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1. Introduction 

In several areas of scientific knowledge there is a need for studying the behavior 
of one or more variables using data generated by repeated measurements of the same unit of 
observations along time or spatial region. Due to this, many experiments are constructed in 
which various treatments are applied on the same plot at different times, or only one 
treatment is applied to an experimental unit and it is made a measurement of a 
characteristic or a set of features in more than one occasion [Khattree & Naik, 2000]. Castro 
and Riboldi [Castro & Riboldi, 2005] define data collected under these kinds of experimental 
setups as repeated measures. More specifically, he asserts that “repeated measures is 
understood as the data generated by repeatedly observing a number of investigation units 
under different conditions of evaluation, assuming that the units of investigation are a 
random sample of a population of interest”. In order to analyze repeated measures data it is 
necessary to take a care about not independency between observations. This is so because it 
is expected a high degree of correlation between data collected on the same observation unit 
over time, and there is usually more variability in the measurements between the subjects 
than within a given subject. A very common type of repeated measures is longitudinal data, 
i.e., repeated measures where the observations within units of investigation were not or can 
not have been randomly assigned to different conditions of evaluation, usually time or 
position in space. 
There are basically two paths to be taken in the analysis of longitudinal data; univariate 

analysis, which requires as a precondition a rigid structure of covariances, or multivariate 

analysis, which, despite being more flexible, is less efficient in detecting significant 

differences than the univariate methodology. 

In Advances in Longitudinal Data Analysis [Fitzmaurice et al., 2009], Fitzmaurice comments 

that despite the advances made in statistical methodology in the last 30 years there has been 

a lag between recent developments and their widespread application to substantive 

problems, and adds that part of the problem why the advances have been somewhat slow to 

move into the mainstream is due to their limited implementation in widely available 

standard computer software. 

In this context this work proposes to develop a single and easy computational 
implementation to solve a great number of practical problems of analysis of longitudinal 
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data, through the decomposition of the sum of squares error of the polynomial models of 
regression. 
In light of the above, not independents  the computational support MatLab looks likes an 
ideal tool for the implementation and dissemination of this kind of statistical analysis 
methods, and linear models, first because its matrix structure fits perfectly well for linear 
models which facilitates the construction of models for univariate and multivariate analysis, 
and second because being a large diffusion tool of, it allows for that the models to be 
implemented, modified and reused in several uses in different situations by several users 
who have access to a MatLab community on the internet. This avoids the need for the 
acquisition of expensive software with black box structure. 

2. Review 

As far as the analysis of experiments using longitudinal data is concerned the methods 
traditionally used are: univariate analyis or Univariate Profile Model whereby longitudinal 
data is considered as if it were observations done in subdivisions of the slots, usually 
requiring that the variance of the response be constant in the occasions of evaluation and 
that the covariance between responses in different occasions be equal; multivariate analysis 
or Multivariate Profile Model whereby it is admitted that these variances and covariances be 
distinct. Despite its apparent versatility, as far as the dimension of the matrix of variances 
and covariances, the multivariate model becomes less attractive, because its results are hard 
to interpret, and its estimates are not consistent. The univariate profile model gives 
consistent estimates and should be used every time when its presuppositions are met. 
Otherwise, the multivariate profile model is a viable alternative [Castro & Riboldi, 2005; 
Johnson & Wichern, 1998]. 
Using the univariate analysis in split-plot designs, regarding time as a sub-plot may cause 
problems because, as it is known, this design presupposes that the covariance matrix meets 
the condition of sphericity which does not always happen. What is found in the literature is 
that repeated measures in one same experimental unit along time are in general correlated, 
and that these correlations are greater for closer times [Malheiros, 1999]. 
Xavier [Xavier, 2000] asserts that a sufficient condition for the F test of the analysis of 
variance of the sub-plots for the time factor and the interaction time*treatments, be valid, is 
that the covariance matrix has a so called composite symmetry shape. The composite 
symmetry occurs when the variance and covariance matrix may be expressed as:  

 

2 2 2 2 2(σ σ ) σ σ σ1 1 1 1
2 2 2 2 2σ (σ σ ) σ σ1 1 1 1
2 2 2 2 2σ σ (σ σ ) σ1 1 1 1
2 2 2 2 2σ σ σ (σ σ )1 1 1 1

⎡ ⎤+
⎢ ⎥
⎢ ⎥+
⎢ ⎥=∑
⎢ ⎥+
⎢ ⎥
⎢ ⎥+⎣ ⎦

   (1) 

where:  

2σ :  is the variance of the sub-plot (within-subjects); 
2
1σ :  is the variance of the plot (among-subjects). 

The composite symmetry condition implies that the random variable be equally correlated 

and has equal variances considering the different occasions. A more general condition of the 
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∑ is described by Huynh and Feldt [Huynh & Feldt, 1970]. This condition, called HUYNH-

FELDT (H-F) or sphericity condition (circularity), specifies that the elements of the ∑  

matrix be expressed for one λ 0,>  as:  

 

2 22 2 2 2(σ σ )(σ σ ) (σ σ )2 1 31 2 1 4σ λ λ λ1 2 2 2
2 22 2 2 2(σ σ )(σ σ ) (σ σ )2 2 31 2 2 4λ σ λ λ22 2 2

2 2 2 2 2 2(σ σ ) (σ σ ) (σ σ )23 1 3 2 3 4λ λ σ λ32 2 2
2 22 2 2 2 (σ σ )(σ σ ) (σ σ ) 24 34 1 4 2λ λ λ σ42 2 2

⎡ ⎤++ +
⎢ ⎥− − −
⎢ ⎥
⎢ ⎥

++ +⎢ ⎥− − −⎢ ⎥
=∑ ⎢ ⎥
⎢ ⎥+ + +

− − −⎢ ⎥
⎢ ⎥
⎢ ⎥++ +⎢ ⎥− − −
⎢ ⎥⎣ ⎦

  (2) 

where λ  is the difference between the means of the variances and the means of the 

covariances.  
The H-F condition is necessary and sufficient for the F test in the usual analysis of variance 
in split-plot in time to be valid. This condition is equivalent to specifying that the variances 
of the difference between pairs of errors are equal, and if the variances are all equal then the 
condition is equivalent to compound symmetry [Xavier, 2000]. 
To check the condition of circularity Mauchly [Mauchly, 1940] presents the test of sphericity. 
This test uses H-F condition for the covariance matrix of (t-1) normalized orthogonal 
contrasts for repeated measures not correlated with equal variances. Vonesh and Chinchilli  
[Vonesh & Chinchilli, 1997] state that the sphericity test is not very powerful for small 
samples and is not robust when there is violation of the normality assumption. 

According to Box; Greenhouse & Geisser; and Huynh & Feldt [Box, 1954; Greenhouse & 

Geisser, 1959;  Huynh & Feldt, 1976],  although the matrix ∑ may not satisfy the condition 

of sphericity, the central F distribution may be used, in an approximate form, if a correction 

in the degrees of freedom associated with the causes of variation involving the time factor is 

made. The degrees of freedom correction in these sources of variation is done by 

multiplying the original degrees by a factor ε . When ∑  is uniform, the value of ε =1.  
According to Freitas [Freitas, 2007] the correction of the number of degrees of freedom 
should be made only in statistics that involve comparisons within subjects (time factor and 
interaction time*treatments). The statistics involving comparisons between subjects do not 
need corrections in the degrees of freedom because there is always an exact central F 
distribution. 

When the pattern of the ∑ matrix is not satisfied, not even close, the multivariate 

techniques are used since this type of solution is applicable to any ∑ matrix. The only 

requirement of the multivariate procedure is that the ∑ matrix should be common to all 

treatments. 
Due to the essentially multivariate nature of the response vectors, in studies involving 
longitudinal data, the multivariate analysis technique  also known as multivariate profile 
analysis is a natural alternative to the problem at hand [Wald, 2000]. The multivariate 
profile analysis is well discussed in the literature by authors such as [Lima, 1996; Morrison, 
1990; Singer, 1986]. 
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The multivariate profile analysis is one of the statistics technique used to analyze 
observations derived from experiments that use longitudinal data. This technique bases 
itself both in the number of experimental units and the sample size [Castro, 1997]. 
Unlike the univariate profile analysis model, the multivariate profile analysis model does 
not require that the variance of the repeated measures or that the correlation between pairs 
of repeated measures remain constant along time. Nevertheless, both models require that 
the variances and the correlations be homogeneous in each moment in time [Vieira, 2006]. 
The routine techniques for analysis of variance impose the condition of independence of 
observations. However, this restriction generally does not apply to longitudinal data where 
the observations in the same individual are usually correlated. In such case, the adequate 
manner for treating the observations would be the multivariate form [Vonesh & Chinchilli, 
1997]. 
Cole & Grizzle [Cole & Grizzle, 1966] use the multivariate analysis of variance according to 
the Smith et al. [Smith et al., 1962] formulation and comment on its versatility in the 
construction of specific hypothesis testing that may be obtained as particular cases of the  
general linear multivariate hypothesis test procedure. They assert that such hypothesis may 
be tested by three alternative criterions, all of which dependent on characteristic roots of 
matrix functions due to the hypothesis and of the matrix due to the error:  criterion of the 
maximum characteristic root, criterion of the product of the roots (criterion of the 
verosimilarity ratio) and criterion of the sum of the roots. The authors illustrate the 
application of the multivariate analysis of variance and demonstrate that the information 
requested from these experiments may be formulated in terms of the following null 
hypotheses: 
i. there are no principal effects of “measured conditions” (occasions); 
ii. there are no effects of treatments; 
iii. there is no interaction of treatment and occasions. 
The multivariate analysis of variance is a powerful instrument to analyze longitudinal data 
but if the uniformity hypothesis of the variance and covariance matrix is not rejected the 
univariate analysis should be employed. Nonetheless, if the variance and covariance matrix 
of repeated measures has the serial correlation structure one should use an analysis method 
that takes into account the structure of this matrix in order that one might have an 
increment in the testing power. In this way the multivariate analysis of variance becomes 
the most convenient one if not the only appropriate one among the available procedures 
[Cole & Grizzle, 1966; Smith et al., 1962]. 
Lima [Lima, 1996] asserts that the multivariate profile analysis possesses as its main 
advantage the fact that is allows for the adoption of a very general model to represent the 
structure of covariances admitting that the variances of responses in each time and the 
covariances of responses between distinct times be different.  
In studying longitudinal data investigation methods, Greenhouse & Geisser [Greenhouse & 
Geisser, 1959] observed that the ratios between the mean squares obtained in the analysis of 
variance for the mixed univariate model will only have exact distribution of probability F if 
the observations in time be normally distributed with equal variances and be mutually 
independent or equally correlated. Because these presuppositions are strict, the authors 
prefer considering the observations in time as a vector of samples of a normal multivariate 
distribution with an arbitrary variance and covariance matrix. Being so, the multivariate 
perspective presented by Morrison [Morrison, 1990] allows for the adoption of a general 
model to represent the covariance structure of the observations. In this case, the covariance 
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matrix is known as being non structured where all variances and covariances might be 
different and, as pointed out by Andreoni [Andreoni, 1989], it is only applicable when:  
- there be no theoretical or empirical basis to establish any pattern for this matrix; 
- there be no need to extrapolate the model beyond the occasions of the considered 

observations.  
The quantity of parameters associated with the non structured matrix that need to be 
estimated is proportional to the number of conditions of evaluation. In situations where the 
number is large, when the number of experimental units is small in relation to the number 
of evaluation events or when there is the presence of many incomplete observations the 
efficiency of the estimators might be affected. In some cases it may be impossible to estimate 
the parameters of this covariance matrix [Wald, 2000]. 
Meredith & Stehman [Meredith & Stehman, 1991] state that the disadvantage of the 
multivariate analysis is the lack of power to estimate the parameters of the covariance 
matrix in case when t (number of measurement events or times) is large and n is small.  
Stuker [Stuker, 1986] comments on the restriction of the multivariate analysis of covariance 
in which the number of experimental units minus the number of treatments should be 
greater than the number of observations taken in each experimental unit otherwise the 
required matrix due to error for these tests is singular. 

Timm [Timm, 1980] claims that the restrictions to the application of the multivariate profile 
analysis occur due to the need for complete individual response profiles and to the low 
power of these hypothesis tests due to excessive parametering. On the other hand, except for 
these restrictions, the majority of the cases in longitudinal data studies, the analysis 
procedure of multivariate analysis of variance is the most convenient if not the only 
appropriate one among the available techniques. 

3. Materials and methods 

3.1 Data 

In order to conduct the study it was created a data matrix with the following structure: 

ijkY y= , where  ijky is the observation j belonged the period i of the treatment k. To simulate  

growth curves composed of two treatments, seven observations over time and five 

repetitions, each observation of Y matrix was defined as ijky = i ijrf ε+  with a fixed part if , 

with i = 1,2, and where 2
1 46 88 57f X X= + −  and  2

2 42 88 53f X X= + + and a variable 

portion ijkε  randomly generated with normal distribution with zero mean and variance 

proportional to  E( if ) in which the variation coefficient remains constant in 0,05, under 

these conditions is imposed on the model 1f  a linear growth  higher than compared to the 

2f  model and both with the same regression model. 

3.1.1 Data base structure 

To  analyze the longitudinal data, the data base was structured in the following way; the 

first column refers to the independent variable X [x ]i= or to periods with i 1...p= , the 

second column the response variable Y [y ]ijk= , in which ijky , refers to the observation 

referring to the repetition j  of the period i of treatment k, with j 1...r= ., and the third 

column refers to the control variable F [f ]k= or treatments, with 1...j t= . 
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 File.txt= 

1 y 1111
. y .121
. . .

. . .

p y tprt

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

  (3) 

The following Matlab commands upload and dimension the file in addition to determining 
the index of the column of each variable.  
M=load('-ascii', 'file.txt'); 
[n,c]=size(M); 
a=input('column of the independent variable X   ='); 
b=input('column of the dependent variable Y   ='); 
aa=input('initial column of the control variable curve ='); 
nc=input('number of curves to be compared ='); 
npc=input('number of points per curve ='); 

3.2 Data analysis  

Once the data base is correctly structured the first step is to adjust the best polynomial model 
that explains the variation of Y in function of the X periods. Towards this, the parameters of 
the polynomial of adjustment will be estimated by the matrix expression below. 

 Ŷ BX=   (4) 

   β [bo b .... b ]g1=   (5) 

in which g is a degree of the polynomial 

 
g2X [1 x x . . . x ]i i i=    (6) 

 1β̂ (X'X) (X'Y)−=   (7) 

To determine what is the best degree of the polynomial for the data under analysis it was 
used a scatterplot. The following commands prepare the data for visualization.  
x=M(:,a:(b-1)); 
Y=M(:,b:(aa-1)); 
Trat=M(:,aa); 
M=[x Y Trat]; 
[tmp,idx]=sort(M(:,aa)); 
M=M(idx,:), 
set(plot(x,Y,'o')) 
From the scatterplot, choose the degree of polynomial to be adjusted.  
g=input('choose the degree of polynomial Degree   ='); 

The following procedures were used to estimate β̂   

[n,r]=size(M); 
X=ones(n,npc); 
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y1=ones(n,1); 

for i=2:npc 

X(:,i)=M(:,a).*y1; 

y1=X(:,i); 

end 

X=X(:,1:(d+1)); 

BT=(inv((X'*X)))*(X'*(M(:,b:aa-1))); 

To test the hypothesis: 0 : 0H β =  against 1 : 0H β ≠ , the F test is employed. 

    
QMr

F
QMε

=   (8) 

that have the Snedecor F distribution with (g-1) and (n-g) degrees of freedom. 

 
1 2QMr β(X'Y) nY

(g 1)
= −

−
  (9) 

 
1

QMε [(Y'Y) β(X'Y)]
(n g)

= −
−

=
1

(n g)−
ˆ ˆ(Y Y)'(Y Y)− −

   
(10)

 

And to measure the degree of explanation of the variability of Y according to the polynomial 

model it is used the coefficient of determination. 

   
SQr2R
SQT

=      (11) 

   2SQr β(X'Y) nY= −       (12) 

 2SQT (Y'Y) nY= −      (13) 

And to measure the degree of explanation of the Y variability in function of the polynomial 

model it is employed the determination coefficient.  

 
SQr2R
SQT

=   (14) 

in which 

 2SQr β(X'Y) nY= −     (15) 

and 

  2SQT (Y'Y) nY= −       (16) 

After the adjustment of the polynomial model for the data set, the next step is to adjust the 

same model for each of the k treatments separately, so  
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 1Ŷ (X'X) (X'Y )k k
−=      (17) 

Where 

 

1b̂ (X'X) (X'Yk)k
−=    (18) 

The test for comparing the curves is based on the decomposition of SQε  in one part 

explained by the variation between the curves and the other by the variation within the 
curves. 

 SQε =
t

ˆ ˆ ˆ ˆ(Y Yk)'(Y Yk)
k 1

− −∑
=

+
t

ˆ ˆ(Yk Yk)'(Yk Yk).
k 1

− −∑
=

     (19) 

in which t
K 1∑ =

ˆ ˆ ˆ ˆ(Y Yk)'(Y Yk)− −   is the variation explained by the treatments, and 

1
t
K∑ =

ˆ ˆ( )'( ).Yk Y k Yk Yk− −
 
is the variation within each treatment.  

 And the   

t
ˆ ˆ ˆ((Y Yk)'(Y Yk))(n t)(p 1)

k 1F t
ˆ ˆ((Y Yk)'(Y Yk))(p 1)(t 1)

K 1

− − − −∑
==

− − − −∑
=

     (21) 

has a Snedecor F distribution with
 
( 1)( 1)p t− −  and (n t)(p 1)− − degrees of freedom. 

 And the reason 

t
ˆ ˆ ˆ((Y Yk)'(Y Yk))(n t)(p 1)

k 1F t
ˆ ˆ((Y Yk)'(Y Yk))(p 1)(t 1)

K 1

− − − −∑
==

− − − −∑
=

  (22) 

Has a Snedecor F distribution with (p 1)(t 1)− −  and (n t)(p 1)− − degrees of freedom.  

The following commands calculate the regression parameters for the individual curves. 
[c,r]=size(M1); 
Yobs(:,i)=M1(:,b) 
X=ones(c,npc); 
y1=ones(c,1); 
for j=2:npc 
X(:,j)=M1(:,a).*y1; 
y1=X(:,j); 
end 
Y=M1(:,b); 
X=X(:,1:(d+1)); 
B(:,i)=(inv((X'*X)))*(X'*Y); 
Y1est(:,i)=X*BT; 
end 
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The following commands print the graph with the curves estimated. 
Yest=X*B; 
y=[Y1est Yest]; 
x=X(:,b); 
plot(x,y) 
The following commands execute analysis of variance. 
[n,c]=size(M) 
 SQmodelo=sum(sum((Y1est-Yest).*(Y1est-Yest))) 
SQerro=sum(sum((Yest-Yobs).*(Yest-Yobs))) 
SQtotal=sum(sum((Y1est-Yobs).*(Y1est-Yobs))) 
glmodelo=(npc-1)*(nc-1) 
gltotal=(n-nc) 
glerro=gltotal-glmode 
R=(SQmodelo/SQtotal) 
F=(SQmodelo/glmodelo)/(SQerro/glerro) 
p=fpdf(F,glmodelo,glerro) 
The following commands format the ANOVA Table printout. 
Table=zeros(3,5);                
Table(:,1)=[ RSS SSE TSS]'; 
Table(:,2)=[df1 df2 df3]'; 
Table(:,3)=[ RSS/df1 SSE/df2 Inf ]'; 
Table(:,4)=[ F Inf Inf ]'; 
Table(:,5)=[ p Inf Inf ]'; 
colheads = ['Source       ';'         SS  ';'          df ';... 
          '       MS    ';'          F  ';'     Prob>F  ']; 
   atab = num2cell(Table); 
for i=1:size(atab,1) 
   for j=1:size(atab,2) 
      if (isinf(atab{i,j})) 
         atab{i,j} = []; 
      end 
   end 
end 
if (nargout > 1) 
   anovatab = atab 
end 
The following commands prepare the file for the multivariate analysis. 
M=[X Yobs]; 
nt=M(:,2); 
      x=nt(1); 
      n=1; 
      idx=1; 
      for i=2:length(nt) 
          if nt(i)==x(idx) 
              n(idx)=n(idx)+1; 
          else 
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              idx=idx+1; 
              x(idx)=nt(i); 
              n(idx)=1; 
      end 
 n=cumsum(n); 
          B=ones(d+1,nc); 
          for i=1:length(n) 
             idx=find(M(:,aa)==M(n(i),aa)); 
M2=M(idx,:); 
          end 
For the multivariate analysis it was employed a new structure of the data file. 

File2.txt= 1[ . . . ]jk jk pjkx y y
 

File2.txt=[X Y] 
In which, the first column has the values for the j repetitions for each of the k treatments, 
each one of the following i columns contains the values of Y for the j repetitions of the k 
treatments. As seen in the structure below. 

 

x y . . . . . y11 111 711
x y . . . . . y21 121 721
x y . . . . . y31 131 731
x y . . . . . y41 141 741
x y . . . . . y51 151 751File2.txt
x y . . . . . y12 112 712
x y . . . . . y22 122 722
x y . . . . . y32 132 732
x y . . . . . y42 142 742
x y . . . . . y52 152 752

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢
⎢
⎢
⎢
⎢
⎢
⎣ ⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (23) 

The following commands change the structure of the file. 
                    M=Mtemp; 
          [n,c]=size(M); 
       nt=M(:,1); 
      z=nt(1); 
      n=1; 
      idx=1; 
      for i=2:length(nt); 
          if nt(i)==z(idx) 
              n(idx)=n(idx)+1; 
          else 
              idx=idx+1; 
              z(idx)=nt(i); 
              n(idx)=1; 
          end 
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      end 
       n=cumsum(n); 
       for i=1:npc 
             idx=find(M(:,a)==M(n(i),a)); 
             M1=M(idx,:); 
             trat=M1(:,aa); 
             M1=M1(:,b); 
             Ymult(:,i)=M1; 
       end 
       Y=[trat Ymult]; 
For the multivariate data analysis the employed procedure was proposed by Johnson and 
Wishern [Johnson and Wishern, 1998] in which the standardized variable employed for the 
comparison of the curves is 

    
W

Wp

Λ =   (24) 

 in which W (X' - X' )' * (X' - X' )T Tβ β β β=     (25) 

   
10 20

11 21

12 22

b b

b b bdk
b b

β

⎡ ⎤
⎢ ⎥

⎡ ⎤= =⎢ ⎥ ⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

  (26)   

where 
bdk
⎡ ⎤
⎣ ⎦ is the polynomial coefficient of d order of the k treatment.  

  1 1 1( ' ) ( ' )X S X X S Yβ − − −=    (27) 

 1
( )'( )

( )
S Y Y Y Y

rt
= − −     (28) 

 W (Y - X' T)' * (Y - X' T)p β β=    (29) 

 1 1 1( ' ) ( ' )T X S X X S Yp pβ − − −=       (30) 

 1 2( 1)
( ) 1

t
S n Sp k kn t K

= −∑
− =

     (31) 

Where  
2 . .cov . . . .S matrix of ariance of the treatment kk =

  
In order to test if there is a difference between curves the standardized variable is employed  

   2χ = ( )1
ln

2
N p d t
⎛ ⎞− − − − Λ⎜ ⎟
⎝ ⎠

  (32) 

www.intechopen.com



 
MATLAB – A Ubiquitous Tool for the Practical Engineer 

 

74

has a chi square distribution with (p-q-1) degrees of freedom.  
The following commands run the multivariate analysis. 
       x=x'; 
       [n,c]=size(Y); 
       M=Y 
       temp=M(:,b:c); 
Y1obs=temp'; 
V=cov(temp); 
S=inv(V); 
temp=(sum(temp))./n; 
Y=temp; 
[n,c]=size(V); 
       X=ones(n,c); 
       y1=ones(n,1); 
       for i=2:c 
           X(:,i)=x.*y1; 
           y1=X(:,i); 
       end 
       d=input('choose the polynomial degree ='); 
       X=X(:,1:(d+1)); 
       BT=(inv(X'*S*X))*(X'*S*Y'); 
       Y1est=X*BT; 
       plot(x,Y1est) 
       [n,c]=size(Y1obs); 
       temp=ones(n,c); 
       for i=1:c 
           temp(:,i)=Y1est; 
       end 
       Y1est=temp; 
       Temp=Y1obs-Y1est; 
       W=Temp*Temp'; 
The following commands run the analysis of individual curves. 
       nt=M(:,a); 
      z=nt(a); 
   n=1; 
      idx=1; 
      for i=2:length(nt) 
          if nt(i)==z(idx) 
              n(idx)=n(idx)+1; 
          else 
              idx=idx+1; 
              z(idx)=nt(i); 
              n(idx)=1; 
          end 
      end 
     k=n; 
     n=cumsum(n); 
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     B=zeros(d+1,length(n)); 
     v=zeros(length(W)); 
     sp=zeros(length(S)); 
     for i=1:length(n) 
             idx=find(M(:,a)==M(n(i),a)); 
             M1=M(idx,:); 
             [r,c]=size(M1); 
             temp=M1(:,b:c); 
             Yobs=temp'; 
             V=cov(temp); 
             V=(k(i)-1)*V; 
             temp=(sum(temp))./r; 
             Y(i,:)=temp; 
             temp=(V+v)/(n(i)-2); 
             v=temp; 
             S=inv(v); 
             B=(inv(X'*S*X))*(X'*S*Y');                           
     end 
     Temp=zeros(npc); 
      for i=1:length(n) 
             idx=find(M(:,1)==M(n(i),1)); 
             M1=M(idx,:); 
             [r,c]=size(M1); 
             temp=M1(:,b:c); 
             Yobs=temp'; 
             temp=zeros(npc,r); 
             Yest=X*B(:,z(i)); 
             for j=1:5  
                  temp(:,j)=Yest; 
              end 
              temp=((Yobs-temp)*(Yobs-temp)'); 
              Temp=temp+Temp; 
              Wp=Temp; 
      end 
              Wilks=((det(Wp))/(det(W))) 
             Qsquare=-(N-0.5*(npc-nc-2+d))*log(Wilks) 
             df=(npc-nc-1)*d 
             chi2pdf(Qsquare,df) 

4. Results 

The following parameters must be furnished when running the program: 
independent variable column X   =1 
dependent variable column  Y   =2 
initial column of the control variable curve =3 
number of curves to be compared =2 
number of points per curve  =7 
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The following graph is generated in order to choose the degree of the polynomial to be 
adjusted.  
 

 

Fig. 1. Scatterplot of the data. 

A second degree polynomial was chosen to model the data according to the scatterplot 
above.  
The estimated coefficients for the second order polynomial were: 

2ˆ 48.464 81965 56.806TY X X= + + ] 

with (P<0000,1) 

2 0.3405R =  

The analysis of variance of the complete polynomial model is presented in table 1. 
 

Causes of variation DF SS SQ F P 

Polynomial 2 5.2799E+007 2.6384E+007 3.8235E+003 1.2054E-072 

Error 68 4.6924E+005 6.9006E+003   

Total 69 5.3238E+007    

      

Table 1. ANOVA for polynomial model 

The output of the program has the following format  
anovatab1 =  
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[5.2769e+007]    [ 2]    [2.6384e+007]    [3.8235e+003]    [1.2054e-072] 
[4.6924e+005]    [68]    [6.9006e+003]               []               [] 
[5.3238e+007]    [69]               []               []               [] 
After the choice of the polynomial model and its test of significance, the same model was 
applied on each one of the treatments separately, the results are as follows:  

2Ŷ 50.31 89.10X 57.10X1= + +  

2
2

ˆ 46.90 76.82 56.55Y X X= + +  

2 0.3405R =  

The analysis of variance for decomposition of error was employed to test the difference 
between the curves and is presented in table 2. 
 

Causes of variation DF SS SQ F P 

Polynomial 6 1.5976E+005 2.6626E+004 5.4202 2.52652E-004 

Error 63 3.0948E+005 4.912E+003   

Total 69 4.6924E+005    

Table 2. Analysis of variance to compare the curves. 

 

 

Fig. 2. Central line resulting from the estimated polynomial for the entire data set and the 
external lines, one for each treatment.  
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The output of the program has the following format:  
B =   50.3069   46.9023 
        89.0928   76.8230 
        57.0744   56.5484 
After the choice of the polynomial model and its test of significance,  the same model was 
applied on each one of the treatments separately, the results are as follows: 
anovatab =  
    [1.5976e+005]    [ 6]    [2.6626e+004]    [5.4202]    [2.5262e-004] 
    [3.0948e+005]    [63]    [4.9124e+003]          []               [] 
    [4.6924e+005]    [69]               []          []               [] 
The graph below presents a central line resulting from the estimated polynomial for the 
whole data set and the external lines are one for each treatment. 
For the multivariate test it was calculated the standardized variable 

2χ = ( )1
ln

2
N p d t
⎛ ⎞− − − − Λ⎜ ⎟
⎝ ⎠

= 192.0591 with (P<0,001). 

The program outputs were as follows. 
Wilks =    0.0581 
Chi square =  192.0591 
df =     8 
ans =  1.4552e-037 

5. Conclusion 

Given its matrix structure, Matlab presented itself as an efficient tool for linear models. The 
programs and the methodology presented were efficient to the comparing of polynomial 
growth curves. The modular sequence in which the programs were developed allows the 
user to implement new routines as well as new methodology proposals for the solution of 
the proposed problem. The solutions presented for the problem of comparison of 
polynomial growth curves may be used in part or in conjunction for the solution of other 
linear models problems.  
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