
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



5 

Educational Simulator for Particle  
Swarm Optimization and Economic  

Dispatch Applications 

Woo Nam Lee and Jong Bae Park 
Konkuk University 

Korea 

1. Introduction 

Optimization problems are widely encountered in various fields in science and technology. 

Sometimes such problems can be very complex due to the actual and practical nature of the 

objective function or the model constraints. Most of power system optimization problems 

have complex and nonlinear characteristics with heavy equality and inequality constraints. 

Recently, as an alternative to the conventional mathematical approaches, the heuristic 

optimization techniques such as genetic algorithms (GAs), Tabu search, simulated 

annealing, and particle swarm optimization (PSO) are considered as realistic and powerful 

solution schemes to obtain the global or quasi-global optimums (K. Y. Lee et al., 2002). 

In 1995, Eberhart and Kennedy suggested a PSO based on the analogy of swarm of bird and 

school of fish (J. Kennedy et al., 1995). The PSO mimics the behavior of individuals in a 

swarm to maximize the survival of the species. In PSO, each individual makes his decision 

using his own experience together with other individuals' experiences (H. Yoshida et al., 

2000). The algorithm, which is based on a metaphor of social interaction, searches a space by 

adjusting the trajectories of moving points in a multidimensional space. The individual 

particles are drawn stochastically toward the present velocity of each individual, their own 

previous best performance, and the best previous performance of their neighbours (M. Clerc 

et al., 2002).  

The practical economic dispatch (ED) problems with valve-point and multi-fuel effects are 

represented as a non-smooth optimization problem with equality and inequality constraints, 

and this makes the problem of finding the global optimum difficult. Over the past few 

decades, in order to solve this problem, many salient methods have been proposed such as a 

hierarchical numerical method (C. E. Lin et al., 1984), dynamic programming (A. J. Wood et 

al., 1984), evolutionary programming (Y. M. Park et al., 1998; H. T. Yang et al., 1996; N. 

Sinba et al., 2003), Tabu search (W. M. Lin et al., 2002), neural network approaches (J. H. 

Park et al., 1993; K. Y. Lee et al., 1998), differential evolution (L. S. Coelho et al., 2006), 

particle swarm optimization (J. B. Park et al., 2005; T. A. A. Victoire et al., 2004; T. A. A. 

Victoire et al., 2005), and genetic algorithm (D. C. Walters et al., 1993). 

This chapter would introduce an educational simulator for the PSO algorithm. The purpose 

of this simulator is to provide the undergraduate students with a simple and useable tool for 
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gaining an intuitive feel for PSO algorithm, mathematical optimization problems, and 

power system optimization problems. To aid the understanding of PSO, the simulator has 

been developed under the user-friendly graphic user interface (GUI) environment using 

MATLAB. In this simulator, instructors and students can set parameters related to the 

performance of PSO and can observe the impact of the parameters to the solution quality. 

This simulator also displays the movements of each particle and convergence process of a 

group. In addition, the simulator can consider other mathematical or power system 

optimization problems with simple additional MATLAB coding. 

2. Overview of particle swarm optimization 

Kennedy and Eberhart (J. Kennedy et al., 1995) developed a PSO algorithm based on the 

behavior of individuals of a swarm. Its roots are in zoologist's modeling of the movement of 

individuals (e.g., fishes, birds, or insects) within a group. It has been noticed that members 

within a group seem to share information among them, a fact that leads to increased 

efficiency of the group (J. Kennedy et al., 2001). The PSO algorithm searches in parallel using 

a group of individuals similar to other AI-based heuristic optimization techniques.  
In a physical n-dimensional search space, the position and velocity of individual i are 

represented as the vectors ( )1 , ,i i inX x x= A  and ( )1 ,i i inV v v= A  in the PSO algorithm. Let 

( )1 , ,Pbest Pbest
i i inPbest x x= A  and ( )1 , ,Gbest Gbest

nGbest x x= A  be the best position of individual i 

and its neighbors’ best position so far, respectively. The modified velocity and position of 
each individual can be calculated using the current velocity and the distance from iPbest  to 

Gbest  as follows: 

 
1

1 1

2 2

( )

               ( )

k k k k
i i i i

k k
i

V V c rand Pbest X

c rand Gbest X

+ = ω + × −

+ × −
 (1) 

 

 1 1k k k
i i iX X V+ += +  (2) 

where, 
k

iV velocity of individual i at iteration k, 

ω weight parameter, 

1 2,c c acceleration coefficients, 

1 2,rand rand random numbers between 0 and 1, 

k
iX position of individual i at iteration k, 

k
iPbest best position of individual i until iteration k, 

kGbest best position of the group until iteration k. 

The constants 1c  and 2c  represent the weighting of the stochastic acceleration terms that 

pull each particle toward the Pbest and Gbest positions. Suitable selection of inertia weight 
provides a balance between global and local explorations, thus requiring less iteration on 
average to find a sufficiently optimal solution. In general, the inertia weightω  has a linearly 
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decreasing dynamic parameter framework descending from maxω  to minω  as follows (K. Y. 

Lee et al., 2002; H. Yoshida et al., 2000; J. B. Park et al., 2005). 

 max min
max

max

Iter
Iter

ω −ω
ω = ω − ×   (3) 

Were, maxIter  is maximum iteration number and Iter  is current iteration number. 

3. Structure of educational PSO simulator 

3.1 Purpose and motivation of simulator 
As a result of the rapid advances in computer hardware and software, computer-based 

power system educational tools have grown from very simple implementations, providing 

the user with little more than a stream of numerical output, to very detailed representations 

of the power system with an extensive GUI. Overbye, et al. had developed a user-friendly 

simulation program, PowerWorld Simulator, for teaching power system operation and 

control (T. J. Overbye et al., 2003). They applied visualization to power system information 

to draw user's attention and effectively display the simulation results. Through these works, 

they expected that animation, contouring, data aggregation and virtual environments would 

be quite useful techniques that are able to provide efficient learning experience to users. 

Also they presented experimental results associated with human factors aspects of using 

this visualization (D. A. Wiegmann et al., 2005; D. A. Wiegmann et al., 2006; N. Sinba et al., 

2003).  

Therefore, like other previous simulators, the motivation for the development of this 
simulator is to provide the students with a simple and useable tool for gaining an intuitive 
feel for the PSO algorithm, mathematical and power system optimization problems. 

3.2 Functions of simulator 
The basic objectives of this simulator were to make it easy to use and to provide effective 

visualization capability suitable for presentations as well as individual studies. This 

educational simulator was developed by MATLAB 2009b. MATLAB is a scientific 

computing language developed by The Mathworks, Inc. that is run in an interpreter mode 

on a wide variety of operating systems. It is extremely powerful, simple to use, and can be 

found in most research and engineering environments.  

The structure and data flow of the developed PSO simulator is shown in Fig. 1. The 

simulator consists of 3-parts, that is, i) user setting of optimization function as well as 

parameters, ii) output result, and iii) visualized output variations, as shown in Figs. 2, 3, and 

4, respectively. Since the main interaction between user and the simulator is performed 

through the GUI, it presents novice users with the information they need, and provides easy 

access for advanced users to additional detailed information. Thus, the GUI is instrumental 

in allowing users to gain an intuitive feel of the PSO algorithm, rather than just learning 

how to use this simulator. 

In this simulator, parameters (i.e., maximum number of the iteration, maximum and 

minimum number of inertia weight, acceleration factors 1c  and 2c , and number of particles) 

that have the influence of PSO performance can be directly inputted by users. In addition, 
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Fig. 1. Structure of the developed PSO simulator 

 
 
 
 
 

 
 

Fig. 2. A window for user setting  
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Fig. 3. Output result window 

 

 

Fig. 4. Viewing parts of output variation 
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“Input Default Value” check-box was added for users who don’t know the proper 

parameter values of the PSO. If the users push the “START” button finally, then the users 

can observe the evolution process of the particles on contours of the objective function (in 

case of a mathematical example) or the output histogram of each generator through 

MATLAB animation functions and check the changes of the values of the objective function 

and control variables at each iteration. The “Disable axes” check-box is used when the users 

want to show only the values of the final result fast. When the check-box is checked, only 

the final results (i.e., the value of the objective function and control variables) are expressed 

in the “Result Output Window”. At any point in time in the simulation, the user can pause 

or restart the simulation by pushing the “PAUSE” button. As shown in Figs. 5 and 6, user 

can observe movements of each particle as well as the trend of the value of the objective 

function. 
 
 
 
 

 
 

 
 
 

 
 
 

Fig. 5. Simulation for a mathematical example 
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Fig. 6. Simulation for an economic dispatch problem. 

4. Economic dispatch(ED) problem 

4.1 Basic ED problem formulation 
The ED problem is one of the basic optimization problems for the students who meet the 

power system engineering. The objective is to find the optimal combination of power 

generations that minimizes the total generation cost while satisfying an equality constraint 

and a set of inequality constraints. The most simplified cost function can be represented in a 

quadratic form as following (A. J. Wood et al., 1984): 

 ( )j j
j J

C F P
∈

=∑  (4) 

 

 2( )j j j j j j jF P a b P c P= + +  (5) 

where, 
C total generation cost; 

jF cost function of generator j; 

, ,j j ja b c cost coefficients of generator j; 

jP electrical output of generator j; 
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J set for all generators. 

While minimizing the total generation cost, the total generated power should be the same as 
the total load demand plus the total line loss. However, the transmission loss is not 
considered in this paper for simplicity. In addition, the generation output of each generator 
should be laid between minimum and maximum limits as follows: 

 min maxj j jP P P≤ ≤  (6) 

where minjP  and maxjP  are the minimum and maximum output of generator j, respectively. 

4.2 Valve-point effects 
The generating units with multi-valve steam turbines exhibit a greater variation in the fuel-
cost functions. Since the valve point results in ripples, a cost function contains high order 
nonlinearities (H. T. Yang et al., 1996; N. Sinba et al., 2003; D. C. Walters et al. 1993). 
Therefore, the cost function (5) should be replaced by the following to consider the valve-
point effects:  

 2
min( ) sin( ( ))j j j j j j j j j j jF P a b P c P e f P P= + + + × × −  (7) 

where je  and jf  are the cost coefficients of generator j reflecting valve-point effects. 

Here, the sinusoidal functions are added to the quadratic cost functions. 

5. Case studies 

This simulator can choose and run five different mathematical examples and two different 
ED problems: (i) The Sphere function, (ii) The Rosenbrock (or banana-valley) function, (iii) 
Ackley's function, (iv) The generalized Rastrigin function, (v) The generalized Griewank 
function,  (vi) 3-unit system with valve-point effects, and (vii) 40-unit system with valve-
point effects. In the case of each mathematical example (functions (i)-(v)), two input 
variables (i.e., 2-dimensional space) have been set in order to show the movement of 
particles on contour. For the case study, 30 independent trials are conducted to observe the 
variation during the evolutionary processes and compare the solution quality and 
convergence characteristics. 
To successfully implement the PSO, some parameters must be assigned in advance. The 
population size NP is set to 30. Since the performance of PSO depends on its parameters 

such as inertia weight ω  and two acceleration coefficients (i.e., 1c  and 2c ), it is very 

important to determine the suitable values of parameters. The inertia weight is varied from 

0.9 (i.e., maxω ) to 0.4 (i.e., minω ), as these values are accepted as typical for solving wide 

varieties of problems. Two acceleration coefficients are determined through the experiments 
for each problem so as to find the optimal combination. 

5.1 Mathematical examples 
For development of user's understanding of the PSO algorithm, five non-linear 
mathematical examples are used here. In each case, the maximum number of iterations (i.e., 

maxiter ) was set to 500. The acceleration coefficients (i.e., 1c  and 2c ) was equally set to 2.0 
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from the experimental results for each case using the typical PSO algorithm. And all of the 
global minimum value of each function is known as 0. The global minimum value was 
successfully verified by the simulator. 

5.1.1 The sphere function 

The function and the initial position range of input variables (i.e., ix ) are as follows: 

 2
0

1

( )
n

i
i

f x x
=

=∑   (8) 

5.12 5.12ix− ≤ ≤  

Initial and final stages of the optimization process for the Sphere function are shown in  
Fig. 7. 
 
 

      
 

                           (a) Initial stage                 (b) Final stage 

Fig. 7. Optimization process for the sphere function. 

5.1.2 The rosenbrock (or banana-valley) function 

The function and the initial position range of input variables (i.e., ix ) are as follows: 

 
/2

2 2 2
1 2 2 1 2 1

1

( ) (100( ) (1 ) )
n

i i i
i

f x x x x− −
=

= − + −∑  (9) 

2.048 2.048ix− ≤ ≤  

Initial and final stages of the optimization process for the Rosenbrock function are shown in 
Fig. 8. 
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(a) Initial stage      b) Final stage 

Fig. 8. Optimization process for the Rosenbrock function. 

5.1.3 The ackley’s function  

The function and the initial position range of input variables (i.e., ix ) is as follows: 

 2
2

1 1

1 1
( ) 20exp 0.2 exp cos(2 ) 20

n n

i i
i i

f x x x e
n n= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟= − − − π + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑   (10) 

30 30ix− ≤ ≤  

Initial and final stages of the optimization process for the Ackley’s function are shown in 
Fig. 9. 
 

          
(a) Initial stage     (b) Final stage 

Fig. 9. Optimization process for Ackley's function. 

5.1.4 The generalized rastrigin function 

The function and the initial position range of input variables (i.e., ix ) is as follows: 
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 2
3

1

( ) ( 10cos(2 ) 10)
n

i i
i

f x x x
=

= − π +∑   (11) 

5.12 5.12ix− ≤ ≤  

Initial and final stages of the optimization process for the generalized Rastrigin function are 
shown in Fig. 10. 
 
 

          
       (a) Initial stage    (b) Final stage 

Fig. 10. Optimization process for Rastrigin function. 

5.1.5 The generalized griewank function 

The function and the initial position range of input variables (i.e., ix ) is as follows: 

 2
4

1 1

1
( ) cos 1

4000

nn
i

i
i i

x
f x x

i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏   (12) 

200 200ix− ≤ ≤
 

Initial and final stages of the optimization process for the generalized Griewank function are 
shown in Fig. 11. 
Table 1 shows the average values of objective functions and two input variables for each 
function achieved by the PSO simulator. 
 

Function  Name Objective Function Value 1x  2x  

Sphere 0 0 0 
Rosenbrock 0 1 1 
Ackley -8.8818e-16 -2.9595e-16 1.6273e-16 
Rastrigin 0 9.7733e-10 -7.9493e-10 
Griewank 0 100 100 

Table 1. Results for Each Test Function 
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(a) Initial stage     (b) Final stage 

Fig. 11. Optimization process for Griewank function. 

5.2 Economic dispatch(ED) problems with valve-point effects 
This simulator also offers examples to solve ED problem for two different power systems: a 
3-unit system with valve-point effects, and a 40-unit system with valve-point effects. The 
total demands of the 3-unit and the 40-unit systems are set to 850MW and 10,500MW, 
respectively. All the system data and related constraints of the test systems are given in (N. 
Sinba et al., 2003).  Because these systems have more than 3 input variables, the simulator 
shows a histogram for the generation output instead of the contour and particles. Since the 
global minimum for the total generation cost is unknown in the case of the 40-unit system, 
the maximum number of iterations (i.e., maxiter ) is set to 10,000 in order to sufficiently 

search for the minimum value.  
Table 2 shows the minimum, mean, maximum, and standard deviation for the 3-unit system 
obtained from the simulator. The generation outputs and the corresponding costs of the best 
solution for 3-unit system are described in Table 3. 
 

Case 
Minimum Cost 

($) 
Average Cost 

($) 
Maximum 

Cost ($) 
Standard 
Deviation 

3-Unit System 8234.0717 8234.0717 8234.0717 0 

* Global value of the 3-unit system was known as 8234.0717.T 

Table 2. Convergence Results for 3-Unit System 

 

Unit Generation Cost 

1 300.2669 3087.5099 
2 400.0000 3767.1246 
3 149.7331 1379.4372 

TP/TC 850.0000 8234.0717 

*TP: total power [MW], TC: total generation cost [$] 

Table 3. Generation Output of Each Generator and The Corresponding Cost in 3-Unit 
System 
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In order to find the optimal combination of parameters (i.e., maxω , minω , 1c , and 2c B), six 

cases are considered as given in Table 4. The parameters are determined through the 
experiments for 40-unit system using the simulator. In Table 4, the effects of parameters are 
illustrated 
 

Cases maxω  minω c1,c2
Minimum 

Cost ($) 
Average 
Cost ($) 

Maximum 
Cost ($) 

Standard 
Deviation 

1 1.0 0.5 1 121755.49 122221.90 122624.07 156.97 

2 0.9 0.4 1 121761.40 122343.32 123087.16 303.62 

3 0.8 0.3 1 121949.15 122842.59 124363.11 602.06 

4 1.0 0.5 2 121865.23 122285.12 122658.29 175.19 

5 0.9 0.4 2 121768.69 122140.32 122608.27 187.74 

6 0.8 0.3 2 121757.09 122158.00 122615.71 212.36 

Table 4. Influence of Acceleration Coefficients for 40-Unit System 

The result screens for 3-unit and 40-unit system are shown in Figs. 12 and 13, respectively. 
Each histogram expresses the result of generation output for each generator. 
 
 
 
 

 
 

Fig. 12. Result screen for the 3-units system. 

www.intechopen.com



 
MATLAB – A Ubiquitous Tool for the Practical Engineer 

 

94

 

Fig. 13. Result screen for the 40-units system. 

6. Conclusion 

This chapter presents an educational simulator for particle swarm optimization (PSO) and 
application for solving mathematical test functions as well as ED problems with non-smooth 
cost functions. Using this simulator, instructors and students can select the test functions for 
simulation and set the parameters that have an influence on the PSO performance. Through 
visualization process of each particle and variation of the value of objective function, the 
simulator is particularly effective in providing users with an intuitive feel for the PSO 
algorithm. This simulator is expected to be an useful tool for students who study electrical 
engineering and optimization techniques.  

7. Appendix 1: pso.m 

function varargout = pso(varargin) 

gui_Singleton = 1; 

gui_State = struct('gui_Name',       mfilename, ... 

    'gui_Singleton',  gui_Singleton, ... 

    'gui_OpeningFcn', @pso_OpeningFcn, ... 

    'gui_OutputFcn',  @pso_OutputFcn, ... 

    'gui_LayoutFcn',  [] , ... 

    'gui_Callback',   []); 

if nargin & isstr(varargin{1}) 

    gui_State.gui_Callback = str2func(varargin{1}); 

end  

if nargout 

    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 

else 
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    gui_mainfcn(gui_State, varargin{:}); 

end 

function pso_OpeningFcn(hObject, eventdata, handles, varargin) 

handles.output = hObject; 

guidata(hObject, handles); 

function varargout = pso_OutputFcn(hObject, eventdata, handles) 

varargout{1} = handles.output; 

function select_func_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else 

    set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

function select_func_Callback(hObject, eventdata, handles) 

function default_value_Callback(hObject, eventdata, handles) 

set(handles.default_value, 'Value', 1); 

set(handles.reset, 'Value', 0);  

set(handles.wmax, 'String', 0.9); 

set(handles.wmin, 'String', 0.4); 

set(handles.X_max, 'String', 5.12); 

set(handles.X_min, 'String', -5.12); 

set(handles.c1, 'String', 2); 

set(handles.c2, 'String', 2); 

set(handles.N, 'String', 30); 

set(handles.itmax, 'String', 500);  

function reset_Callback(hObject, eventdata, handles) 

set(handles.default_value, 'Value', 0); 

set(handles.reset, 'Value', 1);  

set(handles.wmax, 'String', 0); 

set(handles.wmin, 'String', 0); 

set(handles.X_max, 'String', 0); 

set(handles.X_min, 'String', 0); 

set(handles.c1, 'String', 0); 

set(handles.c2, 'String', 0); 

set(handles.N, 'String', 0); 

set(handles.itmax, 'String', 0); 

function wmax_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end  

function wmax_Callback(hObject, eventdata, handles) 

wmax = str2double(get(hObject,'String'));  

if isnan(wmax) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end  

pso_para = getappdata(gcbf, 'metricdata'); 

pso_para.wmax = wmax; 

setappdata(gcbf, 'metricdata', pso_para); 

function wmin_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end  
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function wmin_Callback(hObject, eventdata, handles) 

wmin = str2double(get(hObject,'String')); 

if isnan(wmin) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end  

pso_para = getappdata(gcbf, 'metricdata'); 

pso_para.wmin = wmin; 

setappdata(gcbf, 'metricdata', pso_para);  

function c1_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end  

function c1_Callback(hObject, eventdata, handles) 

c1 = str2double(get(hObject,'String'));  

if isnan(c1) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end  

pso_para = getappdata(gcbf, 'metricdata'); 

pso_para.c1 = c1; 

setappdata(gcbf, 'metricdata', pso_para);  

function c2_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end  

function c2_Callback(hObject, eventdata, handles) 

c2 = str2double(get(hObject,'String'));  

if isnan(c2) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end  

pso_para = getappdata(gcbf, 'metricdata'); 

pso_para.c2 = c2; 

setappdata(gcbf, 'metricdata', pso_para);  

function N_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end  

function N_Callback(hObject, eventdata, handles) 

N = str2double(get(hObject,'String'));  

if isnan(N) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end  

pso_para = getappdata(gcbf, 'metricdata'); 

pso_para.N = N; 

setappdata(gcbf, 'metricdata', pso_para);  

function itmax_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 
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else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end  

function itmax_Callback(hObject, eventdata, handles) 

itmax = str2double(get(hObject,'String'));  

if isnan(itmax) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end  

function start_Callback(hObject, eventdata, handles) 

if get(handles.select_func,'value')>=7 

    eldrun 

else 

    runpso 

end 

function Result_window_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

function Result_window_Callback(hObject, eventdata, handles) 

function pause_Callback(hObject, eventdata, handles) 

if isequal(get(handles.pause,'String'),'PAUSE') 

    set(handles.start,'Enable','on'); 

    set(handles.pause,'String','RESUME'); 

    uiwait; 

else 

    set(handles.start,'Enable','off'); 

    set(handles.pause,'String','PAUSE'); 

    uiresume; 

end 

function disable_Callback(hObject, eventdata, handles) 

function close_Callback(hObject, eventdata, handles) 

delete(get(0,'CurrentFigure'));  

function X_max_Callback(hObject, eventdata, handles) 

X_max = str2double(get(hObject,'String'));  

if isnan(X_max) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end  

pso_para = getappdata(gcbf, 'metricdata'); 

pso_para.X_max = X_max; 

setappdata(gcbf, 'metricdata', pso_para); 

function X_max_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end  

function X_min_Callback(hObject, eventdata, handles) 

X_min = str2double(get(hObject,'String'));  

if isnan(X_min) 

    set(hObject, 'String', 0); 

    errordlg('Input must be a number','Error'); 

end  

pso_para = getappdata(gcbf, 'metricdata'); 
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pso_para.X_min = X_min; 

setappdata(gcbf, 'metricdata', pso_para); 

function X_min_CreateFcn(hObject, eventdata, handles) 

if ispc 

    set(hObject,'BackgroundColor','white'); 

else    

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor')); 

end 

8. Appendix 2: runpso.m 

cla; 

set(handles.start,'Enable','off'); 

set(handles.pause,'String','PAUSE','Enable','on'); 

set(handles.text14,'String','Search State '); 

functnames = get(handles.select_func,'String'); 

functname = functnames{get(handles.select_func,'Value')};  

wmax = str2double(get(handles.wmax, 'String')); 

wmin = str2double(get(handles.wmin, 'String')); 

X_max = str2double(get(handles.X_max, 'String')); 

X_min = str2double(get(handles.X_min, 'String')); 

c1 = str2double(get(handles.c1, 'String')); 

c2 = str2double(get(handles.c2, 'String')); 

N = str2double(get(handles.N, 'String')); 

itmax = str2double(get(handles.itmax, 'String'));  

pso_para = getappdata(gcbf, 'metricdata'); 

pso_para.wmax = wmax; 

pso_para.wmin = wmin; 

pso_para.X_max = X_max; 

pso_para.X_min = X_min; 

pso_para.c1 = c1; 

pso_para.c2 = c2; 

pso_para.N = N; 

pso_para.itmax = itmax; 

setappdata(gcbf, 'metricdata', pso_para);  

D=2; % Dimension 

% Weight Parameter 

for iter=1:pso_para.itmax 

    W(iter)= pso_para.wmax-((pso_para.wmax-

pso_para.wmin)/pso_para.itmax)*iter; 

end  

%Initialization of positions of agents 

% agents are initialized between -5.12,+5.12 randomly 

a= X_min;  %min   

b= X_max;   %max   

x=a+(b-a)*rand(pso_para.N,D,1);  

%Initialization of velocities of agents 

%Between -5.12 , +5.12, (which can also be started from zero) 

m=X_min; 

n=X_max; 

V=m+(n-m)*rand(pso_para.N,D,1);  

%Function to be minimized.  
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F = feval(functname,x(:,:,1));   

% Saving address and value; C:Value of E, I: The Number of Particle 

[C,I]=min(abs(F(:,1,1))); B(1,1,1)=C; 

XX(1,1,1)=I; 

gbest(1,:,1)=x(I,:,1);  

%Matrix composed of gbest vector  

for p=1:pso_para.N 

    for r=1:D   

        G(p,r,1)=gbest(1,r,1); 

    end 

end  

Fbest(1,1,1) = feval(functname,G(1,:,1)); 

pbest=x; 

% Calculating Velocity 

V(:,:,2) = W(1) * V(:,:,1) + pso_para.c1*rand*(pbest(:,:,1)-

x(:,:,1)) + pso_para.c2*rand*(G(:,:,1)-x(:,:,1)); 

x(:,:,2)=x(:,:,1) + V(:,:,2); 

for i=1:pso_para.N 

    for j=1:D 

        if x(i,j,2)<a 

            x(i,j,2)=a; 

        else 

            if x(i,j,2)>b 

                x(i,j,2)=b; 

            else 

            end 

        end 

    end 

end 

Fb(1,1,1) = feval(functname,gbest(1,:,1)); 

if get(handles.disable,'Value')==0   

    %%%%%%%%%%%%%%%%%%%%% Contour Plot %%%%%%%%%%%%%%%%%%%%%% 

    axes(handles.axes2); 

    axis([a b a b]) 

    con_m=a:0.1:b; 

    con_n=con_m; 

    [con_m,con_n]=meshgrid(con_m,con_n); 

    for q=1:length(con_m(1,:)) 

        for z=1:length(con_n(1,:)) 

            r(q,z)= feval(functname,[con_m(q,z),con_n(q,z)]); 

        end 

    end         

    r_save=r; 

    [c,h]=contour(con_m,con_n,r_save,10);   

    xlabel('X1') 

    ylabel('X2') 

    title('Search State') 

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

end 

  

for j=2:pso_para.itmax     
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    % Calculation of new positions     

    F(:,1,j) = feval(functname,x(:,:,j));     

    [C,I]=min(abs(F(:,1,j)));     

    B(1,1,j)=C;     

    for i=1:D 

        gbest(1,i,j)=x(I,i,j); 

    end  

    Fb(1,1,j) = feval(functname,gbest(1,:,j));     

    [C,I]=min(Fb(1,1,:));     

    if Fb(1,1,j)<=C 

        for k=1:D 

            gbest(1,k,j)=gbest(1,k,j); 

        end 

    else 

        for m=1:D 

            gbest(1,m,j)=gbest(1,m,I); 

        end 

    end 

    %Matrix composed of gbest vector  

    for p=1:pso_para.N 

        for r=1:D   

            G(p,r,j)=gbest(1,r,j); 

        end 

    end 

    Fbest(1,1,j) = feval(functname,G(1,:,j)); 

    for i=1:pso_para.N; 

        [C,I]=min(F(i,1,:)); 

        if  F(i,1,j)<=C   

            pbest(i,:,j)=x(i,:,j); 

        else 

            pbest(i,:,j)=x(i,:,I); 

        end 

    end 

    V(:,:,j+1)= W(j)*V(:,:,j) + pso_para.c1*rand*(pbest(:,:,j)-

x(:,:,j)) + pso_para.c2*rand*(G(:,:,j)-x(:,:,j));     

    x(:,:,j+1)=x(:,:,j)+V(:,:,j+1); 

    for k=1:pso_para.N 

        for m=1:D 

            if x(k,m,j+1)<a 

                x(k,m,j+1)=a; 

            else 

                if x(k,m,j+1)>b 

                    x(k,m,j+1)=b; 

                else 

                end 

            end 

        end 

    end 

    if get(handles.disable,'Value')==0   

        set(gcf,'Doublebuffer','on'); 
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        %%%%%%%%% Display to the ListBox%%%%%%%%%% 

        ResultStr(1) = [{['Fbest','1',' ','=',' ', 

num2str(Fbest(1,1,1)),'      

','Gbest','1','=','(',num2str(gbest(1,1,1)),',',num2str(gbest(1,2,1)

),')']}]; 

        ResultStr(j) = [{['Fbest',num2str(j),'  ','=','  ', 

num2str(Fbest(1,1,end)),'      

','Gbest',num2str(j),'=','(',num2str(gbest(1,1,end)),',',num2str(gbe

st(1,2,end)),')']}];    

        set(handles.Result_window, 'String', ResultStr); 

        %%%%%%%%% end of Display %%%%%%%%%%%%%%%%% 

         

        %%%%%%%%%%%%%%%%  AXE-1  %%%%%%%%%%%%%%%%% 

        axes(handles.axes1); 

        cla; 

        set(gca,'xlim',[0 pso_para.itmax],'ylim',[0 Fbest(1,1,1)]), 

        plot(Fbest(:),'r-') 

        if j<=pso_para.itmax/2 

            text(j,Fbest(1,1,end),['Fbest = ', 

num2str(Fbest(1,1,end))],'HorizontalAlignment','Left','VerticalAlign

ment','bottom','EdgeColor','blue','LineWidth',3); 

        else 

            text(j,Fbest(1,1,end),['Fbest = ', 

num2str(Fbest(1,1,end))],'HorizontalAlignment','Right','VerticalAlig

nment','bottom','EdgeColor','blue','LineWidth',3); 

        end 

        legend('Fbest'); 

        hold on 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %%%%%%%%%%%%%%%%%  AXE-2  %%%%%%%%%%%%%%%% 

        axes(handles.axes2); 

        axis([a b a b]) 

        [c,h]=contour(con_m,con_n,r_save,10); 

        hold on 

        plot(pbest(:,1,j),pbest(:,2,j),'r*')  

        xlabel('X1') 

        ylabel('X2') 

        drawnow 

        hold off       

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    end 

end 

if get(handles.disable,'Value')==1    

    ResultStr = [{['Fbest  ','=','  ', num2str(Fbest(1,1,end)),'      

','Gbest','=','(',num2str(gbest(1,1,end)),',',num2str(gbest(1,2,end)

),')']}];    

    set(handles.Result_window, 'String', ResultStr); 

end 

set(handles.start,'Enable','on'); 

set(handles.pause,'String','PAUSE','Enable','off'); 
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9. Appendix 3: eldrun.m 

cla; 

set(handles.start,'Enable','off'); 

set(handles.pause,'String','PAUSE','Enable','on'); 

set(handles.text14,'String','Generation Output'); 

functnames = get(handles.select_func,'String'); 

functname = functnames{get(handles.select_func,'Value')};  

wmax = str2double(get(handles.wmax, 'String')); 

wmin = str2double(get(handles.wmin, 'String')); 

c1 = str2double(get(handles.c1, 'String')); 

c2 = str2double(get(handles.c2, 'String')); 

N = str2double(get(handles.N, 'String')); 

itmax = str2double(get(handles.itmax, 'String'));  

pso_para = getappdata(gcbf, 'metricdata'); 

pso_para.wmax = wmax; 

pso_para.wmin = wmin; 

pso_para.c1 = c1; 

pso_para.c2 = c2; 

pso_para.N = N; 

pso_para.itmax = itmax; 

setappdata(gcbf, 'metricdata', pso_para); 

  

[Gen,Demand]=feval(functname); 

  

%Initialization of PSO parameters 

D=size(Gen,1); % Dimension (Number of Generator) 

CR = 0.5; 

for iter=1:pso_para.itmax 

    W(iter)= pso_para.wmax-((pso_para.wmax-

pso_para.wmin)/pso_para.itmax)*iter; 

end 

%Initialization of positions of agents 

%agents are initialized between P_min,P_max randomly  

for i=1:D 

    P_min(i) = Gen(i,6);    % P_min   

    P_max(i) = Gen(i,7);    % P_max 

end  

% Constraints handling 

for i=1:pso_para.N 

    yes=1; 

    while yes==1 

        p=randperm(D); 

         

        for n=1:D-1 

            g = p(n);  

            x(i,g) = P_min(g) +  (P_max(g)-P_min(g)) * rand; 

            A(n) = x(i,g);  

        end  

        SUM=0; 

        for f=1:D-1 
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            SUM = SUM + A(f); 

        end 

        A(D) = Demand - SUM;  

        g=p(D);  

        if A(D) < P_min(g) 

            A(D) = P_min(g); 

            ok=0; 

        else  

            if A(D) > P_max(g) 

                A(D) = P_max(g); 

                ok=0; 

            else 

                ok=1; 

                yes=0; 

            end             

        end 

         

        L=1; 

        while ok==0 

            A(L) = Demand -(sum(A(:))-A(L)); 

            if A(L) < P_min(p(L)) 

                A(L) = P_min(p(L)); 

                ok=0; 

                L = L+1; 

                if L==D+1 

                    ok=1; 

                    yes=1; 

                else 

                end 

            else  

                if A(L) > P_max(p(L)) 

                    A(L) = P_max(p(L)); 

                    ok=0; 

                    L= L+1; 

                    if L==D+1 

                        ok=1; 

                        yes =1; 

                    else 

                    end 

                else 

                    ok=1; 

                    yes=0; 

                end                  

            end 

        end 

    end 

    for k=1:D 

        x(i,p(k))=A(k);  

    end 

end  

%Initialization of velocities of agents 
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%Between V_min , V_max, (which can also be started from zero) 

for i=1:pso_para.N 

    for j=1:D 

        m(j) = Gen(j,6) - x(i,j);  %V_min   

        n(j) = Gen(j,7) - x(i,j);  %V_max 

        V(i,j) = m(j) + (n(j)-m(j)) * rand; 

    end 

end  

% End of Initialization 

% Function to be minimized.  

for i=1:pso_para.N; 

    for j=1:D; 

        Cost(i,j) = Gen(j,1) + Gen(j,2)*x(i,j) + Gen(j,3)*x(i,j).^2 

+ abs(Gen(j,4)*sin(Gen(j,5)*(Gen(j,6)-x(i,j))));  

    end 

    F(i,1) = sum(Cost(i,:)); % Total Cost 

end  

pbest=x;  

[C,I]=min(abs(F(:,1)));  

B(1,1)=C; 

XX(1,1)=I; 

gbest(1,:)=x(I,:); 

Gen_sum(1,1) = sum(gbest(1,:));  

%Matrix composed of gbest vector   

for j=1:D; 

    Cost_Best(1,j) = 

Gen(j,1)+Gen(j,2)*gbest(1,j)+Gen(j,3)*gbest(1,j).^2 

+abs(Gen(j,4)*sin(Gen(j,5)*(Gen(j,6)-gbest(1,j)))); 

end 

Fbest(1,1) = sum(Cost_Best(1,:)); % Total Cost  

% Constraints handling 

for i=1:pso_para.N 

    yes=1; 

    while yes==1 

        p=randperm(D); 

        for n=1:D-1 

            g = p(n);  

            V(i,g) = W(1) * V(i,g) + c1*rand*(pbest(i,g)-x(i,g)) + 

c2*rand*(gbest(1,g)-x(i,g));             

            x(i,g)=x(i,g) + V(i,g);             

            if rand<=CR 

                x_adj(i,g) = x(i,g); 

            else 

                x_adj(i,g) = pbest(i,g); 

            end            

            A(n) = x_adj(i,g);              

            if A(n) < P_min(g) 

                A(n) = P_min(g); 

            else 

                if A(n) > P_max(g) 

                    A(n) = P_max(g); 
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                else 

                end 

            end 

        end  

        SUM=0; 

        for u=1:D-1 

            SUM = SUM + A(u); 

        end 

        A(D) = Demand - SUM; 

         

        g=p(D);         

        if A(D) < P_min(g) 

            A(D) = P_min(g); 

            ok=0; 

        else  

            if A(D) > P_max(g) 

                A(D) = P_max(g); 

                ok=0; 

            else 

                ok=1;  

            end 

            yes=0; 

        end 

         

        L=1;  

        while ok==0    

            A(L) = Demand -(sum(A(:))-A(L)); 

            if A(L) < P_min(p(L)) 

                A(L) = P_min(p(L)); 

                ok=0; 

                L = L+1; 

                if L==D+1     

                    ok=1; 

                    yes=1; 

                else 

                end 

            else  

                if A(L) > P_max(p(L)) 

                    A(L) = P_max(p(L)); 

                    ok=0; 

                    L= L+1; 

                    if L==D+1 

                        ok=1; 

                        yes =1; 

                    else 

                    end 

                else 

                    ok=1; 

                end 

                 

                yes=0;   
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            end 

        end 

    end 

    for k=1:D 

        x_adj(i,p(k))=A(k);  

    end 

end 

  

for j=2:pso_para.itmax         

    % Calculation of new positions     

    for i=1:pso_para.N 

        for k=1:D 

            Cost(i,k) = 

Gen(k,1)+Gen(k,2)*x_adj(i,k)+Gen(k,3)*x_adj(i,k).^2 

+abs(Gen(k,4)*sin(Gen(k,5)*(Gen(k,6)-x_adj(i,k))));  

        end 

        F(i,j) = sum(Cost(i,:)); % Total Cost 

    end       

     

    for i=1:pso_para.N 

        [C,I]=min(F(i,:)); 

        if  F(i,j)<=C   

            pbest(i,:)=x_adj(i,:); 

        else 

        end 

    end 

    for i=1:pso_para.N 

        for k=1:D 

            Cost_pbest(i,k) = 

Gen(k,1)+Gen(k,2)*pbest(i,k)+Gen(k,3)*pbest(i,k).^2 

+abs(Gen(k,4)*sin(Gen(k,5)*(Gen(k,6)-pbest(i,k))));  

        end 

        F_pbest(i,1) = sum(Cost_pbest(i,:)); % Total Cost 

    end 

    [C,I]=min(F_pbest(:,1));     

    for k=1:D 

        gbest(1,k)=pbest(I,k); 

    end 

    Gen_sum(j,1) = sum(gbest(1,:)); 

    Fbest(j,1) = C; 

% Constraints handling            

    for i=1:pso_para.N 

        yes=1; 

        while yes==1 

            p=randperm(D); 

            for n=1:D-1 

                g = p(n);  

                V(i,g) = W(j) * V(i,g) + c1*rand*(pbest(i,g)-x(i,g)) 

+ c2*rand*(gbest(1,g)-x(i,g));             

                x(i,g) = x(i,g) + V(i,g);  

                if rand<=CR 
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                    x_adj(i,g) = x(i,g); 

                else 

                    x_adj(i,g) = pbest(i,g); 

                end                     

                A(n) = x_adj(i,g); 

                if A(n) < P_min(g) 

                    A(n) = P_min(g); 

                else 

                    if A(n) > P_max(g) 

                        A(n) = P_max(g); 

                    else 

                    end 

                end 

            end  

            SUM=0; 

            for f=1:D-1 

                SUM = SUM + A(f); 

            end 

            A(D) = Demand - SUM;   

             

            g=p(D); 

            if A(D) < P_min(g) 

                A(D) = P_min(g); 

                ok=0; 

            else  

                if A(D) > P_max(g) 

                    A(D) = P_max(g); 

                    ok=0; 

                else 

                    ok=1; 

                    yes=0; 

                end 

                 

            end             

            L=1; 

            while ok==0  

                A(L) = Demand -(sum(A(:))-A(L)); 

                if A(L) < P_min(p(L)) 

                    A(L) = P_min(p(L)); 

                    ok=0; 

                    L = L+1; 

                    if L==D+1 

                        ok=1; 

                        yes=1; 

                    else 

                    end 

                else  

                    if A(L) > P_max(p(L)) 

                        A(L) = P_max(p(L)); 

                        ok=0; 

                        L= L+1; 
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                        if L==D+1 

                            ok=1; 

                            yes=1; 

                        else 

                        end 

                    else 

                        ok=1; 

                        yes=0; 

                    end                 

                end 

            end 

        end 

        for k=1:D 

            x_adj(i,p(k))=A(k); 

        end 

    end     

     

    if get(handles.disable,'Value')==0      

        set(gcf,'Doublebuffer','on'); 

        %%%%%%%%% Display to the ListBox%%%%%%%%%% 

        ResultStr(1) = [{['Total Generation Cost    at Iteration 

','1',' ','=',' ', num2str(Fbest(1,1))]}];  

        ResultStr(j) = [{['Total Generation Cost    at Iteration 

',num2str(j),'  ','=','  ', num2str(Fbest(end,1))]}]; 

        set(handles.Result_window, 'String', ResultStr); 

        %%%%%%%%% end of Display %%%%%%%%%%%%%%%%% 

         

        %%%%%%%%%%%%%%%%  AXE-1  %%%%%%%%%%%%%%%%% 

        axes(handles.axes1); 

        cla; 

        set(gca,'xlim',[0 pso_para.itmax],'ylim',[0 Fbest(1,1)]), 

        plot(Fbest(:),'r-') 

        if j<=pso_para.itmax/2 

            text(j,Fbest(end,1),['Fbest = ', 

num2str(Fbest(end,1))],'HorizontalAlignment','Left','VerticalAlignme

nt','bottom','EdgeColor','blue','LineWidth',3); 

        else 

            text(j,Fbest(end,1),['Fbest = ', 

num2str(Fbest(end,1))],'HorizontalAlignment','Right','VerticalAlignm

ent','bottom','EdgeColor','blue','LineWidth',3); 

        end 

        legend('Fbest'); 

        hold on 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

         

        %%%%%%%%%%%%%%%%%  AXE-2  %%%%%%%%%%%%%%%% 

        axes(handles.axes2); 

        axis([0 D+1 0 max(Gen(:,7))+50]) 

        bar(Gen(:,7),'r') 

        hold on 

        bar(gbest,'w') 
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        drawnow 

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

    else 

    end 

end 

if get(handles.disable,'Value')==1  

    cla; 

    ResultStr = [{['Total Generation Cost ','=','  ', 

num2str(Fbest(end,1))]}]; 

     

    set(handles.Result_window, 'String', ResultStr); 

end 

%%%%%%%%%%%%%%%%%  AXE-2  %%%%%%%%%%%%%%%% 

axes(handles.axes2); 

axis([0 D+1 0 max(Gen(:,7))+50]) 

bar(Gen(:,7),'r') 

hold on 

bar(gbest(end,:),'w') 

drawnow 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

set(handles.start,'Enable','on'); 

set(handles.pause,'String','PAUSE','Enable','off'); 
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