle’s trajectory. It also 

allows us to consider matrices A and B in (4) to be constant (time- and states-independent). 

If this assumption is not required, inverting kinematic and dynamic equations will differ 

slightly from the examples presented in the next section. However, the general ideas of the 

proposed approach remain unchanged. 

3. Real-time near-optimal guidance 

For the dynamic trajectory generator shown in Figs. 2 and 3, it is advocated to use the direct-

method-based IDVD (Yakimenko, 2000). The primary rationale is that this approach features 
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several important properties required for real-time implementations: i) the boundary 

conditions including high-order derivatives are satisfied a priori; ii) the resulting control 

commands are smooth and physically realizable, iii) the method is very robust and is not 

sensitive to small variations in input parameters, iv) any compound performance index can 

be used during optimization. Moreover, this specific method uses only a few variable 

parameters, thus ensuring that the iterative process during optimization converges very fast 

compared to other direct methods. The IDVD-based trajectory generator consists of several 

blocks. The goal of the first block, to be discussed next, is to produce a candidate trajectory, 

which satisfies the boundary conditions. 

3.1 Generating a candidate trajectory 

Again, consider the most general case of a UUV operating in 3D (as opposed to a USV). 

Suppose that each coordinate ix , 1,2,3i =  of the candidate UUV trajectory is represented as 

a polynomial of degree M of some abstract argument τ , the virtual arc 

 
0

( )
M

k

i ik

k

x aτ τ
=

=∑ , (9) 

 

(for simplicity of notation we assume 
1
( ) ( )x xτ τ≡ , 

2
( ) ( )x yτ τ≡  and 

3
( ) ( )τ τ≡x z ). In general, 

analytic expressions for the trajectory coordinates can be constructed from any combination 

of basis functions to produce a rich variety of candidate trajectories. For example, a 

combination of monomials and trigonometric functions was utilized in (Yakimenko & 

Slegers, 2009). 

As discussed in (Yakimenko, 2000; Horner & Yakimenko, 2007) the degree M is determined 

by the number of boundary conditions that must be satisfied. Specifically, it should be 

greater or equal to the number of preset boundary conditions but one. In general the desired 

trajectory includes constraints on the initial and final position, velocity and acceleration: 
0ix , 

if
x , 

0ix′ , 
if
x′ , 

0ix′′ , 
if
x′′ . In this case the minimal order of polynomials (9) is 5, because all 

coefficients in (9) will be uniquely defined by these boundary conditions, leaving the 

“length” of the virtual arc 
f

τ  as the only varied parameter. For more flexibility in the 

candidate trajectory, additional varied parameters can be obtained by increasing the order 

of the polynomials (9). For instance, using seventh-order polynomials will introduce two 

more varied parameters for each coordinate expression. Rather than varying two coefficients 

in these extended polynomials directly, we will vary the initial and final jerk, 
0ix′′′  and 

if
x′′′ , 

respectively. In this case, coefficients ika  in (9) can be determined by solving the obvious 

system of linear algebraic equations equating polynomials (9) to 
0ix , 

if
x , 

0ix′ , 
if
x′ , 

0ix′′ , 
if
x′′ , 

0ix′′′  and 
if
x′′′  at two endpoints ( 0τ =  and 

f
τ τ= ) (Yakimenko, 2000, 2008). 

By construction, the boundary conditions (5) will be satisfied unconditionally for any value 

of the final arc
f

τ . However, varying 
f

τ  will alter the shape of the candidate trajectory. 

Figure 4 demonstrates a simple example whereby a UUV operating 2m above the sea floor 

at 1.5m/s must perform a pop-up manoeuvre to avoid some obstacle. Even with a single 

varied parameter, changing the value of 
f

τ  allows the UUV to avoid obstacles of different 

heights. Similar trajectories could be produced solely in the horizontal plane or in all three 

dimensions. It should be pointed out that even at this stage infeasible candidate trajectories 
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will be ruled out. (In Fig.4 the trajectory requiring the UUV to jump out of the water is 

infeasible because it violates the constraint (6).) 
 

 

Fig. 4. Varying the candidate trajectory while changing the value of τ
f

 

With six free parameters, which in our case are components of the initial and final jerk (
0ix′′′  

and
if
x′′′ , 1,2,3i = ) the trajectory generator can change the overall shape of the trajectory 

even further. To this end, Fig.5 illustrates candidate trajectories for a UUV avoiding a 10m 

obstacle located between its initial and final points. These trajectories were generated by 

varying just two components of the jerk, 
30
x′′′  and 

3 f
x′′′ , and minimizing 

f
τ . This additional 

flexibility can produce trajectories which satisfy operational constraints (6), as well as OA 

constraints  (7). 
 

 

Fig. 5. Candidate trajectories obtained by varying the terminal jerks 

The selection of a specific trajectory will be based upon whether the trajectory is feasible 

(satisfies constraints (8)) and if so, whether it assures the minimum value of the performance 

index calculated using the values of the vehicle states (and controls) along that trajectory. As 

an example, Fig.6 presents collision-free solutions for two different locations of a 10m-tall 

obstacle when five varied parameters, 
10
x′′′ , 

1 f
x′′′ , 

30
x′′′ , 

3 f
x′′′  and 

f
τ , are optimized to assure 

feasible minimum-path-length trajectories 
 

 

Fig. 6. Examples of minimum-path-length trajectories 

Now, let us address the reason for choosing some abstract parameter τ  as an argument for 

the reference functions (9) rather than time or path length, which are commonly used. 

Assume for a moment that tτ ≡ . In this case, once we determine the trajectory we 

unambiguously define a speed profile along this trajectory as well, since 
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 2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( )V t u t v t w t x t y t z t= + + = + +$ $ $   (10) 

Obviously, we cannot allow this to happen because we want to vary the speed profile 
independently. With the abstract argument τ  this becomes possible via introduction of a 

speed factor λ  such that 

 ( )
d

dt

τλ τ = .  (11) 

Now instead of (10) we have 

 2 2 2( ) ( ) ( ) ( ) ( )V x y zτ λ τ τ τ τ′ ′ ′= + +   (12) 

and by varying ( )λ τ  we can achieve any desired speed profile. 

The capability to satisfy higher-order derivatives at the trajectory endpoints, specifically at 
the initial point, allows continuous regeneration of the trajectory to accommodate sudden 
changes like newly discovered obstacles. As an example, Fig.7 demonstrates a scenario 
whereby a UUV executing an OA manoeuvre discovers a second obstacle and must generate 
a new trajectory beginning with the current vehicle states and control values (up to the 
second-order derivatives of the states). The suggested approach enables this type of 
continuous trajectory generation and ensures smooth, non-shock transitions. 
 

 

Fig. 7. Example of dynamic trajectory reconfiguration 

3.2 Inverse dynamics 
The second key block inside the dynamic trajectory generator in Figs. 2 and 3 accepts the 
candidate trajectory as an input and computes the components of the state vector and 
control signals required to follow it. In this way we can ensure that each candidate trajectory 
does not violate any constraints (including those of (8)). 

First, using the following relation for any parameter ζ , 

 ( ) ( ) ( )
d d

d dt

ζ τζ τ ζ τ λ τ
τ

′= =$   (13) 

we convert kinematic equations (2) into the τ  domain 

 
0( )

( ) ( ) ( )

( ) ( )

u
b

x U

y R v

z w

τ
λ τ τ τ

τ τ

′⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦

  (14) 

Next, we assume the pitch angle to be small enough to let sin ( ) 0tθ ≈  and cos ( ) 1tθ ≈ , so 

that the rotation matrix (3) becomes 
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cos ( ) sin ( ) 0

( ) sin ( ) cos ( ) 0

0 0 1

u

b

ψ ψ
R ψ ψ

τ τ
τ τ τ

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (15) 

While this step is not required, it simplifies the expressions in the following development. 
Inverting (14) via the rotation matrix (15) yields 

 
0 cos sin 0

sin cos 0

0 0 1

U ψ ψ x

v ψ ψ y

w z

λ
′⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥′= −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (16) 

Hereafter each variable’s explicit dependence on τ  will be omitted from the notation. 

Now the three equations of system (16) must be resolved with respect to three unknown 

parameters, v, w and ψ. While the last one readily yields 

 w zλ ′=  (17) 

the first two require more rigorous analysis. 
Consider Fig.8. Geometrically, a scalar product of two vectors on the right-hand-side of the 

first equation in (16) represents the length of the longest side of the shaded rectangle. 

Similarly, the second equation expresses the length of the shortest side of this rectangle. 

From here it follows that the square of the length of the diagonal vector can be expressed in 

two ways: 2 2 2 2 2 2
0v U x yλ λ− − ′ ′+ = + . This yields 

 2 2 2 2
0( )v x y Uλ ′ ′= + −  (18) 

From the same figure it follows that 

 
1

1 1

1

0 0

tan tan
λψ
λ

−
− −

−= Ψ − = Ψ −
v v

U U
,  1tan

y

x
− ′

Ψ =
′

  (19) 

 
 

cos

sin

ψ
ψ

⎡ ⎤
⎢ ⎥
⎣ ⎦

x

y

′⎡ ⎤
⎢ ⎥′⎣ ⎦

1vλ −

ψ Ψ
1

=tan
y

x

− ′
Ψ

′

1

0
U λ −

 

Fig. 8. Kinematics of horizontal plane parameters 

Now, using these inverted kinematic equations, we can check whether each candidate 

trajectory obeys the constraints imposed on it (constraints (8)). 
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3.3 Discretization 
We proceed with computing the remaining states along the reference trajectory over a fixed 

set of N points (for instance, N=100) spaced evenly along the virtual arc [0; ]fτ  with the 

interval 

 1( 1)f Nτ τ −Δ = −   (20) 

so that 

 1j jτ τ τ−= + Δ , 2,...,j N= , ( 1 0τ = )  (21) 

In order to determine coefficients for polynomials (9) we will have to guess on the values of 

the varied parameters fτ , 
0ix′′′ , 0ix′′′ , 

if
x′′′ , and ifx′′′ . These guesses will be used along with the 

known or desired boundary conditions 
0ix , 0ix′ , 

0ix′′ , ifx , 
if
x′ , and ifx′′ . The boundary 

conditions on coordinates 
0ix  and ifx come directly from (5). According to (14), the given 

boundary conditions on surge, sway, and heave velocities define the first-order time 

derivatives of the coordinates as 

 

0; 0
1

0; 0; 0; 0;

0; 0;

f

u
f f b f f

f f

x U

y R v

z w

λ−

⎡ ⎤ ⎡ ⎤′
⎢ ⎥ ⎢ ⎥
′ =⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

  (22) 

They also define the initial and final pitch and yaw angles used to compute 0;
u
b fR  in (22) as 

 
0;1

0; 0
2 2
0 0;

tan
f

f

f

w

U v
θ γ − −

= +
+

 and 
0;1

0; 0
0

tan
f

f

v

U
ψ −= Ψ −   (23) 

In equation (22) we may use any value for the initial and final speed factor λ , for example, 

0; 1fλ = . This value simply scales the virtual domain; the higher the values for λ , the larger 

the values for fτ . This follows directly from equations (11) and (12) that 1 1
0; 0f f fU sλ τ − −= , 

where fs  is the physical path length.  

Finally, initial values for the second-order derivatives are provided by the UUV motion 

sensors (see Figs. 1-3) (after conversion to the τ domain), while final values for the second-

order derivatives are usually set to zero for a smooth arrival at the final point. Having an 

analytical representation of the candidate trajectory (9) defines the values of ij
x , and ijx′ , 

1,2,3i = , 1,...,j N= . 

Now, for each node 1,...,j N=  we compute 

 1
1j jtλ τ −

−= Δ Δ   (24) 

where 

 

2 2 2
1 1 1

1
2 2 2
0 1 1

( ) ( ) ( )j j j j j j

j

j j

x x y y z z
t

U v w

− − −
−

− −

− + − + −
Δ =

+ +
 (25) 
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and then use (17)-(19) to compute w, v, ψ and Ψ at each timestamp. The vertical plane 
parameters, flight path angle γ and pitch angle θ, can be computed using the following 
relations: 

 1

2 2
tan

j
j

j j

z

x y
γ −

′−
=

′ ′+
,  1

2 2
0

tan
j

j j

j

w

U v
θ γ − −

≈ +
+

 (26) 

In order to check the yaw rate constraints (8) we must first numerically differentiate the 
expression for Ψ in (19). 

3.4 Optimization 
When all parameters (states and controls) are computed in each of N points, we can 

compute the performance index J and the penalty function. For example, we can combine 

constraints (6) and (8) into the joint penalty 

 maxmin

2
min

2
max

2
max

2
max

min(0; )

max(0; )

, , ,
max(0; )

max(0; )

j
j

j
jzz

j
j

j
j

z z

z z

k k k kθ ψ

θ θ

ψ ψ

⎡ ⎤−
⎢ ⎥
⎢ ⎥−⎢ ⎥

⎡ ⎤ ⎢ ⎥Δ = ⎣ ⎦ ⎢ ⎥−
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎣ ⎦

$ $

  (27) 

with minz
k , maxzk , kθ  and kψ$  being scaling (weighting) coefficients. Now the problem can be 

solved using numerical methods such as the built-in fmincon function in the Mathworks’ 

MATLAB development environment. Alternatively, by combining the performance index J 

with the joint penalty Δ  we may exploit MATLAB’s non-gradient fminsearch function. For 

real-time applications, however, the authors prefer to use a more robust optimization routine 

based on the gradient-free Hooke-Jeeves pattern search algorithm (Yakimenko, 2011). 

4. Planar cases 

This section presents two simplified cases for a vehicle manoeuvring exclusively in either 
the horizontal or vertical plane. 

4.1 Horizontal plane guidance 

For the case of a UUV manoeuvring in the horizontal plane or a USV, the computational 

procedure is simplified. The trajectory is represented by only two reference polynomials for 

coordinates x1 and x2. Hence, we end up having only five varied parameters, which 

are:
f

τ , 10
x′′′ , 20

x′′′ , 
1 f
x′′′  and 

2 f
x′′′ . The remaining kinematic formulas are identical to those 

presented above with 0z ≡ , 0z′ ≡  and 0γ ≡ . Figure 9 shows an example of a planar 

scenario in which a USV has to compute a new trajectory twice. First, after detecting an 

obstacle blocking its original path, a new trajectory is generated to steer right and pass 

safely in front of the object (dotted line). Second, while executing the first avoidance 

manoeuvre the USV detects that the object has moved south into its path. It therefore 
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generates a new trajectory to steer left and pass safely behind the object’s stern. The 

complete trajectory is shown as a solid line. 

4.2 Vertical plane guidance 

For the case of a UUV manoeuvring in the vertical plane, the 3D algorithm can be reduced 

to the 2D case in a manner similar to the horizontal case. Specifically, using five varied 

parameters, 
f

τ , 
10
x′′′ , 

30
x′′′ , 

1 f
x′′′  and 

3 f
x′′′ , we can develop reference trajectories for x1 and x3, 

and then use the same general equations developed in Section 3, assuming 0y ≡ , 0y′ ≡ , 

and 0Ψ ≡ . 
 

 

Fig. 9. Moving obstacle avoidance in a horizontal plane 

Alternatively, we can use a single reference polynomial to approximate just 3x  and then 

integrate the third equation of (4) to get the heave velocity w . That allows computation of 

the time period 1jt −Δ  using 

 1
1 1 1( )j j j jt z z w−

− − −Δ = −   (28) 

instead of (25). 

Another way of dealing with vertical plane manoeuvres is to invert the dynamic equations 

(4) (Horner & Yakimenko, 2007). After developing the reference functions for two 

coordinates, 
1
x  and

3
x , the stern plane sδ  control input is computed subject to five variable 

parameters: 
f

τ , 
10
x′′′ , 

30
x′′′ , 

1 f
x′′′ , and 

3 f
x′′′ . 

In this case, the corresponding time period 1jt −Δ  is computed similarly to (28): 

 
1 1

1 1
1 1 0 1 1cos sin

j j j j
j j j

j j j j

z z z z
t t t

w u wθ θ
− −

− −
− − − −

− −
Δ = − = ≈

+
  (29) 

and the heave velocity is calculated using the third equation of system (4) as 

 
( )

1
1 1 1 1 0 1 1 1

1
1 1 33 1 35 1 32 ; 1 1 1

( sin cos )

A A B

j j j j j j j j

j j j j s j j j j

x w U x x x

w w q w w w

λ θ θ τ

λ δ τ

−
− − − − − − −

−
− − − − − − −

′ ′= + = + Δ

′ ′= + + = + Δ
  (30) 

The next step involves computing the pitch angle, pitch rate and pitch acceleration as 

 
0 1 11

2 2
1 10

cos ,  ,  
j j j j j j j

j j j j j j
j jj

u x w z q q
q q

t tw U

θ θ
θ λ θ θ− −−

− −

⎛ ⎞′ ′+ − −
⎜ ⎟= = ≈ = ≈
⎜ ⎟ Δ Δ+⎝ ⎠

$ $$$  (31) 

Finally, we can compute the dive plane deflection required to follow the trajectory using the 
5th equation of system (4) as 
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 1
; 53 55 52( )s j j j jq A w A q Bδ −= − −$  (32) 

In this case the last two terms in the joint penalty Δ , similar to that of (27) but developed for 

the new controls, enforce maxs sδ δ≤  and 
maxs s

δ δ≤$ $ . 

5. Test vehicles and sensing architecture 

The preceding trajectory generation framework has been implemented on several UMVs. 
Before presenting simulated and experimental results with specific vehicle platforms at sea, 
we first introduce two such vehicles in use at CAVR - the REMUS UUV and SeaFox USV. 
Both vehicles utilize FLS to detect and localize obstacles in their environment and employ 
the suggested direct method to generate real-time OA trajectories. This section provides 
system-level descriptions of both platforms including their sensors, and proposes a way of 
building the OA framework on top of the trajectory generation framework, i.e. enhancing 
the architecture of Figs. 2 and 3 even further. 

5.1 REMUS UUV and SeaFox USV 
Remote Environmental Monitoring UnitS (REMUS) are UUVs developed by Woods Hole 

Oceanographic Institute and sold commercially by Hydroid, LLC (Hydroid, 2011). The NPS 

CAVR owns and operates two REMUS 100 vehicles in support of various navy-sponsored 

research programs. The REMUS 100 is a modular, 0.2m diameter UUV designed for 

operations in coastal environments up to 100m deep. Typical configurations measure less 

than 1.6m in length and weigh less than 45kg, allowing the entire system to be easily 

transported worldwide and deployed by a two-man team (Fig.10a). Designed primarily for 

hydrographic surveys, REMUS comes equipped with sidescan sonar and sensors for 

collecting oceanographic data such as conductivity, temperature, depth or optical 

backscatter. The REMUS 100 system navigates using a pair of external transponders for long 

baseline acoustic localization or ultra-short baseline terminal homing, as well as an Acoustic 

Doppler Current Profiler/Doppler Velocity Log (ADCP/DVL). The ADCP/DVL measures 

vehicle altitude, ground- or water-relative vehicle velocity, and current velocity profiles in 

body-fixed coordinates. 

 

a)   b)  

Fig. 10. NPS REMUS 100 UUV (a) and FLS arrays (b) 
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To support ongoing CAVR research into sonar-based OA, terrain-relative navigation, and 
multi-vehicle operations in cluttered environments, each NPS REMUS vehicle has been 
modified to incorporate a FLS, multi-beam bathymetric sonar, acoustic communications 
modem, navigation-grade inertial measurement system, and fore/aft horizontal/vertical 
cross-body thrusters  for hovering or precise manoeuvring. (Figure 10b provides a close up 
of the NPS REMUS FLS arrays with nose cap removed.) To maximize the REMUS system’s 
utility as a research platform, Hydroid developed the RECON communications interface so 
that sensor and computer payloads can interact with the REMUS autopilot. Using this 
interface, NPS payloads receive vehicle sensor data and generate autopilot commands based 
on NPS sonar processing, trajectory generation, and path-following algorithms. 
The SeaFox USV was designed and manufactured by Northwind Marine (Seattle, WA) as a 
remote-controlled platform for intelligence, surveillance, reconnaissance, anti-terrorist force 
protection, and maritime interdiction operations (Northwind Marine, 2011). SeaFox is a 
4.88m long, aluminium, rigid-hulled inflatable boat with a 1.75m beam; 0.25m draft; fold-
down communications mast; and fully-enclosed electronics and engine compartments. 
SeaFox’s water jet propulsion system is powered by a JP5-fueled, 185-HP V-6 Mercury 
Racing engine, and can deliver a top speed of 74km/h. Standard sensing systems include 
three daylight and three low light navigation cameras for remote operation, as well as twin 
daylight and infrared gyro-stabilized camera turrets for video surveillance. All video is 
accessible over a wireless network via two onboard video servers. 
The NPS SeaFox was modified to enable fully-autonomous operations by integrating a 

payload computer with the primary autopilot (Fig.11). Meanwhile, the original remote 

control link was retained to provide an emergency stop function. NPS algorithms running 

on the payload computer generate rudder and throttle commands that are sent directly to 

the SeaFox autopilot. Recent navigational upgrades include a satellite compass that uses 

differential Global Positioning System (GPS) navigation service for accurate heading 

information, a tactical-grade inertial measurement unit for precise attitude estimation, and 

an optional ADCP/DVL for water velocity measurements. To support ongoing CAVR 

research into autonomous riverine navigation, the NPS SeaFox was further upgraded to 

deploy a retractable, pole-mounted FLS system for underwater obstacle detection and 

avoidance (Gadre et al., 2009). Figure 12 shows the SeaFox USV operating on a river with its 

sonar system deployed below the waterline. 

5.2 Sonar system 
The NPS REMUS and SeaFox vehicles rely on FLS to detect and localize obstacles in their 
environment. Both platforms utilize commercial blazed array sonar systems manufactured 
by BlueView Technologies (BlueView Technologies, 2011). These sonar systems comprise 
one or more pairs of arrays grouped into sonar “heads.” Each sonar head generates a 2D 
cross-sectional image of the water column in polar coordinates, typically plotted as the 
image plane’s field of view angle vs. range. Due to the sonar arrays’ beam width, the 
resulting FLS imagery has a 12-degree out-of-plane ambiguity. The REMUS FLS system 
consists of two fixed sonar heads, which provide a 90-degree horizontal field of view (FOV) 
and a 45-degree vertical FOV. Similarly, the SeaFox FLS system is comprised of twin sonar 
heads mounted on port and starboard pan/tilt actuators, providing each side with a 45-
degree FOV image at an adjustable mounting orientation that can be swept through the 
water column for increased sensor coverage. 
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Fig. 11. SeaFox sensors and control architecture 

 

 

Fig. 12. SeaFox USV navigating on the Sacramento River near Rio Vista, CA 

5.3 Obstacle avoidance framework 
The proposed OA framework built into the architecture of Figs. 2 and 3 is shown in Fig.13. It 
consists of an environmental map, a planning module, a localization module, sensors and 
actuators (Horner & Yakimenko, 2007). The environmental map can include a priori 
knowledge, such as the positions of charted underwater obstacles, but also incorporate 
unexpected threats discovered by sonar. The positions of all obstacles are eventually 
resolved in the vehicle-centred coordinate frame with the help of the localization module. 
The planning module is responsible for generating collision-free trajectories the vehicle 
should follow. This reference trajectory, possibly with reference controls, is then used to 
excite actuators.  
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Fig. 13. Components of the NPS OA framework 

The proposed OA framework supports both deliberative and reactive obstacle avoidance 

behaviours. Deliberative OA involves the ability to generate and follow a trajectory that 

avoids all known obstacles between an arbitrary start location and some desired goal 

location, whereas reactive OA involves the ability to avoid any previously unknown 

obstacles detected while following this trajectory. Since the sonar system continuously 

resamples the environment, this reactive behaviour can be achieved by a deliberative 

planner as long as i) it executes fast enough to incorporate all new obstacle information from 

the sonar, and ii) it generates feasible trajectories which begin with the vehicle’s current state 

vector. Specifically, since the REMUS and SeaFox FLS have limited range and limited fields 

of view in both image planes, new trajectories must be generated continuously (e.g. on some 

fixed time interval or upon detection of a new obstacle) during execution of the current 

manoeuvre to ensure reactive avoidance of new obstacles. 

As an example of deliberative OA, assume a REMUS vehicle is mapping a minefield with 

sidescan sonar prior to a mine clearance operation. For this mission, the goal locations are 

provided by the sequence of waypoints making up a typical lawn-mowing survey pattern. If 

an obstacle is detected along a specified track line, the preferred OA manoeuvre for this 

mission would be one that also minimizes the cumulative deviation from this track line, 

since we desire 100% sensor coverage of the survey area. Hence, deliberative OA implies the 

optimization of some performance index. Likewise, while digital nautical charts or previous 

vehicle surveys can be used to identify some obstacles a priori, this data is usually 

incomplete or outdated. Vehicles should be capable of storing in memory the locations of 

any uncharted obstacles discovered during their mission so that subsequent trajectories can 

avoid them—even when they are no longer in the sonar’s current field of view. Deliberative 

OA, therefore, also entails the creation and maintenance of obstacle maps. 

5.4 Obstacle detection and mapping 
Detecting obstacles from sonar imagery is challenging because several factors affect the 
intensity of sonar reflections off objects in the water column. These factors include the size, 
material, and geometry of an object relative to the sonar head; interference from other 
acoustic sensors; and the composition of the acoustic background (e.g. bottom type, amount 
of sediment, etc.) to name a few (Masek, 2008). Once an obstacle has been detected, other 
image processing algorithms must measure its size and compute its location within the 
navigational reference frame. While localizing obstacles via the range and bearing data 
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embedded in the sonar imagery is straightforward, computing their true size is very 
difficult. First, for the REMUS FLS, an obstacle’s height and width can be measured directly 
by both sonar heads only when it is located within a narrow 12-degree by 12-degree 
“window” directly ahead of the vehicle. Due to this narrow beam width, most obstacles are 
not imaged by both the horizontal and vertical sonar at the same time. Moreover, FLS 
images do not contain information in the region behind an obstacle’s ensonified leading 
edge; this portion of the image is occluded. Therefore, the true horizontal and vertical extent 
of each obstacle must be deduced from multiple views of the same object. For a vehicle with 
a fixed sensor like the REMUS, this may be accomplished by deliberately inducing vehicle 
motion to vary the sonar angle (Furukawa, 2006) or by generating trajectories that will 
image the object from a different location at a later time. For these scenarios, it is desirable to 
balance OA behaviours with exploration behaviours in order to maximize sensor coverage 
and generate more complete obstacle maps. In this way, the proposed trajectory generation 
framework can be adapted to produce exploratory trajectories which more accurately 
measure the size and extent of detected obstacles (Horner et al., 2009). Nevertheless, due to 
the uncertainty in sonar images arising from environmental factors, sensor geometry, or 
obstacle occlusion, it is prudent to make conservative assumptions about an obstacle’s 
boundaries until other information becomes available. 
For the remainder of this section, we highlight different representations for incorporating 

obstacle size, location, and uncertainty into an obstacle map for efficient collision detection 

during the trajectory optimization phase. These representations can be tailored to the 

working environment. For operations in a kelp forest, for example, kelp stalks often appear 

as point-like features in horizontal-plane sonar imagery (Fig.14) but seldom appear in 

vertical-plane images. By making the reasonable assumption (for this environment) that 

these obstacles extend vertically from the sea floor to the surface, it may be simpler to 

perform horizontal-plane OA through this type of obstacle field. Nevertheless, when 

building an obstacle map comprised primarily of point features, mapping algorithms must 

account for the uncertainty inherent in sonar imagery. One simple but effective technique 

adds spherical (3D) or circular (2D) uncertainty bounds to each point feature stored in the 

obstacle map. Candidate OA trajectories which penetrate these boundaries violate constraint 

(7). Under this construct, collision detection calculations are reduced to a simple test to 

determine whether line segments in a discretized trajectory intersect with the uncertainty 

circle (2D) or sphere (3D) for each obstacle in the map. In general, when checking for line 

segment intersections with a circle or sphere there are five different test cases to consider 

(Bourke, 1992). Our application, however, requires only two computationally efficient tests 

to determine: i) which line segment along a discretized trajectory contains the closest point 

of approach (CPA) to an obstacle, and ii) whether this CPA is located inside the obstacle’s 

uncertainty bound. 

Most objects appear in sonar imagery not as point features, but as complex shapes. Unlike 
point features, it is difficult and computationally expensive to determine exhaustively 
whether or not a candidate vehicle trajectory will collide with these shapes. Instead, we can 
bound an arbitrary shape with a minimal area rectangle (or box, in 3D) aligned with the 
shape’s principle axes (Fig.15). This type of object, called an oriented bounding box, is 
widely used in collision-detection algorithms for video games. One technique, based on the 
Separating Axis Theorem from complex geometry, results in an extremely fast test for line 
segment intersections with an oriented bounding box (Kreuzer, 2006). With slight 
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modification, this test can also be used to detect when a trajectory passes directly above a 
bounding box. In our application, we use the OpenCV computer vision library to generate a 
bounding box around each object detected in the horizontal image plane. For each box, we 
then compute its centre point, length extent, and angle relative to the vehicle’s navigation 
frame. Due to occlusion, the width extent produced from this rectangle does not accurately 
convey the true size of the obstacle, so we assume a constant value for this parameter. To 
create a 3D (actually 2.5D) bounding box around the object, we compute its vertical extents 
from vertical sonar imagery. At this time, the assumption is that obstacles extend from the 
ocean floor to its measured height above bottom, but this method can be generalized to 
obstacles suspended in the water column or extending from the surface to a measured depth 
(i.e. ships in a harbour). 
 

 

Fig. 14. Horizontal FLS image of a kelp forest 

 

 

Fig. 15. Example of the bounding boxes used in conservative collision detection calculations 

While oriented bounding boxes work well for mapping discrete obstacles in open-water 
environments, they require an additional image processing step and are not easily adapted 
to operations in restricted waterways. For these environments, a probabilistic occupancy 
grid is preferable for robustly mapping large continuous obstacles (e.g. harbour 
breakwaters) or natural terrain (e.g., a river’s banks). Occupancy grids divide the 
environment into a grid of cells and assign each cell a probability of being occupied by an 
obstacle. Given a probabilistic sensor model, Bayes’ Theorem is used to compute the 
probability that a given cell is occupied, based upon current sensor data. By extension, an 
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estimate for the occupancy state of each cell can be continually updated using an iterative 
technique that incorporates all previous measurements (Elfes, 1989). Figure 16a shows an 
occupancy grid map of a river generated by the SeaFox FLS system. In this image, each pixel 
corresponds to a 1-metre square grid cell whose colour represents the cell’s probability of 
being occupied (red) or empty (green). For comparison, the inset portion of the occupancy 
grid map has been overlaid with an obstacle map of oriented bounding boxes in Fig.16b. 
Clearly, using discrete bounding boxes to represent a long, continuous shoreline quickly 
becomes intractable as more and more boxes are required. The occupancy grid framework is 
a much more efficient obstacle map representation for wide area operations in restricted 
waterways. 
 

a)  b)  

Fig. 16. Occupancy grid for a river as generated by the SeaFox FLS system 

NPS has developed probabilistic sonar models for the BlueView FLS and has successfully 
combined separate 2D occupancy grids in order to reconstruct the 3D geometry of an 
obstacle imaged by the REMUS UUV’s horizontal and vertical sonar arrays (Horner et al., 
2009). Using this occupancy grid framework, each candidate trajectory’s risk of obstacle 
collision is computed using the occupancy probabilities (a direct lookup operation) of the 
grid cells it traverses. Trajectory optimization for OA entails minimizing the cumulative risk 
of collision along the entire trajectory. 

6. Path following 

While the REMUS UUV and SeaFox USV are both commercial vehicles with proprietary 

autopilots, both provide communications interfaces that allow experimental sensor and 

computer payloads to override the primary autopilot via high-level commands. The REMUS 

RECON interface, for example, closely resembles the augmented autopilot depicted in Figs. 

2 and 3 (although direct actuator inputs are only available for propeller and cross-body 

thrusters settings). For full overriding control, a payload module must periodically send 

valid commands containing all of the following: i) desired depth or altitude, ii) desired 

vehicle or propeller speed, and iii) desired heading, turn rate, or waypoint location. The 

developed trajectory generator (described in Section 3) outputs reference trajectories as 

parameterized expressions for each coordinate in a spatial curve plus a speed factor to use 

while traversing that curve. Using these expressions as reference trajectories, the 3D path 

following controller developed earlier (Kaminer et al., 2007) can compute turn rate and pitch 

rate commands required to drive a vehicle onto (and along) the desired trajectory. The 
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RECON interface, however, does not accept pitch rate commands (for vehicle safety 

reasons). Therefore, in order to use the aforementioned path following controller to track 3D 

trajectories with the REMUS UUV, controller outputs must be partitioned into horizontal 

(turn rate) and vertical (depth or altitude) commands as described in the following section 

(obviously, the SeaFox USV only uses the turn rate commands). 

6.1 Horizontal plane 
Consider the 2D problem geometry depicted in Fig.17, which defines an inertial {I} frame, 
Serret-Frenet {F} error frame and body-fixed reference frame {b}. The kinematic model of the 
vehicle (2)-(3) reduces to 

 0
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y t U t
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with dynamics described by 
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Fig. 17. Horizontal path-following kinematics 

By construction, the local trajectory planner produces an analytic expression for each 

component of the spatial trajectory as a function of virtual arc length, ( )c τp . We can also 

compute analytic expressions for ( )c τ′p  and ( )c τ′′p , the first and second derivatives, 

respectively, of the spatial trajectory. Using the relationships in Fig.17, the errors can be 

expressed in the Serret-Frenet frame {F} as 

 ( )F F
F I I c

F

x
R

y

⎡ ⎤
= = −⎢ ⎥
⎣ ⎦

q q p  (35) 

where [ , , ]F T
I R = T N B  is a rotation matrix constructed from the tangent, normal, and 

binormal vectors of the Serret-Frenet error frame {F}. The tangent vector is computed from 

the expression for the trajectory’s first derivative as: 
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For the 2D problem, the normal vector components can be computed directly from the 

tangent vector components: x yN T= −  and y xN T= . Additionally, the signed curvature of 

the trajectory can be computed using the expressions for the trajectory's first and second 

derivatives as: 

 
3

( ) ( ) ( ) ( )
( )

( )

cy cx cx cy

c

p p p pτ τ τ τ
κ τ

τ

′′ ′ ′′ ′−
=

′p
  (37) 

Taking the time derivative of Fq , we obtain the following state space representation for the 

error kinematics (i.e. the position and heading of the vehicle’s body-fixed frame {b} relative 
to the Serret-Frenet frame {F}, which follows the desired trajectory): 
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where l is the path length of the desired spatial curve and l$  describes the speed at which a 

virtual target travels along this curve. 

The goal is to drive the vehicle’s position error ( Fq ) and heading error (Ψe) to zero. This will 

drive the vehicle to the commanded trajectory location ( cp ) and align its velocity vector 

with the trajectory’s tangent vector (T). The control signal uψ  must now be chosen to 

asymptotically drive the vehicle position and velocity vectors onto the commanded 

trajectory. We choose the candidate Lyapunov function 

 ( )2 2 21
( )

2
F F eV x y ψψ δ= + + −  (39) 

where ψδ  is a shaping function that controls the manner in which the vehicle approaches 

the path 
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with 0d >  an arbitrary constant. 

Using some algebra, we choose the following control laws to ensure that 0V <$ : 
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In these expressions 1K , 2K , and d can be used as gains to tune the closed-loop 

performance of the path following controller. 
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6.2 Vertical plane 
Now consider the REMUS UUV manoeuvring in the vertical plane using altitude 

commands. For survey operations, REMUS is typically programmed to follow a lawnmower 

pattern at a constant altitude above the sea floor determined by the desired sidescan sonar 

range. Since the ADCP/DVL sensor continuously measures vehicle altitude above the 

bottom, this operating mode ensures safe operation over undulating bottoms with slopes of 

up to 45 degrees (Healey, 2004). Obstacle avoidance manoeuvres are required to safely 

negotiate steeper slopes, step-like terrain features (e.g. sand bars or coral heads), or objects 

proud of the ocean floor. As described earlier, since the REMUS FLS is mounted in a fixed 

orientation, it may detect new obstacles while executing a manoeuvre to avoid the current 

obstacle threat. Periodic or detection-based replanning can handle these situations. This 

scenario was illustrated conceptually in Fig.7. 

When negotiating a step-up ridge or sand bar whose extent is not known due to sonar 

occlusion at the time of detection, it may not be desirable to follow the planned vertical 

trajectory to its completion. Between planning iterations, a simple yet safer approach is to 

revert back to constant altitude control once the vehicle reaches a position directly above 

the detected object boundaries. This condition can be checked using a 2.5D version of the 

3D bounding box intersection test described above. Figure 18 illustrates a simulation 

whereby the REMUS FLS detects the leading edge of a ridge at maximum sonar range. 

Image processing algorithms compute range to the object (80m) as well as its width (W, 

into the page) and its height above the seafloor (5.5m) but cannot determine the length of 

the ridge since it is occluded by its own leading edge. Therefore, the obstacle detection 

algorithm generates a 3D bounding box measuring W m wide x 1.0m long (assumed) x 

5.5m high. 

While the IDVD-method planner generates a vertical trajectory in NED coordinates,  

in shallow water it is safer to operate the vehicle in an altitude control mode. Therefore, 

the vertical coordinate trajectory is converted from a depth plan into an altitude  

plan by assuming constant water depth over the planning horizon and using the 

relationships 

 
 (0) ( ) ( )

( ) ( ) ( ) ( )

nom plan plan

plan plan nom cmd nom plan

D h z h D z

h h h h h h

τ τ

τ τ τ τ

= + = −

Δ = − = + Δ
  (42) 

 

where D is the water depth computed at planner initialization time, 
nomh  is the nominal 

altitude set point, and ( )cmdh τ is the altitude command sent to the autopilot via the RECON 

interface. The resulting altitude plan ( )τΔ planh  is shown in Fig.18 as a deviation from the 

nominal mission segment altitude. As seen, sending this altitude command directly to the 

vehicle autopilot would cause an undesirable jump in the altitude profile once the 

ADCP/DVL sensor measures the vehicle’s true altitude above the ridge. Instead, switching 

the altitude command to the nominal mission segment altitude once the vehicle reaches the 

ridge will produce the desired altitude profile). Note that even though Fig.18 depicts a 

sudden drop in altitude when the vehicle passes the ridge while commanding the nominal 

mission segment altitude, in practice the vehicle dynamics will ensure that the UUV 

executes a smooth transition back to its nominal survey altitude. 
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Fig. 18. Simulation results for vertical OA using UUV altitude control mode 

7. Computer simulations and sea trials 

The proposed path-planning method can be tailored to a specific vehicle or operational 
domain by modifying the performance index J to incorporate vehicle or actuator dynamics 
(feasibility constraints) and mission objectives such as OA or underwater rendezvous. This 
section presents simulated and in-water experimental results for four different applications 
which use the proposed trajectory optimization framework for UMV guidance: i) 
underwater docking of a UUV with a mobile underwater recovery system (MURS); ii) 
optimal exploitation of a terrain-relative feature map to improve UUV self-localization 
accuracy; iii) 2D or 3D OA in cluttered environments; and iv) specific USV implementations 
for sonar-based OA in riverine operations. 

7.1 Underwater recovery 
The goal of underwater recovery (Yakimenko et al., 2008) is to be able to compute a 
rendezvous trajectory from any point on the UUV holding pattern to any point on the 
MURS holding pattern as shown in Fig.19 (note hereinafter that depth values are shown as 
negative numbers). 
While the stochastic simulation shown in Fig.19 employs circular race tracks, in practice the 

MURS would establish a race track that allowed it to travel back and forth along two long 

track legs (see Fig.20). These legs are needed to allow sufficient time to contact the UUV 

(which is assumed to be in its holding pattern somewhere within communication range) and 

allow it to transit from its holding pattern to the rendezvous point. The proposed sequence 

of events is to have the MURS (at position 1 in Fig.20) signal the UUV (at position 2) and 

command it to proceed to a rendezvous point by a certain time. The UUV computes the 

trajectory required to comply with the command. If the commanded rendezvous is feasible, 

the UUV sends an acknowledgement message. Otherwise (i.e. the request violated some 

constraint) the UUV sends a denial message (stage A in Fig.20) and requests that the MURS 

command a different rendezvous point or time. The final point of the trajectory is located in 

the approximate location of the MURS docking station at a given time. Knowing the 
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geometry of the MURS allows the planner to construct a “keep out” zone corresponding to 

the MURS propeller and aft control surfaces. The UUV rendezvous trajectory must avoid 

this area. Once the rendezvous plan has been agreed upon and acknowledged, both the 

UUV and the MURS proceed to position 3 for rendezvous (stage B). Finally, at position 4 the 

recovery operation (stage C) is completed. 
 

 

Fig. 19. Manifold of initial and final conditions  

 

 

Fig. 20. Proposed rendezvous scenario 

The simulated rendezvous scenario assumes three stages: communication (A), execution (B), 

and recovery (C), respectively. From the trajectory generation standpoint we are primarily 

concerned with optimizing the path that would bring the UUV from its current position 

(point 2) to a certain rendezvous state (point 3) in the preset time rT  proposed by the MURS, 

while obeying all possible real-life constraints and avoiding the MURS keep out zone. 

Figures 21 and 22 present a computer simulation in which a MURS is moving due east at 

1m/s (1.94kn) with the docking station at a depth of 15m. A UUV is located 800 meters 

away. The MURS wishes to conduct a rendezvous operation rT  minutes later and sends the 

corresponding information to the UUV. This information includes the proposed final 

position
f

x , fy , 
f

z  rendezvous course, speed, and time. Figure 21 shows several generated 

trajectories, which meet the desired objectives for this scenario and also avoid an obstacle 

located along the desired path to MURS. These trajectories differ by the arrival time rT . 
During handshaking communications with the MURS, the UUV determines whether the 

suggested rT  is feasible. Of the four trajectories shown, the trajectory generated for 
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450rT s=  happens to be infeasible (the constraints on controls are violated). The solution of 

the minimum-time problem for this scenario yielded 488 seconds as the soonest possible 
rendezvous time. 

The other three trajectories shown in Fig.21 are feasible. That means that the boundary 

conditions are met (by construction) and all constraints including OA are satisfied (via 

optimization). As an example, Fig.22 shows the time histories for the yaw rate cψ$  and flight 

path angle cγ  vehicle control parameters as well as the UUV’s speed as it followed the 

trajectory for 600rT s= . 
 

 

Fig. 21. Examples of rendezvous trajectories 

 

 

Fig. 22. Constrained vehicle parameters for 600rT s=  

Stochastic simulations of the manifolds shown in Fig.21 illustrate that a successful rendezvous 

can take place in all cases as long as rT  is greater than a certain value. Furthermore, they show 

that minimization of the performance index using the IDVD method ensures that a smooth, 

realizable trajectory is calculated in just a few seconds, regardless of the initial guess. 

Converting code to an executable file in lieu of using an interpretative programming language 

reduces execution time down to a fraction of a second. 
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7.2 Feature-based navigation 
In the last decade, several different UUVs have been developed to perform a variety of 
underwater missions. Survey-class vehicles carry highly accurate navigational and sonar 
payloads for mapping the ocean floor, but these payloads make such vehicles very 
expensive. Vehicles which lack these payloads can perform many useful missions at a 
fraction of the cost, but their performance will degrade over time from inaccurate self-
localization unless external navigation aids are available. Therefore, it is interesting to 
consider collaborative operations via a team of vehicles for maximum utility at reasonable 
cost. The NPS CAVR has been investigating one such concept of operations called feature-
based navigation. This technique allows vehicles equipped only with a GPS receiver and 
low cost imaging sonar to exploit an accurate sonar map generated by a survey vehicle. This 
map is comprised of terrain or bottom object features that have utility as future navigational 
references. This sonar map is downloaded to the low-cost follow-on vehicles before launch. 
Starting from an initial GPS position fix obtained at the surface, these vehicles then navigate 
underwater by correlating current sonar imagery with the sonar features from the survey 
vehicle’s map. The localization accuracy of vehicles performing feature-based navigation 
can be improved by maximizing the number of times navigational references are detected 
with the imaging sonar. The following simulation demonstrates how the IDVD trajectory 
generation framework can be tailored to this application. By incorporating a simple 
geometric model of an FLS having a range of 60m, 30-degree horizontal FOV and operating 
at a nominal ping rate of 1Hz, a new performance index was designed to favour candidate 
trajectories, which point the sonar toward navigational references in the a priori feature map. 
For this example, we sought trajectories that could obtain at least three sonar images of each 
feature in the map. Figure 23 shows results of a computer simulation in which the number 
of times each target was imaged by the sonar has been annotated. The resulting trajectory is 
feasible (i.e. satisfies turn rate constraints) and yields three or more sonar images of all but 
two targets.  
 
 
 

 
 
 

Fig. 23. Simulation results for a feature-based navigation application 

www.intechopen.com



 
Autonomous Underwater Vehicles 

 

92

7.3 Obstacle avoidance in cluttered environments 
Another application which benefits from the aforementioned trajectory generation 

algorithm is real-time OA in a highly cluttered environment. Figure 24 illustrates simulated 

trajectories for avoiding a field of point-like objects in the 2D horizontal plane (e.g. a kelp 

forest) and in all three dimensions (e.g. a mine field). In both simulations, the performance 

index was designed to minimize deviations from a predefined survey track line while 

avoiding all randomly generated obstacles via a CPA calculation. Terminal boundary 

conditions for the OA manoeuvre were chosen to ensure the UUV rejoined the desired track 

line before reaching the next waypoint (i.e. the manoeuvre terminated at a position 95% 

along the track segment). Initial boundary conditions were chosen to simulate a random 

obstacle detection which triggers an avoidance manoeuvre after the UUV has completed 

about 10% of the predefined track segment. For illustration purposes, Fig.24 includes several 

candidate trajectories evaluated during the optimization process although the algorithm 

ultimately converged to the trajectory depicted with a thicker (red) line (CPA distances to 

each obstacle appear as dashed lines). 

Figure 25 shows the results from an initial sea trial of 3D OA that took place in Monterey 

Bay on 9 December 2008. This experiment tested periodic trajectory generation and 

replanning on the REMUS UUV using a simulated obstacle map comprised of oriented 

bounding boxes. As seen in Fig.25, initially the REMUS UUV follows a predefined track 

segment (dash-dotted line) at 4 meters altitude. At some point the vehicle’s FLS simulator 

”detects” an obstacle (i.e. the current REMUS position and orientation place the virtual 

obstacle within the range and aperture limits of the FLS). This activates the OA mode, and 

the planner generates an initial trajectory (green) from the current vehicle position to the 

final waypoint. REMUS follows this trajectory until the next planning cycle (4 seconds later) 

when the vehicle generates a new trajectory and continues this path planning-path 

following cycle. 

7.4 Obstacle avoidance in restricted waterways 
The NPS CAVR in collaboration with Virginia Tech (VT) is developing technologies to 

enable safe, autonomous navigation by USVs operating in unknown riverine environments. 

This project involves both surface (laser) and subsurface (sonar) sensing for obstacle 

detection, localization, and mapping as well as global-scale (wide area) path planning, local-

scale trajectory generation, and robust vehicle control. The developed approach includes a 

hybrid receding horizon control framework that integrates a globally optimal path planner 

with a local, near-optimal trajectory generator (Xu et al., 2009). 

The VT global path planner uses a Fast Marching Method (Sethian, 1999) to compute the 
optimal path between a start location and a desired goal location based on all available map 
information. While resulting paths are globally optimal, they do not incorporate vehicle 
dynamics and thus cannot be followed accurately by the USV autopilot. Moreover, since 
level set calculations are computationally expensive, global plans are recomputed only 
when necessary and thus do not always incorporate recently detected obstacles. Therefore, a 
complimentary local path planner operating over a short time horizon is required to 
incorporate current sensor information and generate feasible OA trajectories. The IDVD-
based trajectory generator described above is ideally suited for this purpose. VT has 
developed a set of matching conditions which guarantee the asymptotic stability of this 
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a)  
 
 

b)  

Fig. 24. Simulated 2D (a) and 3D (b) near-optimal OA trajectories 

 

 

Fig. 25. REMUS sea trial results demonstrating periodic planning and path following 
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framework. When these matching conditions are satisfied, the sequence of local trajectories 
will converge to the global path’s goal location. If the local trajectories no longer satisfy 
these conditions (usually because the global path is no longer compatible with recently 
detected obstacles), the global path is recomputed.  
Simulation results demonstrate the need for local trajectories that incorporate vehicle 

dynamics and real-time sensor data (Fig.26). For this simulation, an initial level set map was 

computed using an occupancy grid created by masking land areas as occupied and water 

areas as unoccupied in an aerial image of the Sacramento River operating area. Performing 

gradient descent on the level set from the USV’s initial position produces an optimal path 

shown in blue. To simulate local trajectory generation with a stale global plan, the initial level 

set map was not updated during the entire simulation. Meanwhile, to simulate access to real-

time sensor data, the local planner was provided with a complete sonar map generated during 

a previous SeaFox survey of the area. In Fig.26, this sonar map has been overlaid on the a priori  

 

     

a) 

 

b) 

Fig. 26. Simulated local OA trajectories 
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map with red and green colour channels representing the probability that a cell is occupied 
or unoccupied, respectively. Black pixels represent cells with unknown status. A short green 
line segment depicts the USV’s orientation when the local planner is invoked, and the 
resulting trajectory is shown in yellow. The first simulation (Fig.26a) shows a local trajectory 
which deviates from the stale global plan to avoid a sand bar detected with sonar. In the 
second simulation (Fig.26b) the USV is initially heading in a direction opposite from the 
global path, but the local planner generates a dynamically feasible trajectory to turn around 
and rejoin the global path later. 
To track these local trajectories, the 2D controller described in Section 6.1 was implemented 

on the SeaFox USV by mapping the controller’s turn rate commands into rudder commands 

understood by the SeaFox autopilot. After validating the turn rate controller design during 

sea trials on Monterey Bay, the direct method trajectory generator and closed-loop path 

following controller were tested on the Pearl River in Mississippi on 22 May 2010 (Fig.27). 

For this test, the local planner used a sonar map of the operating area to generate the 

trajectory (the cyan line) from an initial orientation (depicted by the yellow arrow) to a  

 

 

Fig. 27. Path-following controller test on the Pearl River 
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desired goal point (depicted by a circle). The SeaFox USV then followed it almost precisely 

(the magenta line). As seen from Fig.27 the trajectory generator was invoked at an arbitrary 

location while the USV was performing a clockwise turn. Since the USV was commanded to 

return to its start location upon completion of this manoeuvre, the magenta line includes a 

portion of this return trajectory as well (otherwise, the actual USV track would be nearly 

indistinguishable from the reference trajectory on this plot). 

8. Conclusion 

An onboard trajectory planner based on the Inverse Dynamics in the Virtual Domain direct 

method presented in this chapter is an effective means of augmenting an unmanned 

maritime vehicle’s autopilot with smooth, feasible trajectories and corresponding controls. It 

also facilitates incorporation of sophisticated sensors such as forward-looking sonar for 

deliberative and reactive obstacle avoidance. This approach has been implemented on both 

unmanned undersea and surface vehicles and has demonstrated great potential. Beyond its 

ability to compute near-optimal collision-free trajectories much faster than in real time, the 

proposed approach supports the utilization of any practically-sound compound 

performance index. This makes the developed control architecture quite universal, yet 

simple to use in a variety of applied scenarios, as demonstrated in several simulations and 

preliminary sea trials. This chapter presented results from only a few preliminary sea trials. 

Future research will continue development of the suggested trajectory framework in 

support of other tactical scenarios. 
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