
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

5

Educational Simulator for Particle
Swarm Optimization and Economic

Dispatch Applications

Woo Nam Lee and Jong Bae Park
Konkuk University

Korea

1. Introduction

Optimization problems are widely encountered in various fields in science and technology.

Sometimes such problems can be very complex due to the actual and practical nature of the

objective function or the model constraints. Most of power system optimization problems

have complex and nonlinear characteristics with heavy equality and inequality constraints.

Recently, as an alternative to the conventional mathematical approaches, the heuristic

optimization techniques such as genetic algorithms (GAs), Tabu search, simulated

annealing, and particle swarm optimization (PSO) are considered as realistic and powerful

solution schemes to obtain the global or quasi-global optimums (K. Y. Lee et al., 2002).

In 1995, Eberhart and Kennedy suggested a PSO based on the analogy of swarm of bird and

school of fish (J. Kennedy et al., 1995). The PSO mimics the behavior of individuals in a

swarm to maximize the survival of the species. In PSO, each individual makes his decision

using his own experience together with other individuals' experiences (H. Yoshida et al.,

2000). The algorithm, which is based on a metaphor of social interaction, searches a space by

adjusting the trajectories of moving points in a multidimensional space. The individual

particles are drawn stochastically toward the present velocity of each individual, their own

previous best performance, and the best previous performance of their neighbours (M. Clerc

et al., 2002).

The practical economic dispatch (ED) problems with valve-point and multi-fuel effects are

represented as a non-smooth optimization problem with equality and inequality constraints,

and this makes the problem of finding the global optimum difficult. Over the past few

decades, in order to solve this problem, many salient methods have been proposed such as a

hierarchical numerical method (C. E. Lin et al., 1984), dynamic programming (A. J. Wood et

al., 1984), evolutionary programming (Y. M. Park et al., 1998; H. T. Yang et al., 1996; N.

Sinba et al., 2003), Tabu search (W. M. Lin et al., 2002), neural network approaches (J. H.

Park et al., 1993; K. Y. Lee et al., 1998), differential evolution (L. S. Coelho et al., 2006),

particle swarm optimization (J. B. Park et al., 2005; T. A. A. Victoire et al., 2004; T. A. A.

Victoire et al., 2005), and genetic algorithm (D. C. Walters et al., 1993).

This chapter would introduce an educational simulator for the PSO algorithm. The purpose

of this simulator is to provide the undergraduate students with a simple and useable tool for

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

82

gaining an intuitive feel for PSO algorithm, mathematical optimization problems, and

power system optimization problems. To aid the understanding of PSO, the simulator has

been developed under the user-friendly graphic user interface (GUI) environment using

MATLAB. In this simulator, instructors and students can set parameters related to the

performance of PSO and can observe the impact of the parameters to the solution quality.

This simulator also displays the movements of each particle and convergence process of a

group. In addition, the simulator can consider other mathematical or power system

optimization problems with simple additional MATLAB coding.

2. Overview of particle swarm optimization

Kennedy and Eberhart (J. Kennedy et al., 1995) developed a PSO algorithm based on the

behavior of individuals of a swarm. Its roots are in zoologist's modeling of the movement of

individuals (e.g., fishes, birds, or insects) within a group. It has been noticed that members

within a group seem to share information among them, a fact that leads to increased

efficiency of the group (J. Kennedy et al., 2001). The PSO algorithm searches in parallel using

a group of individuals similar to other AI-based heuristic optimization techniques.
In a physical n-dimensional search space, the position and velocity of individual i are

represented as the vectors ()1 , ,i i inX x x= A and ()1 ,i i inV v v= A in the PSO algorithm. Let

()1 , ,Pbest Pbest
i i inPbest x x= A and ()1 , ,Gbest Gbest

nGbest x x= A be the best position of individual i

and its neighbors’ best position so far, respectively. The modified velocity and position of
each individual can be calculated using the current velocity and the distance from iPbest to

Gbest as follows:

1

1 1

2 2

()

 ()

k k k k
i i i i

k k
i

V V c rand Pbest X

c rand Gbest X

+ = ω + × −

+ × −
 (1)

 1 1k k k
i i iX X V+ += + (2)

where,
k

iV velocity of individual i at iteration k,

ω weight parameter,

1 2,c c acceleration coefficients,

1 2,rand rand random numbers between 0 and 1,

k
iX position of individual i at iteration k,

k
iPbest best position of individual i until iteration k,

kGbest best position of the group until iteration k.

The constants 1c and 2c represent the weighting of the stochastic acceleration terms that

pull each particle toward the Pbest and Gbest positions. Suitable selection of inertia weight
provides a balance between global and local explorations, thus requiring less iteration on
average to find a sufficiently optimal solution. In general, the inertia weightω has a linearly

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

83

decreasing dynamic parameter framework descending from maxω to minω as follows (K. Y.

Lee et al., 2002; H. Yoshida et al., 2000; J. B. Park et al., 2005).

 max min
max

max

Iter
Iter

ω −ω
ω = ω − × (3)

Were, maxIter is maximum iteration number and Iter is current iteration number.

3. Structure of educational PSO simulator

3.1 Purpose and motivation of simulator
As a result of the rapid advances in computer hardware and software, computer-based

power system educational tools have grown from very simple implementations, providing

the user with little more than a stream of numerical output, to very detailed representations

of the power system with an extensive GUI. Overbye, et al. had developed a user-friendly

simulation program, PowerWorld Simulator, for teaching power system operation and

control (T. J. Overbye et al., 2003). They applied visualization to power system information

to draw user's attention and effectively display the simulation results. Through these works,

they expected that animation, contouring, data aggregation and virtual environments would

be quite useful techniques that are able to provide efficient learning experience to users.

Also they presented experimental results associated with human factors aspects of using

this visualization (D. A. Wiegmann et al., 2005; D. A. Wiegmann et al., 2006; N. Sinba et al.,

2003).

Therefore, like other previous simulators, the motivation for the development of this
simulator is to provide the students with a simple and useable tool for gaining an intuitive
feel for the PSO algorithm, mathematical and power system optimization problems.

3.2 Functions of simulator
The basic objectives of this simulator were to make it easy to use and to provide effective

visualization capability suitable for presentations as well as individual studies. This

educational simulator was developed by MATLAB 2009b. MATLAB is a scientific

computing language developed by The Mathworks, Inc. that is run in an interpreter mode

on a wide variety of operating systems. It is extremely powerful, simple to use, and can be

found in most research and engineering environments.

The structure and data flow of the developed PSO simulator is shown in Fig. 1. The

simulator consists of 3-parts, that is, i) user setting of optimization function as well as

parameters, ii) output result, and iii) visualized output variations, as shown in Figs. 2, 3, and

4, respectively. Since the main interaction between user and the simulator is performed

through the GUI, it presents novice users with the information they need, and provides easy

access for advanced users to additional detailed information. Thus, the GUI is instrumental

in allowing users to gain an intuitive feel of the PSO algorithm, rather than just learning

how to use this simulator.

In this simulator, parameters (i.e., maximum number of the iteration, maximum and

minimum number of inertia weight, acceleration factors 1c and 2c , and number of particles)

that have the influence of PSO performance can be directly inputted by users. In addition,

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

84

Fig. 1. Structure of the developed PSO simulator

Fig. 2. A window for user setting

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

85

Fig. 3. Output result window

Fig. 4. Viewing parts of output variation

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

86

“Input Default Value” check-box was added for users who don’t know the proper

parameter values of the PSO. If the users push the “START” button finally, then the users

can observe the evolution process of the particles on contours of the objective function (in

case of a mathematical example) or the output histogram of each generator through

MATLAB animation functions and check the changes of the values of the objective function

and control variables at each iteration. The “Disable axes” check-box is used when the users

want to show only the values of the final result fast. When the check-box is checked, only

the final results (i.e., the value of the objective function and control variables) are expressed

in the “Result Output Window”. At any point in time in the simulation, the user can pause

or restart the simulation by pushing the “PAUSE” button. As shown in Figs. 5 and 6, user

can observe movements of each particle as well as the trend of the value of the objective

function.

Fig. 5. Simulation for a mathematical example

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

87

Fig. 6. Simulation for an economic dispatch problem.

4. Economic dispatch(ED) problem

4.1 Basic ED problem formulation
The ED problem is one of the basic optimization problems for the students who meet the

power system engineering. The objective is to find the optimal combination of power

generations that minimizes the total generation cost while satisfying an equality constraint

and a set of inequality constraints. The most simplified cost function can be represented in a

quadratic form as following (A. J. Wood et al., 1984):

 ()j j
j J

C F P
∈

=∑ (4)

 2()j j j j j j jF P a b P c P= + + (5)

where,
C total generation cost;

jF cost function of generator j;

, ,j j ja b c cost coefficients of generator j;

jP electrical output of generator j;

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

88

J set for all generators.

While minimizing the total generation cost, the total generated power should be the same as
the total load demand plus the total line loss. However, the transmission loss is not
considered in this paper for simplicity. In addition, the generation output of each generator
should be laid between minimum and maximum limits as follows:

 min maxj j jP P P≤ ≤ (6)

where minjP and maxjP are the minimum and maximum output of generator j, respectively.

4.2 Valve-point effects
The generating units with multi-valve steam turbines exhibit a greater variation in the fuel-
cost functions. Since the valve point results in ripples, a cost function contains high order
nonlinearities (H. T. Yang et al., 1996; N. Sinba et al., 2003; D. C. Walters et al. 1993).
Therefore, the cost function (5) should be replaced by the following to consider the valve-
point effects:

 2
min() sin(())j j j j j j j j j j jF P a b P c P e f P P= + + + × × − (7)

where je and jf are the cost coefficients of generator j reflecting valve-point effects.

Here, the sinusoidal functions are added to the quadratic cost functions.

5. Case studies

This simulator can choose and run five different mathematical examples and two different
ED problems: (i) The Sphere function, (ii) The Rosenbrock (or banana-valley) function, (iii)
Ackley's function, (iv) The generalized Rastrigin function, (v) The generalized Griewank
function, (vi) 3-unit system with valve-point effects, and (vii) 40-unit system with valve-
point effects. In the case of each mathematical example (functions (i)-(v)), two input
variables (i.e., 2-dimensional space) have been set in order to show the movement of
particles on contour. For the case study, 30 independent trials are conducted to observe the
variation during the evolutionary processes and compare the solution quality and
convergence characteristics.
To successfully implement the PSO, some parameters must be assigned in advance. The
population size NP is set to 30. Since the performance of PSO depends on its parameters

such as inertia weight ω and two acceleration coefficients (i.e., 1c and 2c), it is very

important to determine the suitable values of parameters. The inertia weight is varied from

0.9 (i.e., maxω) to 0.4 (i.e., minω), as these values are accepted as typical for solving wide

varieties of problems. Two acceleration coefficients are determined through the experiments
for each problem so as to find the optimal combination.

5.1 Mathematical examples
For development of user's understanding of the PSO algorithm, five non-linear
mathematical examples are used here. In each case, the maximum number of iterations (i.e.,

maxiter) was set to 500. The acceleration coefficients (i.e., 1c and 2c) was equally set to 2.0

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

89

from the experimental results for each case using the typical PSO algorithm. And all of the
global minimum value of each function is known as 0. The global minimum value was
successfully verified by the simulator.

5.1.1 The sphere function

The function and the initial position range of input variables (i.e., ix) are as follows:

 2
0

1

()
n

i
i

f x x
=

=∑ (8)

5.12 5.12ix− ≤ ≤

Initial and final stages of the optimization process for the Sphere function are shown in
Fig. 7.

 (a) Initial stage (b) Final stage

Fig. 7. Optimization process for the sphere function.

5.1.2 The rosenbrock (or banana-valley) function

The function and the initial position range of input variables (i.e., ix) are as follows:

/2

2 2 2
1 2 2 1 2 1

1

() (100() (1))
n

i i i
i

f x x x x− −
=

= − + −∑ (9)

2.048 2.048ix− ≤ ≤

Initial and final stages of the optimization process for the Rosenbrock function are shown in
Fig. 8.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

90

(a) Initial stage b) Final stage

Fig. 8. Optimization process for the Rosenbrock function.

5.1.3 The ackley’s function

The function and the initial position range of input variables (i.e., ix) is as follows:

 2
2

1 1

1 1
() 20exp 0.2 exp cos(2) 20

n n

i i
i i

f x x x e
n n= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟= − − − π + +⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∑ ∑ (10)

30 30ix− ≤ ≤

Initial and final stages of the optimization process for the Ackley’s function are shown in
Fig. 9.

(a) Initial stage (b) Final stage

Fig. 9. Optimization process for Ackley's function.

5.1.4 The generalized rastrigin function

The function and the initial position range of input variables (i.e., ix) is as follows:

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

91

 2
3

1

() (10cos(2) 10)
n

i i
i

f x x x
=

= − π +∑ (11)

5.12 5.12ix− ≤ ≤

Initial and final stages of the optimization process for the generalized Rastrigin function are
shown in Fig. 10.

 (a) Initial stage (b) Final stage

Fig. 10. Optimization process for Rastrigin function.

5.1.5 The generalized griewank function

The function and the initial position range of input variables (i.e., ix) is as follows:

 2
4

1 1

1
() cos 1

4000

nn
i

i
i i

x
f x x

i= =

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

∑ ∏ (12)

200 200ix− ≤ ≤

Initial and final stages of the optimization process for the generalized Griewank function are
shown in Fig. 11.
Table 1 shows the average values of objective functions and two input variables for each
function achieved by the PSO simulator.

Function Name Objective Function Value 1x 2x

Sphere 0 0 0
Rosenbrock 0 1 1
Ackley -8.8818e-16 -2.9595e-16 1.6273e-16
Rastrigin 0 9.7733e-10 -7.9493e-10
Griewank 0 100 100

Table 1. Results for Each Test Function

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

92

(a) Initial stage (b) Final stage

Fig. 11. Optimization process for Griewank function.

5.2 Economic dispatch(ED) problems with valve-point effects
This simulator also offers examples to solve ED problem for two different power systems: a
3-unit system with valve-point effects, and a 40-unit system with valve-point effects. The
total demands of the 3-unit and the 40-unit systems are set to 850MW and 10,500MW,
respectively. All the system data and related constraints of the test systems are given in (N.
Sinba et al., 2003). Because these systems have more than 3 input variables, the simulator
shows a histogram for the generation output instead of the contour and particles. Since the
global minimum for the total generation cost is unknown in the case of the 40-unit system,
the maximum number of iterations (i.e., maxiter) is set to 10,000 in order to sufficiently

search for the minimum value.
Table 2 shows the minimum, mean, maximum, and standard deviation for the 3-unit system
obtained from the simulator. The generation outputs and the corresponding costs of the best
solution for 3-unit system are described in Table 3.

Case
Minimum Cost

($)
Average Cost

($)
Maximum

Cost ($)
Standard
Deviation

3-Unit System 8234.0717 8234.0717 8234.0717 0

* Global value of the 3-unit system was known as 8234.0717.T

Table 2. Convergence Results for 3-Unit System

Unit Generation Cost

1 300.2669 3087.5099
2 400.0000 3767.1246
3 149.7331 1379.4372

TP/TC 850.0000 8234.0717

*TP: total power [MW], TC: total generation cost [$]

Table 3. Generation Output of Each Generator and The Corresponding Cost in 3-Unit
System

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

93

In order to find the optimal combination of parameters (i.e., maxω , minω , 1c , and 2c B), six

cases are considered as given in Table 4. The parameters are determined through the
experiments for 40-unit system using the simulator. In Table 4, the effects of parameters are
illustrated

Cases maxω minω c1,c2
Minimum

Cost ($)
Average
Cost ($)

Maximum
Cost ($)

Standard
Deviation

1 1.0 0.5 1 121755.49 122221.90 122624.07 156.97

2 0.9 0.4 1 121761.40 122343.32 123087.16 303.62

3 0.8 0.3 1 121949.15 122842.59 124363.11 602.06

4 1.0 0.5 2 121865.23 122285.12 122658.29 175.19

5 0.9 0.4 2 121768.69 122140.32 122608.27 187.74

6 0.8 0.3 2 121757.09 122158.00 122615.71 212.36

Table 4. Influence of Acceleration Coefficients for 40-Unit System

The result screens for 3-unit and 40-unit system are shown in Figs. 12 and 13, respectively.
Each histogram expresses the result of generation output for each generator.

Fig. 12. Result screen for the 3-units system.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

94

Fig. 13. Result screen for the 40-units system.

6. Conclusion

This chapter presents an educational simulator for particle swarm optimization (PSO) and
application for solving mathematical test functions as well as ED problems with non-smooth
cost functions. Using this simulator, instructors and students can select the test functions for
simulation and set the parameters that have an influence on the PSO performance. Through
visualization process of each particle and variation of the value of objective function, the
simulator is particularly effective in providing users with an intuitive feel for the PSO
algorithm. This simulator is expected to be an useful tool for students who study electrical
engineering and optimization techniques.

7. Appendix 1: pso.m

function varargout = pso(varargin)

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @pso_OpeningFcn, ...

 'gui_OutputFcn', @pso_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin & isstr(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

95

 gui_mainfcn(gui_State, varargin{:});

end

function pso_OpeningFcn(hObject, eventdata, handles, varargin)

handles.output = hObject;

guidata(hObject, handles);

function varargout = pso_OutputFcn(hObject, eventdata, handles)

varargout{1} = handles.output;

function select_func_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

 set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function select_func_Callback(hObject, eventdata, handles)

function default_value_Callback(hObject, eventdata, handles)

set(handles.default_value, 'Value', 1);

set(handles.reset, 'Value', 0);

set(handles.wmax, 'String', 0.9);

set(handles.wmin, 'String', 0.4);

set(handles.X_max, 'String', 5.12);

set(handles.X_min, 'String', -5.12);

set(handles.c1, 'String', 2);

set(handles.c2, 'String', 2);

set(handles.N, 'String', 30);

set(handles.itmax, 'String', 500);

function reset_Callback(hObject, eventdata, handles)

set(handles.default_value, 'Value', 0);

set(handles.reset, 'Value', 1);

set(handles.wmax, 'String', 0);

set(handles.wmin, 'String', 0);

set(handles.X_max, 'String', 0);

set(handles.X_min, 'String', 0);

set(handles.c1, 'String', 0);

set(handles.c2, 'String', 0);

set(handles.N, 'String', 0);

set(handles.itmax, 'String', 0);

function wmax_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function wmax_Callback(hObject, eventdata, handles)

wmax = str2double(get(hObject,'String'));

if isnan(wmax)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

pso_para = getappdata(gcbf, 'metricdata');

pso_para.wmax = wmax;

setappdata(gcbf, 'metricdata', pso_para);

function wmin_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

96

function wmin_Callback(hObject, eventdata, handles)

wmin = str2double(get(hObject,'String'));

if isnan(wmin)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

pso_para = getappdata(gcbf, 'metricdata');

pso_para.wmin = wmin;

setappdata(gcbf, 'metricdata', pso_para);

function c1_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function c1_Callback(hObject, eventdata, handles)

c1 = str2double(get(hObject,'String'));

if isnan(c1)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

pso_para = getappdata(gcbf, 'metricdata');

pso_para.c1 = c1;

setappdata(gcbf, 'metricdata', pso_para);

function c2_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function c2_Callback(hObject, eventdata, handles)

c2 = str2double(get(hObject,'String'));

if isnan(c2)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

pso_para = getappdata(gcbf, 'metricdata');

pso_para.c2 = c2;

setappdata(gcbf, 'metricdata', pso_para);

function N_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function N_Callback(hObject, eventdata, handles)

N = str2double(get(hObject,'String'));

if isnan(N)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

pso_para = getappdata(gcbf, 'metricdata');

pso_para.N = N;

setappdata(gcbf, 'metricdata', pso_para);

function itmax_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

97

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function itmax_Callback(hObject, eventdata, handles)

itmax = str2double(get(hObject,'String'));

if isnan(itmax)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

function start_Callback(hObject, eventdata, handles)

if get(handles.select_func,'value')>=7

 eldrun

else

 runpso

end

function Result_window_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function Result_window_Callback(hObject, eventdata, handles)

function pause_Callback(hObject, eventdata, handles)

if isequal(get(handles.pause,'String'),'PAUSE')

 set(handles.start,'Enable','on');

 set(handles.pause,'String','RESUME');

 uiwait;

else

 set(handles.start,'Enable','off');

 set(handles.pause,'String','PAUSE');

 uiresume;

end

function disable_Callback(hObject, eventdata, handles)

function close_Callback(hObject, eventdata, handles)

delete(get(0,'CurrentFigure'));

function X_max_Callback(hObject, eventdata, handles)

X_max = str2double(get(hObject,'String'));

if isnan(X_max)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

pso_para = getappdata(gcbf, 'metricdata');

pso_para.X_max = X_max;

setappdata(gcbf, 'metricdata', pso_para);

function X_max_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

function X_min_Callback(hObject, eventdata, handles)

X_min = str2double(get(hObject,'String'));

if isnan(X_min)

 set(hObject, 'String', 0);

 errordlg('Input must be a number','Error');

end

pso_para = getappdata(gcbf, 'metricdata');

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

98

pso_para.X_min = X_min;

setappdata(gcbf, 'metricdata', pso_para);

function X_min_CreateFcn(hObject, eventdata, handles)

if ispc

 set(hObject,'BackgroundColor','white');

else

set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'));

end

8. Appendix 2: runpso.m

cla;

set(handles.start,'Enable','off');

set(handles.pause,'String','PAUSE','Enable','on');

set(handles.text14,'String','Search State ');

functnames = get(handles.select_func,'String');

functname = functnames{get(handles.select_func,'Value')};

wmax = str2double(get(handles.wmax, 'String'));

wmin = str2double(get(handles.wmin, 'String'));

X_max = str2double(get(handles.X_max, 'String'));

X_min = str2double(get(handles.X_min, 'String'));

c1 = str2double(get(handles.c1, 'String'));

c2 = str2double(get(handles.c2, 'String'));

N = str2double(get(handles.N, 'String'));

itmax = str2double(get(handles.itmax, 'String'));

pso_para = getappdata(gcbf, 'metricdata');

pso_para.wmax = wmax;

pso_para.wmin = wmin;

pso_para.X_max = X_max;

pso_para.X_min = X_min;

pso_para.c1 = c1;

pso_para.c2 = c2;

pso_para.N = N;

pso_para.itmax = itmax;

setappdata(gcbf, 'metricdata', pso_para);

D=2; % Dimension

% Weight Parameter

for iter=1:pso_para.itmax

 W(iter)= pso_para.wmax-((pso_para.wmax-

pso_para.wmin)/pso_para.itmax)*iter;

end

%Initialization of positions of agents

% agents are initialized between -5.12,+5.12 randomly

a= X_min; %min

b= X_max; %max

x=a+(b-a)*rand(pso_para.N,D,1);

%Initialization of velocities of agents

%Between -5.12 , +5.12, (which can also be started from zero)

m=X_min;

n=X_max;

V=m+(n-m)*rand(pso_para.N,D,1);

%Function to be minimized.

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

99

F = feval(functname,x(:,:,1));

% Saving address and value; C:Value of E, I: The Number of Particle

[C,I]=min(abs(F(:,1,1))); B(1,1,1)=C;

XX(1,1,1)=I;

gbest(1,:,1)=x(I,:,1);

%Matrix composed of gbest vector

for p=1:pso_para.N

 for r=1:D

 G(p,r,1)=gbest(1,r,1);

 end

end

Fbest(1,1,1) = feval(functname,G(1,:,1));

pbest=x;

% Calculating Velocity

V(:,:,2) = W(1) * V(:,:,1) + pso_para.c1*rand*(pbest(:,:,1)-

x(:,:,1)) + pso_para.c2*rand*(G(:,:,1)-x(:,:,1));

x(:,:,2)=x(:,:,1) + V(:,:,2);

for i=1:pso_para.N

 for j=1:D

 if x(i,j,2)<a

 x(i,j,2)=a;

 else

 if x(i,j,2)>b

 x(i,j,2)=b;

 else

 end

 end

 end

end

Fb(1,1,1) = feval(functname,gbest(1,:,1));

if get(handles.disable,'Value')==0

 %%%%%%%%%%%%%%%%%%%%% Contour Plot %%%%%%%%%%%%%%%%%%%%%%

 axes(handles.axes2);

 axis([a b a b])

 con_m=a:0.1:b;

 con_n=con_m;

 [con_m,con_n]=meshgrid(con_m,con_n);

 for q=1:length(con_m(1,:))

 for z=1:length(con_n(1,:))

 r(q,z)= feval(functname,[con_m(q,z),con_n(q,z)]);

 end

 end

 r_save=r;

 [c,h]=contour(con_m,con_n,r_save,10);

 xlabel('X1')

 ylabel('X2')

 title('Search State')

 %%

end

for j=2:pso_para.itmax

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

100

 % Calculation of new positions

 F(:,1,j) = feval(functname,x(:,:,j));

 [C,I]=min(abs(F(:,1,j)));

 B(1,1,j)=C;

 for i=1:D

 gbest(1,i,j)=x(I,i,j);

 end

 Fb(1,1,j) = feval(functname,gbest(1,:,j));

 [C,I]=min(Fb(1,1,:));

 if Fb(1,1,j)<=C

 for k=1:D

 gbest(1,k,j)=gbest(1,k,j);

 end

 else

 for m=1:D

 gbest(1,m,j)=gbest(1,m,I);

 end

 end

 %Matrix composed of gbest vector

 for p=1:pso_para.N

 for r=1:D

 G(p,r,j)=gbest(1,r,j);

 end

 end

 Fbest(1,1,j) = feval(functname,G(1,:,j));

 for i=1:pso_para.N;

 [C,I]=min(F(i,1,:));

 if F(i,1,j)<=C

 pbest(i,:,j)=x(i,:,j);

 else

 pbest(i,:,j)=x(i,:,I);

 end

 end

 V(:,:,j+1)= W(j)*V(:,:,j) + pso_para.c1*rand*(pbest(:,:,j)-

x(:,:,j)) + pso_para.c2*rand*(G(:,:,j)-x(:,:,j));

 x(:,:,j+1)=x(:,:,j)+V(:,:,j+1);

 for k=1:pso_para.N

 for m=1:D

 if x(k,m,j+1)<a

 x(k,m,j+1)=a;

 else

 if x(k,m,j+1)>b

 x(k,m,j+1)=b;

 else

 end

 end

 end

 end

 if get(handles.disable,'Value')==0

 set(gcf,'Doublebuffer','on');

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

101

 %%%%%%%%% Display to the ListBox%%%%%%%%%%

 ResultStr(1) = [{['Fbest','1',' ','=',' ',

num2str(Fbest(1,1,1)),'

','Gbest','1','=','(',num2str(gbest(1,1,1)),',',num2str(gbest(1,2,1)

),')']}];

 ResultStr(j) = [{['Fbest',num2str(j),' ','=',' ',

num2str(Fbest(1,1,end)),'

','Gbest',num2str(j),'=','(',num2str(gbest(1,1,end)),',',num2str(gbe

st(1,2,end)),')']}];

 set(handles.Result_window, 'String', ResultStr);

 %%%%%%%%% end of Display %%%%%%%%%%%%%%%%%

 %%%%%%%%%%%%%%%% AXE-1 %%%%%%%%%%%%%%%%%

 axes(handles.axes1);

 cla;

 set(gca,'xlim',[0 pso_para.itmax],'ylim',[0 Fbest(1,1,1)]),

 plot(Fbest(:),'r-')

 if j<=pso_para.itmax/2

 text(j,Fbest(1,1,end),['Fbest = ',

num2str(Fbest(1,1,end))],'HorizontalAlignment','Left','VerticalAlign

ment','bottom','EdgeColor','blue','LineWidth',3);

 else

 text(j,Fbest(1,1,end),['Fbest = ',

num2str(Fbest(1,1,end))],'HorizontalAlignment','Right','VerticalAlig

nment','bottom','EdgeColor','blue','LineWidth',3);

 end

 legend('Fbest');

 hold on

 %%

 %%%%%%%%%%%%%%%%% AXE-2 %%%%%%%%%%%%%%%%

 axes(handles.axes2);

 axis([a b a b])

 [c,h]=contour(con_m,con_n,r_save,10);

 hold on

 plot(pbest(:,1,j),pbest(:,2,j),'r*')

 xlabel('X1')

 ylabel('X2')

 drawnow

 hold off

 %%

 end

end

if get(handles.disable,'Value')==1

 ResultStr = [{['Fbest ','=',' ', num2str(Fbest(1,1,end)),'

','Gbest','=','(',num2str(gbest(1,1,end)),',',num2str(gbest(1,2,end)

),')']}];

 set(handles.Result_window, 'String', ResultStr);

end

set(handles.start,'Enable','on');

set(handles.pause,'String','PAUSE','Enable','off');

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

102

9. Appendix 3: eldrun.m

cla;

set(handles.start,'Enable','off');

set(handles.pause,'String','PAUSE','Enable','on');

set(handles.text14,'String','Generation Output');

functnames = get(handles.select_func,'String');

functname = functnames{get(handles.select_func,'Value')};

wmax = str2double(get(handles.wmax, 'String'));

wmin = str2double(get(handles.wmin, 'String'));

c1 = str2double(get(handles.c1, 'String'));

c2 = str2double(get(handles.c2, 'String'));

N = str2double(get(handles.N, 'String'));

itmax = str2double(get(handles.itmax, 'String'));

pso_para = getappdata(gcbf, 'metricdata');

pso_para.wmax = wmax;

pso_para.wmin = wmin;

pso_para.c1 = c1;

pso_para.c2 = c2;

pso_para.N = N;

pso_para.itmax = itmax;

setappdata(gcbf, 'metricdata', pso_para);

[Gen,Demand]=feval(functname);

%Initialization of PSO parameters

D=size(Gen,1); % Dimension (Number of Generator)

CR = 0.5;

for iter=1:pso_para.itmax

 W(iter)= pso_para.wmax-((pso_para.wmax-

pso_para.wmin)/pso_para.itmax)*iter;

end

%Initialization of positions of agents

%agents are initialized between P_min,P_max randomly

for i=1:D

 P_min(i) = Gen(i,6); % P_min

 P_max(i) = Gen(i,7); % P_max

end

% Constraints handling

for i=1:pso_para.N

 yes=1;

 while yes==1

 p=randperm(D);

 for n=1:D-1

 g = p(n);

 x(i,g) = P_min(g) + (P_max(g)-P_min(g)) * rand;

 A(n) = x(i,g);

 end

 SUM=0;

 for f=1:D-1

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

103

 SUM = SUM + A(f);

 end

 A(D) = Demand - SUM;

 g=p(D);

 if A(D) < P_min(g)

 A(D) = P_min(g);

 ok=0;

 else

 if A(D) > P_max(g)

 A(D) = P_max(g);

 ok=0;

 else

 ok=1;

 yes=0;

 end

 end

 L=1;

 while ok==0

 A(L) = Demand -(sum(A(:))-A(L));

 if A(L) < P_min(p(L))

 A(L) = P_min(p(L));

 ok=0;

 L = L+1;

 if L==D+1

 ok=1;

 yes=1;

 else

 end

 else

 if A(L) > P_max(p(L))

 A(L) = P_max(p(L));

 ok=0;

 L= L+1;

 if L==D+1

 ok=1;

 yes =1;

 else

 end

 else

 ok=1;

 yes=0;

 end

 end

 end

 end

 for k=1:D

 x(i,p(k))=A(k);

 end

end

%Initialization of velocities of agents

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

104

%Between V_min , V_max, (which can also be started from zero)

for i=1:pso_para.N

 for j=1:D

 m(j) = Gen(j,6) - x(i,j); %V_min

 n(j) = Gen(j,7) - x(i,j); %V_max

 V(i,j) = m(j) + (n(j)-m(j)) * rand;

 end

end

% End of Initialization

% Function to be minimized.

for i=1:pso_para.N;

 for j=1:D;

 Cost(i,j) = Gen(j,1) + Gen(j,2)*x(i,j) + Gen(j,3)*x(i,j).^2

+ abs(Gen(j,4)*sin(Gen(j,5)*(Gen(j,6)-x(i,j))));

 end

 F(i,1) = sum(Cost(i,:)); % Total Cost

end

pbest=x;

[C,I]=min(abs(F(:,1)));

B(1,1)=C;

XX(1,1)=I;

gbest(1,:)=x(I,:);

Gen_sum(1,1) = sum(gbest(1,:));

%Matrix composed of gbest vector

for j=1:D;

 Cost_Best(1,j) =

Gen(j,1)+Gen(j,2)*gbest(1,j)+Gen(j,3)*gbest(1,j).^2

+abs(Gen(j,4)*sin(Gen(j,5)*(Gen(j,6)-gbest(1,j))));

end

Fbest(1,1) = sum(Cost_Best(1,:)); % Total Cost

% Constraints handling

for i=1:pso_para.N

 yes=1;

 while yes==1

 p=randperm(D);

 for n=1:D-1

 g = p(n);

 V(i,g) = W(1) * V(i,g) + c1*rand*(pbest(i,g)-x(i,g)) +

c2*rand*(gbest(1,g)-x(i,g));

 x(i,g)=x(i,g) + V(i,g);

 if rand<=CR

 x_adj(i,g) = x(i,g);

 else

 x_adj(i,g) = pbest(i,g);

 end

 A(n) = x_adj(i,g);

 if A(n) < P_min(g)

 A(n) = P_min(g);

 else

 if A(n) > P_max(g)

 A(n) = P_max(g);

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

105

 else

 end

 end

 end

 SUM=0;

 for u=1:D-1

 SUM = SUM + A(u);

 end

 A(D) = Demand - SUM;

 g=p(D);

 if A(D) < P_min(g)

 A(D) = P_min(g);

 ok=0;

 else

 if A(D) > P_max(g)

 A(D) = P_max(g);

 ok=0;

 else

 ok=1;

 end

 yes=0;

 end

 L=1;

 while ok==0

 A(L) = Demand -(sum(A(:))-A(L));

 if A(L) < P_min(p(L))

 A(L) = P_min(p(L));

 ok=0;

 L = L+1;

 if L==D+1

 ok=1;

 yes=1;

 else

 end

 else

 if A(L) > P_max(p(L))

 A(L) = P_max(p(L));

 ok=0;

 L= L+1;

 if L==D+1

 ok=1;

 yes =1;

 else

 end

 else

 ok=1;

 end

 yes=0;

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

106

 end

 end

 end

 for k=1:D

 x_adj(i,p(k))=A(k);

 end

end

for j=2:pso_para.itmax

 % Calculation of new positions

 for i=1:pso_para.N

 for k=1:D

 Cost(i,k) =

Gen(k,1)+Gen(k,2)*x_adj(i,k)+Gen(k,3)*x_adj(i,k).^2

+abs(Gen(k,4)*sin(Gen(k,5)*(Gen(k,6)-x_adj(i,k))));

 end

 F(i,j) = sum(Cost(i,:)); % Total Cost

 end

 for i=1:pso_para.N

 [C,I]=min(F(i,:));

 if F(i,j)<=C

 pbest(i,:)=x_adj(i,:);

 else

 end

 end

 for i=1:pso_para.N

 for k=1:D

 Cost_pbest(i,k) =

Gen(k,1)+Gen(k,2)*pbest(i,k)+Gen(k,3)*pbest(i,k).^2

+abs(Gen(k,4)*sin(Gen(k,5)*(Gen(k,6)-pbest(i,k))));

 end

 F_pbest(i,1) = sum(Cost_pbest(i,:)); % Total Cost

 end

 [C,I]=min(F_pbest(:,1));

 for k=1:D

 gbest(1,k)=pbest(I,k);

 end

 Gen_sum(j,1) = sum(gbest(1,:));

 Fbest(j,1) = C;

% Constraints handling

 for i=1:pso_para.N

 yes=1;

 while yes==1

 p=randperm(D);

 for n=1:D-1

 g = p(n);

 V(i,g) = W(j) * V(i,g) + c1*rand*(pbest(i,g)-x(i,g))

+ c2*rand*(gbest(1,g)-x(i,g));

 x(i,g) = x(i,g) + V(i,g);

 if rand<=CR

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

107

 x_adj(i,g) = x(i,g);

 else

 x_adj(i,g) = pbest(i,g);

 end

 A(n) = x_adj(i,g);

 if A(n) < P_min(g)

 A(n) = P_min(g);

 else

 if A(n) > P_max(g)

 A(n) = P_max(g);

 else

 end

 end

 end

 SUM=0;

 for f=1:D-1

 SUM = SUM + A(f);

 end

 A(D) = Demand - SUM;

 g=p(D);

 if A(D) < P_min(g)

 A(D) = P_min(g);

 ok=0;

 else

 if A(D) > P_max(g)

 A(D) = P_max(g);

 ok=0;

 else

 ok=1;

 yes=0;

 end

 end

 L=1;

 while ok==0

 A(L) = Demand -(sum(A(:))-A(L));

 if A(L) < P_min(p(L))

 A(L) = P_min(p(L));

 ok=0;

 L = L+1;

 if L==D+1

 ok=1;

 yes=1;

 else

 end

 else

 if A(L) > P_max(p(L))

 A(L) = P_max(p(L));

 ok=0;

 L= L+1;

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

108

 if L==D+1

 ok=1;

 yes=1;

 else

 end

 else

 ok=1;

 yes=0;

 end

 end

 end

 end

 for k=1:D

 x_adj(i,p(k))=A(k);

 end

 end

 if get(handles.disable,'Value')==0

 set(gcf,'Doublebuffer','on');

 %%%%%%%%% Display to the ListBox%%%%%%%%%%

 ResultStr(1) = [{['Total Generation Cost at Iteration

','1',' ','=',' ', num2str(Fbest(1,1))]}];

 ResultStr(j) = [{['Total Generation Cost at Iteration

',num2str(j),' ','=',' ', num2str(Fbest(end,1))]}];

 set(handles.Result_window, 'String', ResultStr);

 %%%%%%%%% end of Display %%%%%%%%%%%%%%%%%

 %%%%%%%%%%%%%%%% AXE-1 %%%%%%%%%%%%%%%%%

 axes(handles.axes1);

 cla;

 set(gca,'xlim',[0 pso_para.itmax],'ylim',[0 Fbest(1,1)]),

 plot(Fbest(:),'r-')

 if j<=pso_para.itmax/2

 text(j,Fbest(end,1),['Fbest = ',

num2str(Fbest(end,1))],'HorizontalAlignment','Left','VerticalAlignme

nt','bottom','EdgeColor','blue','LineWidth',3);

 else

 text(j,Fbest(end,1),['Fbest = ',

num2str(Fbest(end,1))],'HorizontalAlignment','Right','VerticalAlignm

ent','bottom','EdgeColor','blue','LineWidth',3);

 end

 legend('Fbest');

 hold on

 %%

 %%%%%%%%%%%%%%%%% AXE-2 %%%%%%%%%%%%%%%%

 axes(handles.axes2);

 axis([0 D+1 0 max(Gen(:,7))+50])

 bar(Gen(:,7),'r')

 hold on

 bar(gbest,'w')

www.intechopen.com

Educational Simulator for Particle Swarm Optimization and Economic Dispatch Applications

109

 drawnow

 %%

 else

 end

end

if get(handles.disable,'Value')==1

 cla;

 ResultStr = [{['Total Generation Cost ','=',' ',

num2str(Fbest(end,1))]}];

 set(handles.Result_window, 'String', ResultStr);

end

%%%%%%%%%%%%%%%%% AXE-2 %%%%%%%%%%%%%%%%

axes(handles.axes2);

axis([0 D+1 0 max(Gen(:,7))+50])

bar(Gen(:,7),'r')

hold on

bar(gbest(end,:),'w')

drawnow

%%

set(handles.start,'Enable','on');

set(handles.pause,'String','PAUSE','Enable','off');

10. References

A. J. Wood and B. F. Wollenbergy (1984). Power Genration, Operation, and Control, New
York: Wiley.

C. E. Lin and G. L. Viviani (1984). Hierarchical economic dispatch for piecewise quadratic
cost functions, IEEE Trans. Power App. System, vol. PAS-103, no. 6, pp. 1170-1175.

D. A. Wiegmann, G. R. Essenberg, T. J. Overbye, and Y. Sun (2005). Human Factor Aspects
of Power System Flow Animation, IEEE Trans. Power Syst., vol. 20, no. 3, pp. 1233-
1240.

D. A. Wiegmann, T. J. Overbye, S. M. Hoppe, G. R. Essenberg, and Y. Sun (2006). Human
Factors Aspects of Three-Dimensional Visualization of Power System Information,
IEEE Power Eng. Soci. Genral Meeting, pp. 7.

D. C. Walters and G. B. Sheble (1993). Genetic algorithm solution of economic dispatch with
the valve point loading, IEEE Trans. Power Syst., vol. 8, pp. 1325-1332.

H. T. Yang, P. C. Yang, and C. L. Huang (1996). Evolutionary programming based economic
dispatch for units with nonsmooth fuel cost functions, IEEE Trans. Power Syst., vol.
11, no. 1, pp. 112-118.

H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi (2000). A particle
swarm optimization for reactive power and voltage control considering voltage
security assessment, IEEE Trans. Power System, vol. 15, pp. 1232-1239.

J. B. Park, K. S. Lee, J. R. Shin, and K. Y. Lee (2005). A particle swarm optimization for
economic dispatch with nonsmooth cost functions, IEEE Trans. Power Syst., vol. 20,
no. 1, pp. 34-42.

J. H. Park, Y. S. Kim, I. K. Eom, and K. Y. Lee (1993). Economic load dispatch for piecewise
quadratic cost function using Hopfield neural network, IEEE Trans. Power Syst., vol.
8, pp. 1030-1038.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

110

J. Kennedy and R. Eberhart (1995). Particle swarm optimization, Proc. IEE Int. Conf. Neural
Networks (ICNN'95), vol. IV, Perth, Australia, pp.1942-1948.

J. Kennedy and R. C. Eberhart (2001). Swarm Intelligence. San Francisco, CA: Morgan
Kaufmann.

K. Y. Lee, A. Sode-Yome, and J. H. Park (1998). Adaptive Hopfield neural network for
economic load dispatch, IEEE Trans. Power Syst., vol. 13, pp. 519-526.

K. Y. Lee and M. A. El-Sharkawi, Eds. (2002). Modern Heuristic Optimization Techniques
with Applications to Power Systems: IEEE Power Engineering Society (02TP160).

L. S. Coelho and V. C. Mariani (2006). Combining of chaotic differential evolution and
quadratic programming for economic dispatch optimization with valve-point
effect, IEEE Trans. Power Syst., vol. 21, No. 2.

M. Clerc and J. Kennedy (2002). The particle swarm-expolsion, stability, and convergence in
a multidimensional complex space, IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58-
73.

N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay (2003). Evolutionary programming
techniques for economic load dispatch, IEEE Trans. on Evolutionary Computations,
Vol. 7, No. 1, pp. 83-94.

T. A. A. Victoire and A. E. Jeyakumar (2004). Hybrid PSO-SQP for economic dispatch with
valve-point effect, Electric Power Syst. Research, vol. 71, pp. 51-59.

T. A. A. Victoire and A. E. Jeyakumar (2005). Reserve constrained dynamic dispatch of units
with valve-point effects, IEEE Trans. Power Syst., vol. 20, No. 3, pp. 1273-1282.

T. J. Overbye, D. A. Wiegmann, A. M. Rich, and Y. Sun (2003). Human Factor Aspects of
Power System Voltage Contour Visualizations, IEEE Trans. Power Syst., vol. 18, no.
1, pp. 76-82.

W. M. Lin, F. S. Cheng, and M. T. Tasy (2002). An improved Tabu search for economic
dispatch with multiple minima, IEEE Trans. Power Syst., vol. 17, pp. 108-112.

Y. M. Park, J. R. Won, and J. B. Park (1998). A new approach to economic load dispatch
based on improved evolutionary programming, Eng. Intell. Syst. Elect. Eng.
Commun., vol. 6, no. 2, pp. 103-110.

www.intechopen.com

MATLAB - A Ubiquitous Tool for the Practical Engineer

Edited by Prof. Clara Ionescu

ISBN 978-953-307-907-3

Hard cover, 564 pages

Publisher InTech

Published online 13, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A well-known statement says that the PID controller is the â€œbread and butterâ€ of the control engineer. This

is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the

paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that

MATLAB is the â€œbreadâ€ in the above statement. MATLAB has became a de facto tool for the modern

system engineer. This book is written for both engineering students, as well as for practicing engineers. The

wide range of applications in which MATLAB is the working framework, shows that it is a powerful,

comprehensive and easy-to-use environment for performing technical computations. The book includes

various excellent applications in which MATLAB is employed: from pure algebraic computations to data

acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user

interface design for educational purposes to Simulink embedded systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Woo Nam Lee and Jong Bae Park (2011). Educational Simulator for Particle Swarm Optimization and

Economic Dispatch Applications, MATLAB - A Ubiquitous Tool for the Practical Engineer, Prof. Clara Ionescu

(Ed.), ISBN: 978-953-307-907-3, InTech, Available from: http://www.intechopen.com/books/matlab-a-

ubiquitous-tool-for-the-practical-engineer/educational-simulator-for-particle-swarm-optimization-and-economic-

dispatch-applications

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

