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Revisiting the Ceschino Interpolation Method

Alain Hébert
École Polytechnique de Montréal

Canada

1. Introduction

The Ceschino polynomial expansion method is a generalization of the Taylor polynomial
expansion method where higher derivatives of a function are predicted in addition to the
value of the function itself. This technique was first introduced by (Ceschino, 1956), but was
largly forgotten afterward. An unsuccessfull atempt was tried in 1975 to apply the Ceschino
coupling relations to the solution of an elliptic space–dependent differential equation, but the
resulting spatial discretization was found to be less accurate than competing finite-element
approaches, as presented by (Pageau, 1975). No further published work was reported after
the Pageau thesis.
Here, we propose to apply the Ceschino coupling relations to the basic interpolation problem,
as an alternative to existing univariate interpolation schemes, such as the cubic spline
approach. The interpolation problem consists to evaluate a functional I{ f (x); ξ} of a
continuous function (or dependent variable) f (x) at a specific point ξ in the case where
function f (x) is only known at tabulated abscissa (or independent variables) {xm+1/2 ; m =
0, M}. We also introduce the concept of interpolation factors (a. k. a. , terp factors) that
are useful for interpolating large databases with respect to a small number of independent
variables, as presented by (MacFarlane, 1984). The Ceschino polynomial expansion method
is the core component of the multiparameter reactor database system used in the reactor
physics code DRAGON for performing cross section interpolation (Hébert, 2009). We will
show that Ceschino polynomial expansion theory is an attractive choice for computing such
interpolation factors and propose sample Matlab scripts for performing this task.

2. Ceschino polynomial expansion theory

The polynomial expansion theory is first applied over the one-dimensional domain depicted
in Fig. 1. A continuous function f (x) is defined over this domain and is known at specific
abscissa points xm+1/2. A (J + 1)–th order Taylor series expansion of f (x) around x = xm−1/2
is written

fm+1/2 =
J

∑
j=0

(∆xm)
j M(j)

m−1/2 +O(∆xm)
J+1 (1)

where the mesh width is equal to

∆xm = xm+1/2 − xm−1/2 (2)
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Fig. 1. Definition of the 1D domain.

and where

fm+1/2 ≡ f (xm+1/2) ≡ M(0)
m+1/2 and M(j)

m−1/2 ≡
1
j!

dj f
dxj

∣

∣

∣

∣

∣

xm−1/2

. (3)

A Ceschino expansion is nothing but the Taylor’s expansion for the derivatives f (k)(x) of
function f (x). It is written

M(k)
m+1/2 =

J

∑
j=k

(∆xm)
j−k

( j
k

)

M(j)
m−1/2 +O(∆xm)

J−k+1 (4)

where the binomial coefficients are defined as
( j

k

)

≡
j!

(j − k)! k!
. (5)

Our interpolation strategy is based on two– and three–point coupling relations obtained
directly from the Ceschino polynomial expansion (4). Two points relations are used at
the extremities of the domain and three–point relations are used inside. Cubic Hermite
polynomials will also be introduced to perform the interpolation operation.

2.1 Two–points Ceschino coupling relations

Our relations are coupling the first N derivatives of f (x), with N = 1 leading to a cubic
interpolation strategy. We set J = 2N in Eq. (4), leading to a truncation error of order 2N + 1 if

k = 0. We next perform a linear combination of the first N components M(k)
m+1/2, introducing

coefficients θk. The linear combination permits to maintain the order of the truncation error to
2N + 1. We write

N

∑
k=0

θk M(k)
m+1/2 =

N

∑
k=0

2N

∑
j=k

θk (∆xm)
j−k

( j
k

)

M(j)
m−1/2 +O(∆xm)

2N+1 . (6)

After permutation of the two summations with the corresponding indices j and k in the
right-hand-side, we get

N

∑
k=0

θk M(k)
m+1/2 =

N

∑
k=0

k

∑
j=0

θj (∆xm)
k−j

( k
j

)

M(k)
m−1/2

+
2N

∑
k=N+1

N

∑
j=0

θj (∆xm)
k−j

( k
j

)

M(k)
m−1/2 +O(∆xm)

2N+1 . (7)
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Revisiting the Ceschino Interpolation Method 3

We choose coefficients θj in such a way that

N

∑
j=0

θj (∆xm)
k−j

( k
j

)

= 0 ; k = N + 1, 2N (8)

and we define coefficients θ̄k as

θ̄k = −
k

∑
j=0

θj (∆xm)
k−j

( k
j

)

; k = 0, N . (9)

We have obtained our (2N + 1)–th order two–points Ceschino coupling relations as

N

∑
k=0

[

θ̄k M(k)
m−1/2 + θk M(k)

m+1/2

]

= 0 . (10)

where the O(∆xm)2N+1 error term is not given.
We need to determine a set of 2(N + 1) coefficients θk and θ̄k. Equations (8) and (9) permit
to determine 2N + 1 of them, leaving θ0 to be fixed. However, all values of θ0 leads to valid
solutions, making this choice arbitrary. We have chosen θ0 = 1/(∆xm)

2 in order to simplify
the resulting mathematical formalism.
In the specific case of cubic Ceschino interpolation, we set N = 1, so that Eqs. (8) and (9)
reduce to

2∆xm θ1 = −(∆xm)
2 θ0

θ̄0 = −θ0

and θ̄1 = −∆xm θ0 − θ1 (11)

so that our coefficients are

θ̄0 = −
1

(∆xm)2 , θ0 =
1

(∆xm)2

θ̄1 = −
1

2∆xm
and θ1 = −

1
2∆xm

. (12)

2.2 Three–points Ceschino coupling relations

The three–points Ceschino coupling relations span two consecutive regions along the X axis,
as depicted in Fig. 1. We set J = 3N in Eq. (4), leading to a truncation error of order 3N + 1 if
k = 0. The Ceschino expansion are written

M(k)
m−1/2 =

3N

∑
j=k

(−∆xm)
j−k

( j
k

)

M(j)
m+1/2 +O(∆xm)

3N−k+1

M(k)
m+3/2 =

3N

∑
j=k

(∆xm+1)
j−k

( j
k

)

M(j)
m+1/2 +O(∆xm+1)

3N−k+1 (13)

where the mesh widths are equal to

∆xm = xm+1/2 − xm−1/2 and ∆xm+1 = xm+3/2 − xm+1/2 . (14)
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We next perform a linear combination of the first N components M(k)
m−1/2 and M(k)

m+3/2,

introducing coefficients β̆k and βk . The linear combination permits to maintain the order of
the truncation error to 3N + 1. We write

N

∑
k=0

β̆k M(k)
m−1/2 + βk M(k)

m+3/2

=
N

∑
k=0

3N

∑
j=k

[

β̆k (−∆xm)
j−k + βk (∆xm+1)

j−k
] ( j

k

)

M(j)
m+1/2 (15)

where the truncation error is a linear combination of O(∆xm)3N+1 and O(∆xm+1)
3N+1.

After permutation of the two summations with the corresponding indices j and k in the
right-hand-side, we get

N

∑
k=0

β̆k M(k)
m−1/2 + βk M(k)

m+3/2

=
N

∑
k=0

k

∑
j=0

[

β̆j (−∆xm)
k−j + βj (∆xm+1)

k−j
] ( k

j

)

M(k)
m+1/2

+
3N

∑
k=N+1

N

∑
j=0

[

β̆j (−∆xm)
k−j + βj (∆xm+1)

k−j
] ( k

j

)

M(k)
m+1/2 . (16)

We choose coefficients β̆j and βj in such a way that

N

∑
j=0

[

β̆j (−∆xm)
k−j + βj (∆xm+1)

k−j
] ( k

j

)

= 0 ; k = N + 1, 3N (17)

and we define coefficients β̄k as

β̄k = −
k

∑
j=0

[

β̆j (−∆xm)
k−j + βj (∆xm+1)

k−j
] ( k

j

)

; k = 0, N . (18)

We have obtained our (3N + 1)–th order three–points Ceschino coupling relations as

N

∑
k=0

[

β̆k M(k)
m−1/2 + β̄k M(k)

m+1/2 + βk M(k)
m+3/2

]

= 0 . (19)

We need to determine a set of 3(N + 1) coefficients β̆k, β̄k and βk . Equations (18) and (19)
permit to determine 3N + 1 of them, leaving β̆0 and β0 to be fixed. A first set of coefficients
can be obtained by setting β̆0 = −1/(∆xm)2 and β0 = 1/(∆xm+1)

2. A second independent
set can be obtained by setting β̆′0 = 1/(∆xm)3 and β′0 = 1/(∆xm+1)

3. Any other consistent set
is a linear combination of these two.
In the specific case of cubic Ceschino interpolation, we set N = 1, so that Eqs. (17) and (18)
reduce to

− 2∆xm β̆1 + 2∆xm+1 β1 = −(∆xm)
2 β̆0 − (∆xm+1)

2 β0

3(∆xm)
2 β̆1 + 3(∆xm+1)

2 β1 = (∆xm)
3 β̆0 − (∆xm+1)

3 β0

β̄0 = −(β̆0 + β0)

and β̄1 = ∆xm β̆0 − ∆xm+1 β0 − (β̆1 + β1) (20)

26 MATLAB – A Ubiquitous Tool for the Practical Engineer

www.intechopen.com



Revisiting the Ceschino Interpolation Method 5

so that our two independent sets of coefficients are

β̆0 = −
1

(∆xm)2 , β̄0 =
1

(∆xm)2 −
1

(∆xm+1)2 , β0 =
1

(∆xm+1)2 ,

β̆1 = −
1

3∆xm
, β̄1 = −

2
3

[

1
∆xm

+
1

∆xm+1

]

, β1 = −
1

3∆xm+1
(21)

and

β̆0 =
1

(∆xm)3 , β̄0 = −
1

(∆xm)3 −
1

(∆xm+1)3 , β0 =
1

(∆xm+1)3 ,

β̆1 =
1

2(∆xm)2 , β̄1 =
1
2

[

1
(∆xm)2 −

1
(∆xm+1)2

]

, β1 = −
1

2(∆xm+1)2 .

(22)

2.3 Interpolation with cubic Hermite polynomials

Knowledge of M(0)
m+1/2 and the capability to easily obtain M(1)

m+1/2 on each tabulated point
xm+1/2 makes possible the interpolation of function f (x) at each values of the independent
variable x with a cubic Hermite polynomial in x. Such polynomial guarantee that the
interpolated value and first derivative of the dependent variable remains continuous in x over
the complete domain. As pointed out by (Rozon et al., 1981), this continuity property of the
first derivative is often required in numerical applications such as those based on perturbation
theory.
The first operation consists to solve a tridiagonal linear matrix system for obtaining the

unknown vector M
(1) = col{M(1)

m+1/2 ; m = 0, M} over a M–region domain, considering the

known values M(0)
m+1/2 of f (x) at tabulation points xm+1/2. The linear matrix system is made

with the first independent set of coefficients from Eq. (21) for linking the unknowns inside the
domain. We have selected the first set in order to obtain a symmetric C matrix with minimum
powers of ∆xm as coefficients. The first and last line coefficients are obtained from Eq. (12).
Using coefficients from Eq. (12) with those from Eq. (22) leads to a singular C matrix. This last
observation gives an additional clue for selecting three-point coefficients from Eq. (21).
The linear system is written

C M
(1) = S

(0) (23)

where the symmetric tridiagonal matrix is written

C =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1
∆x1

1
∆x1

0 . . . 0
1

∆x1
2
(

1
∆x1

+ 1
∆x2

)

1
∆x2

. . . 0

0 1
∆x2

2
(

1
∆x2

+ 1
∆x3

)

. . . 0

...
...

...
. . .

...
0 0 0 . . . 1

∆xM

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(24)
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and where the source term is written

S
(0) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
(∆x1)

2

(

M(0)
3/2 − M(0)

1/2

)

3
(∆x1)

2

(

M(0)
3/2 − M(0)

1/2

)

+ 3
(∆x2)

2

(

M(0)
5/2 − M(0)

3/2

)

3
(∆x2)

2

(

M(0)
5/2 − M(0)

3/2

)

+ 3
(∆x3)

2

(

M(0)
7/2 − M(0)

5/2

)

...
2

(∆xM)2

(

M(0)
M+1/2 − M(0)

M−1/2

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (25)

The solution of the linear system in Eq. (23) can be performed without pivoting, as matrix C

is diagonally dominant.
We next introduce the cubic Hermite polynomials defined over a reference region −1/2 ≤
u ≤ 1/2. They are

H1(u) = 3
(

1
2
− u

)2
− 2

(

1
2
− u

)3

H2(u) =
(

1
2
− u

)2
−

(

1
2
− u

)3

H3(u) = 3
(

1
2
+ u

)2
− 2

(

1
2
+ u

)3

H4(u) =
(

1
2
+ u

)2
+

(

1
2
+ u

)3
(26)

so that a function f (u) defined over this domain can be expressed as

f (u) ≃ f (−1/2) H1(u) + f ′(−1/2) H2(u) + f (1/2) H3(u) + f ′(1/2) H4(u) (27)

where −1/2 ≤ u ≤ 1/2.
The above relation can be generalized to the interpolation of function f (x) at ξ over region m.
We first perform the change of variable

u =
1

∆xm

[

ξ −
1
2
(xm−1/2 + xm+1/2)

]

(28)

so that

I{ f (x); ξ} = M(0)
m−1/2 H1(u) + ∆xm M(1)

m−1/2 H2(u) + M(0)
m+1/2 H3(u)

+ ∆xm M(1)
m+1/2 H4(u) (29)

where xm−1/2 ≤ ξ ≤ xm+1/2.
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2.4 Introduction of interpolation factors

Interpolation factors are useful to interpolate a large number of dependent variables at a
unique value ξ of the independent variable. The interpolation factors are function only of
the tabulated abscissas {xm+1/2 ; m = 0, M} and on the interpolation abscissa x. Using
interpolation factors {tm+1/2(ξ) ; m = 0, M}, an interpolated dependent variable I{ f (x); ξ}
of f (ξ) is obtained from

I{ f (x); ξ} =
M

∑
m=0

tm+1/2(ξ) f (xm+1/2) (30)

where
M

∑
m=0

tm+1/2(ξ) = 1 . (31)

Interpolation factors can be obtained if the interpolation operation is distributive, that is, if it
can be distributed to the sum of two functions f (x) and g(h) according to

I{ f (x) + g(x); ξ} =
M

∑
m=0

tm+1/2(ξ) [ f (xm+1/2) + g(xm+1/2)]

= I{ f (x); ξ}+ I{g(x); ξ} . (32)

The simplest form of interpolation factors are those corresponding to linear Lagrange
interpolation. In this case, the interpolated value of f (x), with xm−1/2 ≤ ξ ≤ xm+1/2, is
given by Eq. (30) with

tα(ξ) =

⎧

⎪

⎨

⎪



1
2 − u, if α = m − 1/2 ;
1
2 + u, if α = m + 1/2 ;
0, otherwise.

(33)

Similar interpolation factors exist for cubic Ceschino interpolation and can be obtained with
the following procedure. The source term defined in Eq. (25) can be written in matrix form as

S
(0) = S M

(0) (34)

where

S =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 2
(∆x1)

2
2

(∆x1)
2 0 . . . 0

− 3
(∆x1)

2
3

(∆x1)
2 − 3

(∆x2)
2

3
(∆x2)

2 . . . 0

0 − 3
(∆x2)

2
3

(∆x2)
2 − 3

(∆x3)
2 . . . 0

...
...

...
. . .

...
0 0 0 . . . 2

(∆xM)2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (35)

The interpolated value of f (ξ), with xm−1/2 ≤ ξ ≤ xm+1/2, is therefore given by the relation

I{ f (x); ξ} =
[

H1(ξ)
⊤ + H2(ξ)

⊤
C
−1

S

]

M
(0) (36)

29Revisiting the Ceschino Interpolation Method
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where H1(ξ) = {H1,m+1/2(ξ) ; m = 0, M} with

H1,α(ξ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪



3
(

1
2 − u

)2
− 2

(

1
2 − u

)3
, if α = m − 1/2 ;

3
(

1
2 + u

)2
− 2

(

1
2 + u

)3
, if α = m + 1/2 ;

0, otherwise

(37)

and H2(ξ) = {H2,m+1/2(ξ) ; m = 0, M} with

H2,α(ξ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪



(

1
2 − u

)2
−

(

1
2 − u

)3
, if α = m − 1/2 ;

(

1
2 + u

)2
+

(

1
2 + u

)3
, if α = m + 1/2 ;

0, otherwise.

(38)

The vector T(ξ) = {tm+1/2(ξ) ; m = 0, M} of interpolation factors is obtained after
transposition of Eq. (36), leading to

I{ f (x); ξ} = M
(0)⊤

[

H1(ξ) + S
⊤
C
−1

H2(ξ)
]

(39)

so that
T(ξ) = H1(ξ) + S

⊤
C
−1

H2(ξ) . (40)

3. Matlab scripts and numerical examples

Two Matlab scripts are proposed in Appendices A and B as prototypes of the cubic
Ceschino interpolation method. The first script, alterp() is used to obtain the terp factors
corresponding to an interpolation (if lderiv=false) or to a derivation (if lderiv=true).
The second script, alteri() is used to obtain the terp factors corresponding to the definite
integration of f (x). The following Matlab session is an example of interpolation similar to the
spline Matlab tutorial.

x=0:10; y=sin(x);
xx=0:.25:10;
yy=zeros(1,size(xx,2));
for i=1:size(xx,2)

yy(i)=y*alterp(x,xx(i),false);
end
plot(x,y,’o’,xx,yy)

Execution of the above script leads to Fig. 2. Similarly, the first derivative of f (x) = sin(x) can
be computed by setting lderiv = true, as described in the following Matlab session.

yy=zeros(1,size(xx,2));
for i=1:size(xx,2)

yy(i)=y*alterp(x,xx(i),true);
end
plot(x,cos(x),’o’,xx,yy)

Execution of the above script leads to Fig. 3. We observe that the order of the numerical
derivation approximation is less than the order of the interpolation, as expected. The
higher derivation errors are observed at extremities of the domain, where two-point Ceschino
coupling relation are used.
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Fig. 2. Interpolation example.
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0.5

1

1.5

Fig. 3. Derivation example.

4. Conclusion

We have presented a straightforward numerical technique based on Ceschino polynomial
expansion. Three applications of this approach permit to perform interpolation, derivation
and definite integration of tabulated data. Equation (36) is efficient to interpolate few
dependent variables over a large number of points ξ. Equation (39) introduces the concept
of interpolation factors and is efficient to interpolate a large number of dependent variables
over a few number of points ξ. Matlab scripts are provided as basic implementation of the
Ceschino interpolating method.
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The Ceschino interpolation technique is an alternative to the cubic spline approach based on
different mathematical bases. In fact, the interpolating function obtained by this method is a
piecewise polynomial function of degree 3 which is only a C1 function compared to the cubic
spline which is a C2 function. It would be important to obtain error estimates to compare
both approaches. However, the Ceschino interpolation technique is currently implemented in
legacy applications and its behavior is already found acceptable.

Appendix A

The first Matlab script is used to compute interpolation/derivation factors (a. k. a., terp
factors) using Eq. (40). The user must provide the tabulated abscissa defined as {xm+1/2 ; m =
0, M} and one interpolation point ξ. A logical variable, lderiv, select interpolation or
derivation mode. The script returns a column vector containing the corresponding terp factors
{tm+1/2(ξ) ; m = 0, M}.

function terp=alterp(x,val,lderiv)
% determination of the terp interpolation/derivation factors using
% the order 4 Ceschino method with cubic Hermite polynomials.
% function terp=alterp(x,val,lderiv)
% input parameters:
% x abscissas (row vector)
% val abscissa of the interpolated point.
% lderiv set to true to compute the first derivative with respect to x.
% set to false to interpolate.
% output parameters:
% terp interpolation factors (column vector)
% (c) 2007 Alain Hebert, Ecole Polytechnique de Montreal

n=size(x,2) ;
if n <= 1

error(’invalid number of points’)
end
terp=zeros(n,1) ;
if n == 2

if lderiv
terp(1)=-1.0/(x(2)-x(1)) ;
terp(2)=1.0/(x(2)-x(1)) ;

else
terp(1)=(x(2)-val)/(x(2)-x(1)) ;
terp(2)=1.0-terp(1) ;

end
else

wk=zeros(3,n) ;
%----
% interval identification.
%----

temp1=find(val>=x(1:end-1)) ;
temp2=find(val<=x(2:end)) ;
if (size(temp1,2) == 0) | (size(temp2,2) == 0)

error(’unable to interpolate’)
end
i0=temp1(end) ;
dx=x(i0+1)-x(i0) ;
u=(val-0.5*(x(i0)+x(i0+1)))/dx ;
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if lderiv
h1=(-6.0*(0.5-u)+6.0*(0.5-u)^2)/dx ;
h2=(-2.0*(0.5-u)+3.0*(0.5-u)^2)/dx ;
h3=(6.0*(0.5+u)-6.0*(0.5+u)^2)/dx ;
h4=(-2.0*(0.5+u)+3.0*(0.5+u)^2)/dx ;
test=0.0 ;

else
h1=3.0*(0.5-u)^2-2.0*(0.5-u)^3 ;
h2=(0.5-u)^2-(0.5-u)^3 ;
h3=3.0*(0.5+u)^2-2.0*(0.5+u)^3 ;
h4=-(0.5+u)^2+(0.5+u)^3 ;
test=1.0 ;

end
terp(i0)=h1 ;
terp(i0+1)=h3 ;
wk(3,i0)=h2*dx ;
wk(3,i0+1)=h4*dx ;

%----
% compute the coefficient matrix.
%----

hp=1.0/(x(2)-x(1)) ;
wk(1,1)=hp ;
wk(2,1)=hp ;
for i=2:n-1

hm=hp ;
hp=1.0/(x(i+1)-x(i)) ;
wk(1,i)=2.0*(hm+hp) ;
wk(2,i)=hp ;

end
wk(1,n)=hp ;
wk(2,n)=hp ;

%----
% forward elimination.
%----

pmx=wk(1,1) ;
wk(3,1)=wk(3,1)/pmx ;
for i=2:n

gar=wk(2,i-1) ;
wk(2,i-1)=wk(2,i-1)/pmx ;
pmx=wk(1,i)-gar*wk(2,i-1) ;
wk(3,i)=(wk(3,i)-gar*wk(3,i-1))/pmx ;

end
%----
% back substitution.
%----

for i=n-1:-1:1
wk(3,i)=wk(3,i)-wk(2,i)*wk(3,i+1) ;

end
%----
% compute the interpolation factors.
%----

gar=zeros(1,n+2) ;
gar(2:n+1)=wk(3,:) ;
wk=zeros(3,n) ;
hp2=1.0/(x(2)-x(1)) ;
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wk(2,1)=-2.0*hp2*hp2 ;
wk(1,2)=2.0*hp2*hp2 ;
for i=2:n-1

hp1=hp2 ;
hp2=1.0/(x(i+1)-x(i)) ;
wk(3,i-1)=-3.0*hp1*hp1 ;
wk(2,i)=3.0*hp1*hp1-3.0*hp2*hp2 ;
wk(1,i+1)=3.0*hp2*hp2 ;

end
wk(3,n-1)=-2.0*hp2*hp2 ;
wk(2,n)=2.0*hp2*hp2 ;
for j=1:n

terp(j)=terp(j)+gar(j:j+2)*wk(:,j) ;
test=test-terp(j) ;

end
if abs(test) > 1.0e-5

error(’wrong terp factors’)
end
terp(find(abs(terp) <= 1.0e-7))=0.0 ;

end

Appendix B

The second Matlab script is used to compute integration factors permitting to evaluate a
definite integral. The user must provide the tabulated abscissa {xm+1/2 ; m = 0, M} and
the integration limits. The script returns a column vector containing the corresponding terp
factors.

function terp=alteri(x,val0,val1)
% determination of the terp integration factors using the order 4
% Ceschino method with cubic Hermite polynomials.
% function terp=alteri(x,val0,val1)
% input parameters:
% x abscissas (row vector)
% val0 left integration limit.
% val1 right integration limit.
% output parameters:
% terp integration factors (column vector)
% (c) 2007 Alain Hebert, Ecole Polytechnique de Montreal

n=size(x,2) ;
if n <= 1

error(’invalid number of points’)
elseif val1 <= val0

error(’invalid limits’)
elseif (val0 < x(1)) | (val1 > x(n))

error(’unable to integrate’)
end
terp=zeros(n,1) ;
if n == 2

terp(1)=(x(2)-0.5*(val0+val1))*(val1-val0)/(x(2)-x(1)) ;
terp(2)=(0.5*(val0+val1)-x(1))*(val1-val0)/(x(2)-x(1)) ;

else
wk=zeros(3,n) ;

%----
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% interval identification.
%----

for i0=1:n-1
if (val0 < x(i0+1)) & (val1 > x(i0))

a=max(val0,x(i0)) ;
b=min(val1,x(i0+1)) ;
cc=0.5*(b-a) ;
dx=x(i0+1)-x(i0) ;
u1=(a-0.5*(x(i0)+x(i0+1)))/dx ;
u2=(b-0.5*(x(i0)+x(i0+1)))/dx ;
uu(1)=0.5*(-(u2-u1)/sqrt(3.0)+u1+u2) ;
uu(2)=0.5*((u2-u1)/sqrt(3.0)+u1+u2) ;
for js=1:2

h1=(3.0*(0.5-uu(js))^2-2.0*(0.5-uu(js))^3)*cc ;
h2=((0.5-uu(js))^2-(0.5-uu(js))^3)*cc ;
h3=(3.0*(0.5+uu(js))^2-2.0*(0.5+uu(js))^3)*cc ;
h4=(-(0.5+uu(js))^2+(0.5+uu(js))^3)*cc ;
terp(i0)=terp(i0)+h1 ;
terp(i0+1)=terp(i0+1)+h3 ;
wk(3,i0)=wk(3,i0)+h2*dx ;
wk(3,i0+1)=wk(3,i0+1)+h4*dx ;

end
end

end
%----
% compute the coefficient matrix.
%----

hp=1.0/(x(2)-x(1)) ;
wk(1,1)=hp ;
wk(2,1)=hp ;
for i=2:n-1

hm=hp ;
hp=1.0/(x(i+1)-x(i)) ;
wk(1,i)=2.0*(hm+hp) ;
wk(2,i)=hp ;

end
wk(1,n)=hp ;
wk(2,n)=hp ;

%----
% forward elimination.
%----

pmx=wk(1,1) ;
wk(3,1)=wk(3,1)/pmx ;
for i=2:n

gar=wk(2,i-1) ;
wk(2,i-1)=wk(2,i-1)/pmx ;
pmx=wk(1,i)-gar*wk(2,i-1) ;
wk(3,i)=(wk(3,i)-gar*wk(3,i-1))/pmx ;

end
%----
% back substitution.
%----

for i=n-1:-1:1
wk(3,i)=wk(3,i)-wk(2,i)*wk(3,i+1) ;

end
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%----
% compute the integration factors.
%----

test=1.0 ;
gar=zeros(1,n+2) ;
gar(2:n+1)=wk(3,:) ;
wk=zeros(3,n) ;
hp2=1.0/(x(2)-x(1)) ;
wk(2,1)=-2.0*hp2*hp2 ;
wk(1,2)=2.0*hp2*hp2 ;
for i=2:n-1

hp1=hp2 ;
hp2=1.0/(x(i+1)-x(i)) ;
wk(3,i-1)=-3.0*hp1*hp1 ;
wk(2,i)=3.0*hp1*hp1-3.0*hp2*hp2 ;
wk(1,i+1)=3.0*hp2*hp2 ;

end
wk(3,n-1)=-2.0*hp2*hp2 ;
wk(2,n)=2.0*hp2*hp2 ;
for j=1:n

terp(j)=terp(j)+gar(j:j+2)*wk(:,j) ;
test=test-terp(j)/(val1-val0) ;

end
if abs(test) > 1.0e-5

error(’wrong terp factors’)
end
terp(find(abs(terp) <= 1.0e-7))=0.0 ;

end
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