
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

8

The Impact of the Data Archiving File Format
on Scientific Computing and Performance

of Image Processing Algorithms in MATLAB
Using Large HDF5 and XML Multimodal and

Hyperspectral Data Sets

Kelly Bennett1 and James Robertson2
1U.S. Army Research Laboratory, Sensors and Electron Devices Directorate, Adelphi, MD

2Clearhaven Technologies LLC, Severna Park, MD
U.S.A

1. Introduction

Scientists require the ability to effortlessly share and process data collected and stored on a

variety of computer platforms in specialized data storage formats. Experiments often

generate large amounts of raw and corrected data and metadata, which describes and

characterizes the raw data. Scientific teams and groups develop many formats and tools for

internal use for specialized users with particular references and backgrounds. Researchers

need a solution for querying, accessing, and analyzing large data sets of heterogeneous data,

and demand high interoperability between data and various applications (Shasharina et al.,

2007; Shishedjiev et al., 2010).

Debate continues regarding which data format provides the greatest transparency and

produces the most reliable data exchange. Currently, Extensible Markup Language (XML)

and Hierarchical Data Format 5 (HDF5) formats are two solutions for sharing data. XML is a

simple, platform-independent, flexible markup meta-language that provides a format for

storing structured data, and is a primary format for data exchange across the Internet

(McGrath, 2003). XML data files use Document Type Definitions (DTDs) and XML Schemas

to define the data structures and definitions, including data formatting, attributes, and

descriptive information about the data. A number of applications exist that use XML-based

storage implementations for applications, including radiation and spectral measurements,

simulation data of magnetic fields in human tissues, and describing and accessing fusion

and plasma physics simulations (Shasharina et al., 2007; Shishedjiev et al., 2010).

HDF5 is a data model, library, and file format for storing and managing data. HDF5 is

portable and extensible, allowing applications to evolve in their use of HDF5 (HDF Group).

HDF5 files provide the capability for self-documenting storage of scientific data in that the

HDF5 data model provides structures that allow the file format to contain data about the file

structure and descriptive information about the data contained in the file (Barkstrom, 2001).

Similar to XML, numerous applications using the HDF5 storage format exist, such as fusion

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

146

and plasma physics, astronomy, medicine and bio-imaging (Shasharina et al., 2007;

Dougherty et al., 2009).

In this chapter, we will use hyperspectral images stored in XML and HDF5 format to
compare the relative performance of the file format using computationally intensive signal

and image processing algorithms running in MATLAB on Windows® 64-bit and Linux 64-
bit workstations. Hyperspectral imaging refers to the multidimensional character of the
spectral data set, where the acquisition of images takes place over many contiguous spectral
bands throughout the visible and infrared (IR) regions (Goetz et al., 1985). Sensor fusion and
advanced image processing techniques are now possible using the information from these
different bands that allow applications in aerospace, defense, medicine, and other fields of
study.
To assist researchers in exchanging the data needed to develop, test, and optimize the
techniques, selecting the best file format for computing environments (such as MATLAB)
requires additional analysis. Such analysis includes analyzing the relative performance of
the file format, including scalability, with respect to various computational tools, computer
architectures, and operating systems (Bennett & Robertson, 2010). In this chapter we provide
insights into the challenges researchers face with a growing set of data, along with
expectations for performance guidelines on workstations for processing large HDF5 and
XML hyperspectral image data. Additionally, in this chapter, we provide specific results
comparing data load, process, and memory usage for the differing data formats, along with
detailed discussions and implications for researchers.

2. Analysis of HDF5 and XML Formats

The goals of this analysis are to:
1. Determine strengths and weaknesses of using HDF5 and XML formats for typical

processing techniques associated with large hyperspectral images;
2. Compare and analyze processing times on Windows and Linux 64-bit workstations for

HDF5 and XML hyperspectral images; and
3. Identify areas that require additional research to help improve efficiencies associated

with processing large HDF5 and XML files, such as hyperspectral images.

3. Methodology for Analysis of HDF5 and XML Formats

To address the analysis goals a set of 100 files containing multimodal hyperspectral images,
ranging in size from 57 MB to 191 MB, stored in HDF5 format provided the input for the
creation of HDF5 and XML dataset files as part of a preprocessing step for further analysis.
The created HDF5 and XML dataset files provided the input to a series of analysis
techniques typically associated with image and signal processing. Two different
workstations running 64-bit Windows and Linux operating systems are used. The
workstations are equipped with MATLAB (scientific programming language). Table 1
displays the descriptions of each of the workstations.
The hyperspectral images were originally stored in HDF5 format and included several
different types of metadata in the form of HDF5 Groups and Datasets. Metadata in a typical
HDF5 file includes ground truth, frequency bandwidths, raw image data, TIFF (Tagged

® Registered trademark of Microsoft Corporation.

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

147

Image File Format)-formatted images, collection information, and other ancillary
information, allowing researchers to understand the images and their collection parameters.

Descriptor Windows 64-bit Linux 64-bit

Operating System Windows 7 home premium Red Hat Enterprise Linux 5

CPU Intel i7 920 @2.67 GHz
2 processor, quad core Xeon

2.0 GHz

Memory 6 GB 16 GB

MATLAB version 7.11.0 (R2010b) 7.11.0 (R2010b)

Table 1. Research Equipment Descriptions.

Each original HDF5 file went through a number of preprocessing steps to remove the
metadata in preparation for analysis. For analysis purposes, we needed to remove the
metadata from the original HDF5 files and create new HDF5 and XML formatted files
consisting of only raw sensor data prior to performing image processing. These steps included
loading the original HDF5 file structures, searching through the HDF5 groups to find the raw
image data, saving the new HDF5 file, creating and populating an XML document node, and
saving the XML file. Figure 1 shows the overall steps in processing the original HDF5 file,
along with some critical MATLAB code associated with each of those steps.

Fig. 1. Original HDF5 File Preprocessing Overview for the creation of HDF5 and XML
Dataset Files.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

148

After creating the HDF5 and XML files for the raw sensor data, each file was loaded into
MATLAB, converted to an array as needed, and run through a number of image processing
steps. XML stores the array data as a large ASCII character string, which requires converting
the character array into a numeric array before beginning any processing. Unfortunately, the
arrays were too large to use MATLAB’s str2num() function, so a novel custom method was
developed to read each character and convert it into numbers before writing the numbers
into a MATLAB array.

Technique Description Example MATLAB Call

Image
Adjustment

Maps the values in intensity to
new values such that 1% of data

saturates at low and high
intensities of the original image.

im2= imadjust(im);

Histogram

Calculates a histogram where
the variable bin specifies the
number of bins used in the

histogram.

[COUNTS,X] = imhist(im2,bin);

Descriptive
Statistics

Computes the mean and
standard deviations of the

image values.

imagemean=mean2(im2);
imagestd=std2(im2);

Median Noise
Filter

Performs a median filtering of
the image using a 3-by-3

neighborhood.
J=medfilt2(im2);

Weiner Noise
Filter

Performs a filtering of the image
using pixel-wise adaptive

Wiener filtering, using
neighborhoods of size fx-by-fy

to estimate the local image
mean and standard deviation

K = wiener2(im2,[fx fy]);

Sobel Edge
Detection

Sobel method finds edges using
the Sobel approximation to the
derivative. It returns edges at

those points where the gradient
is maximum

BW1 = edge(im2,'sobel');

Canny Edge
Detection

The Canny method finds edges
by looking for local maxima of

the gradient. The derivative of a
Gaussian filter provides the
approach for calculating the

gradient.

BW2 = edge(im2,'canny');

FFT 2D
Threshold

Feature
Detection

FFT approach to template
matching and feature detection.

z= im2(minx:maxx,miny:maxy);

C = real(ifft2(fft2(im2) .*
fft2(rot90(z,2),dims(1),dims(2))));

t=max(C(:)) - .05*max(C(:));

Table 2. Image Processing Technique Descriptions.

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

149

Once stored as numeric arrays, the processing for the XML and the HDF5 files were the
same and these processing steps include image adjustment, histogram calculation, and
descriptive statistics, filtering to remove noise, edge detection and 2-D FFT threshold feature
detection. Each of these image-processing techniques includes possible techniques users
may invoke when processing hyperspectral images. Table 2 provides a brief description of
each of these techniques and an example call within MATLAB. In Table 2, “im” represents
the original image and ‘im2’ represents a processed image of ‘im’. Each row in Table 2
shows various processing operations performed on ‘im’ or ‘im2’. Figure 2 shows the flow of
the image processing techniques.

Fig. 2. Image Processing Overview.

Some of the metrics used for assessing the performance of each file format are calculation of
load times, process times, and memory usage statistics for each file format and machine.
These metrics reveal the computational performance of processing large archived data files
in MATLAB using typical image processing algorithms. MATLAB’s tic and toc methods
were convenient to measure elapsed times associated with each processing step.
Hyperspectral images consist of multiple segments representing different spectral bands or
narrow frequency bands, with data collected for each image segment and averaged for
reporting purposes. For example, an image with 62 segments would generate data for each
of the 62 segments and the mean of those values, with the results described in the Results
section of this paper. A typical sequence of elapsed time measurement would occur as
shown in Figure 3. In the Figure 3 example, all files ("i") and segments ("j") perform the
timing process for the image adjustment algorithm.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

150

% Adjust the image for better display
tic;

im2= imadjust(im);
adjustIM(i,j)=toc;

Fig. 3. Elapsed Time Measurement Example Code.

After loading each created dataset file, both in HDF5 and XML, measuring the memory will
determine the average memory usage. For the Windows environment, MATLAB’s memory
functions perform the process of determining the physical memory available at that point in
time. For the Linux environment, system calls to the Linux memory functions determine the
physical memory available after loading the file. MATLAB does not provide a Linux
memory function at this time. Figure 4 shows a typical Windows memory call.

% Measure Windows Memory
[USERVIEW, SYSTEMVIEW] = memory;

pmem(i,j)=SYSTEMVIEW.PhysicalMemory.Available;

Fig. 4. Windows Memory Measurement Example Code.

Test Description Performance Factors

LU Perform LU of a full matrix Floating-point, regular memory access

FFT Perform FFT of a full vector Floating-point, irregular memory access

ODE
Solve van der Pol equation with

ODE45
Data structures and MATLAB function

files

Sparse Solve a symmetric sparse linear system Mixed integer and floating-point

2-D Plot Bernstein polynomial graph 2-D line drawing graphics

3-D
Display animated L-shape membrane

logo
3-D animated OpenGL graphics

Table 3. MATLAB’s Benchmark Descriptions.

Prior to running the algorithms, each computer system performed baseline benchmarks.
MATLAB has a convenient built-in benchmark named “bench” that executes six different
MATLAB tasks and compares the execution speed with the speed of several other
computers. Table 3 shows the six different tasks.
The LU test performs a matrix factorization, which expresses a matrix as the product of two
triangular matrices. One of the matrices is a permutation of a lower triangular matrix and
the other an upper triangular matrix. The fast Fourier transform (FFT) test performs the
discrete Fourier transform computed using an FFT algorithm. The ordinary differential
equation (ODE) test solves equations using the ODE45 solver. The Sparse test converts a

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

151

matrix to sparse form by removing any zero elements. Finally, the 2-D and 3-D measure 2-D
and 3-D graphics performance, including software or hardware support for OpenGL (Open
Graphics Library).
The benchmark results in a speed comparison between the current machine and industry-
available machines.

4. Data analysis

Data analysis included calculating descriptive statistics on each test to include mean,
standard deviation, variance, minimum and maximum values, and t-test analysis; to
determine relationships and differences in performance measurements comparing XML and
HDF5 formats for both computer systems. The t-test is one of the most commonly used
statistics to determine whether two datasets are significantly different from one another
(Gay & Airasian, 2003). The t-test determines if the observed variation between the two
datasets is sufficiently larger than a difference expected purely by chance. For this research,
the significance level (α) was set at 0.05. This value is commonly accepted and is the default
value for many statistical packages that include the t-test (Gay & Airasian, 2003; SAS
Institute, 2003; MathWorks, 2011).
For each processing, memory, or loading algorithm, the descriptive statistics for each
hyperspectral image create relevant data for a final analysis. The information obtained from
averaging across each segment of the multiple segmented images creates the analytical data
products used in the results.
In addition to the descriptive statistics for each process, graphical plots illustrate the load

times, process times, and memory usage as a function of file size for each data type and test

environment. These plots provide an ability to identify differences between the XML and

HDF5 data types and possible processing bottlenecks and limitations.

5. Results and Implications

Scientists and researchers need a reliable format for exchanging large datasets for use in
computational environments (such as MATLAB). MATLAB has many advantages over
conventional languages (such as FORTRAN, and C++) for scientific data analysis, such as
ease of use, platform independence, device-independent plotting, graphical user interface,
and the MATLAB compiler (Chapman, 2008). Previous results have shown HDF5 format
provided faster load and process times than XML formats, and loads large amounts of data
without running into memory issues (Bennett & Robertson, 2010). This research supports
these findings.
This section provides results and discussion of this current research. After the baseline
benchmarks provide results for each machine, the analysis will show example images and
descriptive statistics for each image-processing algorithm, along with tables, plots, and
discussion comparing HDF5 and XML formats for each task.
Table 4 shows the average of 10 MATLAB bench time results for each of the machines for
the LU, FFT, ODE, Sparse, 2D, and 3D tests. For most tests, the Windows 64-bit machine
performed better (as indicated by smaller execution times) than the Linux 64-bit machine.
One exception to this was the 2D graphics, where the Linux 64-bit machine was slightly
faster than the Windows machine. Based on these results, the Windows 64-bit machine
should perform slightly faster for the subsequent image processing tasks.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

152

Machine LU FFT ODE Sparse 2D 3D

Windows 64-
bit

0.0389 0.0511 0.1353 0.1789 0.4409 0.7531

Linux 64-bit 0.0872 0.1221 0.2267 0.3137 0.3301 0.8154

Table 4. MATLAB’s Bench Results.

Figure 5 shows a typical image used in this analysis. This image represents one specific
frequency range (spectral band) for a 460 x 256 image after adjusting of the intensity for
display.

Fig. 5. Example 460 x 256 Image.

A quad chart (Figure 6) displays processed images showing some of the techniques. The
first image in Figure 6 is an image in the upper-left corner representing the image adjusted
for intensity. The image in the upper-right corner represents the image after the Weiner
noise filter is applied. Next, the image in the lower-left corner represents the image after the
Canny edge detection is applied. Lastly, the image in the lower-right corner represents the
FFT threshold results.
Recall from Figure 1, preparing the images for processing requires several steps. The first
step was to load the HDF5 structures, followed by finding and loading the HDF5 raw image
data, saving the HDF5 raw image data, populating the XML docNode, and saving the XML
raw image data.

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

153

Fig. 6. Quad Image Example 460 by 256 Image.

A total of 100 original HDF5 files, ranging from 57 to 191 MB in size, provide the input for

the creation of the HDF5 and XML dataset files. Table 5 displays the original HDF5 file size

statistics for this research. The original HDF5 files contained ground truth, collection

information, processed data, and spectral content, in addition to the raw image data. The

computed image processing statistics use only the raw image data extracted from the HDF5

files and saved to HDF5 and XML formats.

Descriptor Value (MB)

Mean 116.7304

Minimum 56.9807

Maximum 191.7729

Standard Deviation 28.5472

Variance 814.9406

Table 5. Original HDF5 File Size Descriptions.

The average times associated with each of these steps are shown in Table 6 for the Windows
64-bit and Table 7 for Linux 64-bit machine. The column labeled “Total (s)” represents the
sum of each of the processing steps for the respective machines. For the current
configuration of the Windows 64-bit machine, the mean preparation time per file was just
over 9 s, with preparation times ranging between almost 7 and approximately 16.5 s. For the
current configuration of the Linux 64-bit machine, the mean preparation time per file was
almost 11 s, with times ranging between almost 9 and approximately 19.5 s.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

154

Statistic Load (s) Read (s)
HDF5 Save

(s)
docNode (s)

XML Save
(s)

Total (s)

Mean 0.3313 0.3665 0.0996 7.129 1.1577 9.0841

Minimum 0.0261 0.0097 0.0168 6.0196 0.9191 6.9913

Maximum 1.1602 0.7236 0.5047 12.2276 1.9504 16.567

Standard
Deviation

0.2269 0.1384 0.1275 1.8607 0.301

Variance 0.0515 0.0192 0.0163 3.4623 0.0906

Table 6. Windows 64-bit HDF5 Data Average Preparation Times.

Statistic Load (s) Read (s)
HDF5 Save

(s)
docNode (s)

XML Save
(s)

Total (s)

Mean 0.043 0.0226 0.0653 9.5711 1.0478 10.75

Minimum 0.0076 0.0107 0.044 8.146 0.7723 8.9806

Maximum 0.3131 0.1311 0.1404 16.775 2.1607 19.52

Standard
Deviation

0.0382 0.0171 0.0245 2.6023 0.3637

Variance 0.0015 0.0003 0.0006 6.7721 0.1322

Table 7. Linux 64-bit HDF5 Data Average Preparation Times.

Table 8 shows the average free physical memory for each system during the preprocessing

steps. Free physical memory can vary throughout a run based on system processing during

the run and the amount of memory allocated to MATLAB for processing the run. For all

runs during this research, the MATLAB Java heap memory was set to its maximum possible

value to avoid any potential out-of-memory issues. In MATLAB version 2010b, selecting

File, then Preferences, then General, and then Java Heap Memory, and then using the scroll

bar to set its maximum setting changes the memory. The maximum setting for the Windows

64-bit machine was 1533 MB, while the maximum setting for the Linux 64-bit machine was

4011 MB. One trade-off with the Java heap memory being larger in Linux is that less

physical memory is available for the run. However, increasing the Java heap memory does

allow for larger possible Java objects, which is useful when dealing with large image arrays.

Statistic Windows 64-bit (GB) Linux 64-bit (GB)

Mean 2.7223 0.2374

Minimum 2.5234 0.0791

Maximum 2.9228 1.8715

Standard Deviation 0.0738 0.3696

Variance 0.0054 0.1366

Table 8. Free Physical Memory during HDF5 Preparation Steps.

After the preparation steps are complete, saving the raw image data to HDF5 and XML files
is the next step. The new raw image files in HDF5 and XML contain only the image

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

155

dimension information and the raw image pixel values. Table 9 provides the file statistics of
the raw image data in both HDF5 and XML format. In all cases, the XML files are larger
compared to the HDF5 files. In most cases, the resulting XML file is between 2.5 and 3 three
times as large as the similar HDF5 file. This finding is consistent with other published
results (Bennett & Robertson, 2010).

Statistic HDF5 Raw Image Size (MB) XML Raw Image Size (MB)

Mean 17.8374 49.3223

Minimum 13.9301 41.0791

Maximum 30.1252 86.0207

Standard Deviation 6.6819 13.7911

Variance 44.6480 190.1954

Table 9. HDF5 and XML Raw Image File Size Statistics.

After saving the raw image data to HDF5 and XML files, each file was loaded and processed
according to the steps shown previously in Figure 2. These steps include loading the file,
adjusting the image, calculating image statistics, removing noise, detecting edges, and
detecting features. Algorithms include two different noise removal algorithms (Median and
Weiner Filtering) and two different edge detection algorithms (Sobel and Canny). All of
these algorithms, unmodified for this research effort, are available within the MATLAB
Image Processing toolbox.
Table 10 shows the statistical results of the execution times for each of these image-
processing algorithms for HDF5 and XML formats for the Windows 64-bit. Table 11 shows
the results for the Linux 64-bit machine.

 HDF5 XML

Process Mean Min Max Std Var Mean Min Max Std Var

Load (s) 0.0258 0.0013 0.0530 0.0072 0.0001 0.7309 0.6117 1.3135 0.2059 0.0424

Adjust (s) 0.0162 0.0058 0.0778 0.0235 0.0006 0.0419 0.0055 0.2366 0.0828 0.0069

Histogram (s) 0.0128 0.0013 0.0730 0.0262 0.0007 0.0225 0.0022 0.1256 0.0447 0.0020

Mean2 (s) 0.0005 0.0001 0.0026 0.0008 0.0000 0.0007 0.0001 0.0037 0.0013 0.0000

STD2 (s) 0.0124 0.0009 0.0735 0.0261 0.0007 0.0089 0.0005 0.0489 0.0179 0.0003

Median (s) 0.0057 0.0021 0.0273 0.0081 0.0001 0.0822 0.0097 0.4280 0.1545 0.0239

Weiner (s) 0.1111 0.0098 0.6541 0.2309 0.0533 0.1307 0.0088 0.7117 0.2597 0.0674

Sobel (s) 0.0663 0.0069 0.3890 0.1347 0.0181 0.0661 0.0051 0.3542 0.1288 0.0166

Canny (s) 0.7276 0.0673 4.1964 1.4975 2.2425 0.5622 0.0532 2.9744 1.0781 1.1622

FFT
Feature (s)

0.1222 0.0124 0.6884 0.2398 0.0575 0.1461 0.0122 0.7627 0.2759 0.0761

Total (s) 1.1006 0.1079 6.2351 1.7922 0.7090 6.9594

Table 10. Windows 64-bit HDF5 and XML Image Processing Execution Times.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

156

On both the Windows and Linux machines, the total execution times for the HDF5 files were
significantly less than the total execution times for the XML files. Comparing the results for
the mean execution time for the Windows machine, HDF5 demonstrates excellent
performance (~1.1 s) compared to XML (~1.8 s). The execution times for the windows
machine ranged between ~0.1 and ~6.2 s for the HDF5 files, compared to ~0.7 – ~6.9 s for
the XML files. Similarly, comparing the results for the mean execution time for the Linux
machine, HDF5 demonstrates excellent performance (~1.5 s) compared to XML (~3.1 s). The
execution times for the Linux machine ranged between ~0.15 and ~9.2 s for the HDF5 files,
compared to ~1.3 – ~12.3 s for the XML files.
The total execution time difference for both the Windows and Linux machines is primarily
due to the “load” process. Loading XML files requires far more execution time due to the
larger file sizes of the created XML data files (~3 times larger file size when storing the raw
data in XML format).
Additional loading difficulties with XML files include:
1. Slowness of the serialization process of converting Unicode XML into binary memory

storage (McGrath, 2003).
2. MATLAB loading algorithm (‘xmlread’ method) uses the Document Object Model

(DOM) to load XML files. DOM is memory and resource intensive, and can consume as
much as 10 times the computer memory as the size of the actual XML data file (Wang et
al., 2007).

3. In general, and of particular concern for users performing 32-bit processing, processing
speeds associated with XML loading can be greatly diminished as virtual memory
becomes insufficient compared with the size of the XML file as the computer starts to
run out of memory.

 HDF5 XML

Process Mean Min Max Std Var Mean Min Max Std Var

Load (s) 0.0199 0.0021 0.0509 0.0095 0.0001 1.3520 1.2015 2.0415 0.2444 0.0597

Adjust (s) 0.0250 0.0087 0.1276 0.0371 0.0014 0.0757 0.0095 0.4293 0.1503 0.0226
Histogram (s) 0.0160 0.0017 0.0914 0.0326 0.0011 0.0290 0.0028 0.1697 0.0598 0.0036

Mean2 (s) 0.0007 0.0003 0.0036 0.0010 0.0000 0.0020 0.0004 0.0106 0.0036 0.0000

STD2 (s) 0.0216 0.0019 0.1309 0.0447 0.002 0.0136 0.0012 0.0806 0.0285 0.0008

Median (s) 0.0631 0.0074 0.3595 0.1265 0.0160 0.1135 0.0127 0.6524 0.2291 0.0525

Weiner (s) 0.1564 0.0179 0.8985 0.3137 0.0984 0.1615 0.0140 0.9496 0.3351 0.1123

Sobel (s) 0.0699 0.0090 0.4486 0.1385 0.0192 0.1221 0.0095 0.7272 0.2573 0.0662

Canny (s) 0.8779 0.0746 5.1806 1.8290 3.3453 0.9195 0.0667 5.4927 1.9447 3.7817

FFT
Feature (s)

0.2810 0.0229 1.8790 0.5845 0.3416 0.2960 0.0235 1.7437 0.6157 0.3791

Total (s) 1.5315 0.1465 9.1706 3.0850 1.3417 12.2973

Table 11. Linux 64-bit HDF5 and XML Image Processing Execution Times.

Some other results worth mentioning confirm the expected relative calculation times
between differing noise filters and edge detection methods. As expected, the Weiner Filter
(using adaptive techniques) took more time than the Median Filter. In addition, the more
complex Canny edge detection algorithm took more time than the Sobel edge detection
algorithm.

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

157

The load times were larger for the XML files compared to the HDF5 files. This difference is
most likely due to the larger XML file size. Figure 7 visually displays the load times for the
XML and HDF5 files for the Linux 64-bit machine. Figure 8 shows a similar result for the
Windows 64-bit machine.

Fig. 7. Linux 64-bit XML and HDF5 Load Times.

Fig. 8. Windows 64-bit XML and HDF5 Load Times.

100

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

158

Corresponding increases in XML file size contribute to the large jumps observed in the XML
load times around file ID 75 and 90 (Figures 7 and 8). Similar arguments made earlier in the
chapter (slowness of serialization of converting Unicode to binary storage and resource
intensive DOM loading methods) offer explanation of the larger loading process times
compared to the more efficient loading of HDF5 binary files.
HDF5 load times do not significantly vary depending on file size. Efficient methods of
loading HDF5 binary data files, combined with excellent memory usage and use of
computing resources, into the MATLAB workspace, demonstrate the superior benefit of
archiving data in HDF5 versus XML. HDF5 provides seamless integration of data into
MATLAB without performance degradation (especially for large data sets) and is the ‘de
facto’ standard for MATLAB data files containing workspaces over 2 GB in size (Mather &
Rogers, 2007).
The load times (Figures 7 and 8) for both HDF5 and XML show similar behavior on both the
Windows and Linux machines. The cross platform behavior demonstrates the file size
dependency for XML loading performance, and the lack of file size dependency for HDF5
loading performance. As expected from the benchmark testing results, the XML loading
performance on the Windows machine is slightly faster than the Linux.
An additional processing step is required to prepare the large raw data for processing. In
XML files, the raw image data is stored as ASCII characters with whitespace separators. As
the image gets larger, converting from the ASCII character data to a MATLAB array can take
considerable time. MATLAB has a num2str() function that works very nice for small arrays,
but this function would not work for these large character arrays. A novel process allows the
reading of each character, one at a time, parse on spaces, and then load into the array,
resulting in a tremendous savings (as much as two orders of magnitude) in processing time.
C or other software development languages may provide other more efficient methods to
reduce this processing restriction. However, preparing the XML data for processing is a very
important process step. Additional new research and software tools may simplify and
expedite the process.
T-test analysis on the total image processing times confirmed that there was a significant

difference between the HDF5 and XML file processing times not attributable to random

chance. Specifically, HDF5 files took less processing time than XML files on the Windows

64-bit machine (t (198) = 2.27, ρ = .0014) and the Linux 64-bit machine (t (198) = 3.25, ρ =

.0244). The t (198), or t-value, represents the difference of the mean values for total

processing times for HDF5 and XML, respectively, divided by the standard error of the two

means. The 198 represents the degrees of freedom, or sample size minus 2 for an unpaired t-

test, which is appropriate for the independent groups in this analysis. The important value

(ρ) represents the probability of the difference (t-value) being due to chance is .0014 for the

Windows 64-bit machine, and .0244 for the Linux 64-bit machine. Setting the significance

level to .05 indicates that in both cases, the difference in processing times between HDF5

and XML is not by chance. These results suggest a significant difference between the total

process times for HDF5 and XML files for both machines. Further t-test analysis on the

individual components contributing to the total process time indicated significant

differences in execution times for load, adjust, and mean calculations for the Linux 64-bit

machine and load, adjust, and median noise filter for the Windows 64-bit machine. It seems

reasonable the load times would be different between the XML and HDF5 formats. To

provide insight into the differences between the XML and HDF5 formats for the image

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

159

adjust, median noise filter, and image mean calculations, requires additional research and

analysis, since these routines should provide similar results because the data format should

not impact the results for these processes.

Table 12 displays the t-test results for each of the components, resulting in significant
differences between the XML and HDF5 files. The t-test results for each of the other
components shows no significant difference between XML and HDF files.

Test Windows 64-bit Linux 64-bit

Load t (198) = 34.39, ρ < .0001 t (198) = 54.73, ρ < .0001

Image Adjust t (198) = 2.99, ρ = .0031 t (198) = 3.29, ρ = .0012

Image Mean t (198) = 1.55, ρ = .122 (Not
significant)

t (198) = 3.35, ρ = .0009

Median Filter t (198) = 4.97, ρ < .0001 t (198) = 1.93, ρ = .050
(Not significant)

Table 12. T-test Process Time Components Results.

Figures 9 and 10 graphically depict these findings by displaying the total processing time for
the HDF5 and XML files for the Linux 64-bit and Windows 64-bit test systems. In both cases,
the XML process times were significantly greater than the HDF5 process times.

Fig. 9. Linux 64-bit Image Processing Times- HDF5 and XML.

For each file format and test machine, the amount of calculated free physical memory usage
during the image processing stage shows definite differences between the file formats. Table
13 shows the descriptive statistics of these data. Similar to the preprocessing step, setting the
maximum Java heap memory to maximum for each run results in no out-of-memory errors.
For both machines, the XML files required more physical memory than the HDF5 files, as
indicated by less free physical memory in Table 13. This result is consistent with XML
loading requiring relatively large amounts of memory compared to the XML file size (Wang
et al., 2007).

100

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

160

Fig. 10. Windows 64-bit Image Processing Times- HDF5 and XML.

Statistic Windows 64-bit (GB) Linux 64-bit (GB)

 HDF5 XML HDF5 XML

Mean 3.6608 3.2726 13.6388 11.0808

Minimum 3.5995 3.0064 11.9786 11.0215

Maximum 3.6874 3.7858 14.4033 11.1872

Standard Deviation 0.0194 0.4446 0.6277 0.0924

Variance 0.0004 0.1976 0.394 0.0085

Table 13. Free Physical Memory during Image Processing Steps.

6. Ethics of data sharing

There is a large, complex set of concerns when openly sharing data — especially electronic
data over the Internet. From a scientific viewpoint of discovery, open sharing of scientific
data allows many researchers and scientists the ability to form a common understanding of
data, which is essential for furthering science. However, there are many ethical concerns in
the process of sharing data, particularly over the Web. For example, a given medical study
group collects sensitive, personal medical information as part of a medical case study using
public government funds. All of the data is stored (archived) on a government computer
system. Many years later, another researcher wants to use the data for another study, which
could help save the lives of many people. Should the second researcher be able to use the
archived data for a purpose other than the intent of the original study? Many arguments
come into discussion in this situation. The right to use data paid for with publically collected
funds seems reasonable; however, what about the right of human participants to privacy?
What happens if a data release into the public domain harms any of the participants? Such
harm may take the form of job loss or denial of life insurance, etc. The ethics of sharing data
is complex and the ethical dilemma of sharing data is an area of study requiring much
thought and discussion.

100

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

161

Many of the ethical concerns stem from a balance of beneficial results from sharing data
versus ethical concerns researchers have in such sharing. Ethical data sharing and
management involves reconciliation of diverse conflicting values (Sieber, 2005). Among
these concerns are the sharing of data for the benefit of society and science, while protecting
the interest of human participants in data collections (Mauthner & Perry, 2010). For many
years, researchers took the position of protecting the interests of the human participants in
such data; however, with the advent of sharing data across the Web, the interest of human
participants is certainly less sure and threatens the overall fabric of the trust-based
relationship that exists between researcher and participant. A definite loss of data control
can exist when sharing data across the Web, possibility resulting in the loss of privacy and
protection of human participants (Mauthner & Perry, 2010).
Another ethical concern is the rights of those who collect data and receive no recognition by
those who download the data through public Web interfaces for use in their research. The
process of collecting high quality data requires much time, effort, and expense; moreover,
many of the individuals who collect data (data producers) are in a positional or career
situation where they are vulnerable to receiving little recognition for their data collection
efforts by indiscriminate availability of data over the Web. Such individuals are not nearly
as protected as data users, such as algorithm designers, who can protect their interests
through intellectual property rights (Mauthner & Perry, 2010).
Along with recognition of the data as a contribution deserving recognition, intellectual
property rights assigning ownership and rightful claims to the data are another ethical
concern. Reductions or even elimination of researcher’s data rights occurs when funding
agencies require a researcher to share data, especially over the Web, allowing anyone to
access the information. Certain government agencies are always balancing the public’s right
to information collected with public funds, and the right to protect both the researcher’s
intellectual property and the test participant’s privacy rights.
Archiving and disseminating data over the Web creates a “data as commodity” mindset,
where the ethical concerns of both the researcher and human participant become lost in the
impersonal downloading of archived data (Mauthner & Perry, 2010). When sharing data,
regardless of the methods, confidentially of human participants is important at all times.
Data providers must take great care in judging the sensitivity of the data and may find it
necessary to restrict access based on ethical, legal, or security justifications, even in the case
of publicly funded data collections. Further safeguards in data dissemination include
restricting others (end users) of disseminating data as a third party; thus, requiring an end
user to go to the original source to acquire the data (MIT Libraries, 2011).
The ethics of data sharing is clearly more complex today than before the advent of the
Internet. However, many general guiding principles apply to all data sharing situations. As
a core group of guiding principles, every data collector and provider has a duty to:
1. Protect the confidentially of human participants in data collections (UK Data Archive,

2011).
2. Avoid providing sensitive information of human test participants, which may endanger

data test participants (UK Data Archive, 2011).
3. Consult with the test participants on making data publically available and be sensitive

to their wishes (UK Data Archive, 2011).
4. Inform the test participants on the use of the data, and the methods, procedures, and

intentions of archiving and disseminating the data, prior to using them as test
participants (UK Data Archive, 2011).

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

162

5. Make data available to the public, which doesn’t violate ethical, legal, or security
principles (UK Data Archive, 2011).

7. Conclusions

This research processed 100 large hyperspectral images in both HDF5 and XML formats on
Windows 64-bit and Linux 64-bit machines. A number of image processing steps available
within MATLAB, including intensity adjustment, histogram calculation, statistical analysis,
noise removal, edge detection and feature extraction, provided the algorithms to fulfill the
goals of the research:
1. Determine strengths and weaknesses of using HDF5 and XML formats for typical

processing techniques associated with large hyperspectral images.
2. Compare and analyze processing times on Windows and Linux 64-bit machines for

HDF5 and XML hyperspectral images.
3. Identify areas that require additional research to help improve efficiencies associated

with processing large HDF5 and XML hyperspectral images.
The research identified a number of strengths and weaknesses. First, the overall image
processing results show reduced processing times for images stored in HDF5 compared to
XML format. The main contribution to this difference is the large load time and the
preprocessing step required to convert an ASCII XML character string to a numeric array in
MATLAB. The relative size of the files is the main factor in the difference in load speed with
the XML files being almost three times as large as the HDF5 files. A larger file will always
take more time to load using any application.
The preprocessing required to convert an ASCII XML character string to a numeric array
was very time-consuming and a potential huge process bottleneck. The processing of large
XML files requires additional tools and approaches with an easier out-of-the-box solution,
making XML processing more practical. In addition to the processing time differences,
HDF5 requires less physical memory and, hence, allows larger objects to be loaded without
out-of-memory errors. HDF5 data files are much smaller (~3 times) than the corresponding
XML versions of same data files. Binary files in general are far more efficient in storing
numerical data than XML files using Unicode. As discussed earlier, XML loading of data can
consume as much as 10 times the amount of computer memory as the size of the actual XML
file (Wang et al., 2007), and conversion of Unicode to binary storage is memory intensive
requiring much more physical memory and resources than the loading of HDF5 files of
similar data (McGrath, 2003). MATLAB can process very large arrays, but it will run out of
memory quickly when processing very large XML files. On another test machine that was
running MATLAB with only 760 MB Java heap memory, several of the larger XML datasets
would not load. HDF5 files on any machine even when experimenting with HDF5 files as
large as 800MB did not experience any problems. Clearly, for machines with less memory
available and smaller processing capability, HDF5 files are preferred. Defining upper limit
processing for both HDF5 and XML files requires additional research and analysis. The
upper limit appears to have relationships to processing speed, physical memory, and other
constraints. Exploring these limits as a function of different environmental parameters
requires recommended future research.
The archiving and processing of large image data requires the use of HDF5, until additional

tools and processes are in place that allow for the quick and efficient processing of XML files

using computational tools such as MATLAB.

www.intechopen.com

The Impact of the Data Archiving File Format on Scientific Computing and
Performance of Image Processing Algorithms in MATLAB Using Large HDF5…

163

There are many important ethical considerations when sharing data, especially over the
Web. Additional considerations to protect the privacy and interests of human participants in
data collections require additional guidance when sharing data in a completely public
forum where the researcher (and organization) has no control over how the data is used.
There will always exist a balance between sharing data for scientific discovery and
advancement, and ethical concerns and requirements.

8. References

Barkstrom, B., “Ada 95 Bindings for the NCSA Hierarchical Data Format”, proceedings of
the 2001 annual ACM SIGAda International Conference on ADA (2001).

Bennett, K., Robertson, J., “The Impact of the Data Archiving Format on the Sharing of
Scientific Data for Use in Popular Computational Environments”, Proc. SPIE 7687,
Orlando Florida (April 2010).

Chapman, S.J., “MATLAB Programming for Engineers; 4th edition; Thomson publishing,
Ontario, Canada, 2008.

Dougherty, M., Folk, M., Zadok, E., Bernstein, H., Bernstein, F., Eliceiri, K., Benger, W., Best,
C., ”Unifying Biological Image Formats with HDF5”, communications of the ACM
(CACM), 52(10): p. 42-47 (2009).

Gay, L.R. Airasian, P. Educational Research. Prentice Hall, Columbus, Ohio, 2003.
Goetz, A.F.H., Vane, G., Solomon, E., Rock, B.N., “Imaging Spectrometry for Earth Remote

Sensing”, Science, Vol. 228, p. 1147-1153 (1985).
Mather, J., Rogers, A., “HDF5 in MATLAB”, Presentation at the HDF5 and HDF-EOS

Workshop X, Raytheon System Corporation, Upper Marlboro, MD (November
2007).

MATLAB User’s Guide, “Statistical Toolbox, Ttest2”,
 http://www.mathworks.com/help/toolbox/stats/ (April, 2011).
Mauthner, M., Perry, O., “Ethical Issues in Digital Data Archiving and Sharing”, eResearch

Ethics, http://eresearch-ethics.org (October 2010).
McGrath, R., “XML and Scientific File Formats,” Report generated by National Center for

Supercomputing Applications, University of Illinois, Urbana-Champaign, in
support of work under a Cooperative Agreement with NASA under NASA grant
NAG 5-2040 and NAG NCCS-599 (August 2003).

MIT Libraries, “Data Management and Publishing: Ethical and Legal Issues”,
 http://libraries.mit.edu (November 2011).
SAS/STAT User’s Guide, “T-Test Procedure”, http://support.sas.com/documentation

(April, 2011).
Shasharina, S., Li, C., Nanbor, W., Pundaleeka, R., Wade-Stein, D., “Distributed

Technologies for Remote Access of HDF Data”, proceedings of the 16th IEEE
International Workshop on Enabling Technologies: Infrastructure for Collaborative
Enterprises (2007).

Shishedjiev, B., Goranova M., Georgieva, J., “XML-based Language for Specific Scientific
Data Description”,proceedings of the 2010 Fifth International Conference on
Internet and Web Applications and Services (2010).

Sieber, J., “Ethics of Sharing Scientific and Technological Data: A Heuristic for Coping with
Complexity & Uncertainty”, Data Science Journal, Vol 4, p. 165 (December 2005).

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

164

UK Data Archive, “Create and Manage Data - Consent and Ethics:
Ethical/Legal/Overview”, http://www.data-archive.ac.uk (2011).

Wang, F., Li, J., Homayounfar, “A Space Efficient XLM DOM Parser”, Data and Knowledge
Engineering,Volume 60, Issue 1, p. 185-207 (2007).

www.intechopen.com

MATLAB - A Ubiquitous Tool for the Practical Engineer

Edited by Prof. Clara Ionescu

ISBN 978-953-307-907-3

Hard cover, 564 pages

Publisher InTech

Published online 13, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A well-known statement says that the PID controller is the â€œbread and butterâ€ of the control engineer. This

is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the

paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that

MATLAB is the â€œbreadâ€ in the above statement. MATLAB has became a de facto tool for the modern

system engineer. This book is written for both engineering students, as well as for practicing engineers. The

wide range of applications in which MATLAB is the working framework, shows that it is a powerful,

comprehensive and easy-to-use environment for performing technical computations. The book includes

various excellent applications in which MATLAB is employed: from pure algebraic computations to data

acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user

interface design for educational purposes to Simulink embedded systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Kelly Bennett and James Robertson (2011). The Impact of the Data Archiving File Format on Scientific

Computing and Performance of Image Processing Algorithms in MATLAB Using Large HDF5 and XML

Multimodal and Hyperspectral Data Sets, MATLAB - A Ubiquitous Tool for the Practical Engineer, Prof. Clara

Ionescu (Ed.), ISBN: 978-953-307-907-3, InTech, Available from: http://www.intechopen.com/books/matlab-a-

ubiquitous-tool-for-the-practical-engineer/the-impact-of-the-data-archiving-file-format-on-scientific-computing-

and-performance-of-image-proces

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

