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Fikri Serdar Gökhan 
Gazikent University, Faculty of Engineering and Architecture,  

Department of Electrical and Electronic Engineering, Gaziantep 
Turkey 

1. Introduction  

The MATLAB computing environment is a package used extensively throughout industry, 
research and education by users of a complete range in proficiency. MATLAB provides then 
an ideal platform to introduce such an item of Boundary Value Problem (BVP) software and 
indeed, Kierzenka and Shampine (Kierzenka & Shampine, 2001) developed the core BVP 
Ordinary Differential Equation (ODE) software bvp4c to solve a large class of two-point 
boundary value problems of the form; 

 ( ) ( , ( ), )y x f x y x p′ =  (1) 

 ( , , ( ), ( ), ) 0L R L Rg x x y x y x p =  (2) 

where f is continuous and Lipschitz function in y and p is a vector of unknown parameters. 
Their view was that a user solving a BVP of form (1) in MATLAB would be most interested 
in the graphical representation of a solution, and as such a solver with a MIRK4-based 
Simpson Method would be appropriate for graphical accuracy. 
If information is specified at more than one point the problem (1) becomes a Boundary 

Value Problem. The most common types of BVP are those for which information given at 

precisely two points. These are known as two-point boundary value problems. 

The MATLAB BVP solver of bvp4c is introduced as a Residual control based, adaptive mesh 

solver. An adaptive mesh solver is an alternative approach to that of a uniform mesh, which 

would specify a uniform grid of data points xi over the interval [xi, xi+1] and solve 

accordingly. The adaptive solver will adjust the mesh points at each stage in the iterative 

procedure, distributing them to points where they are most needed. This can lead to obvious 

advantages in terms of computational and storage costs as well as allowing control over the 

grid resolution. The concept of a residual is the cornerstone of the bvp4c framework; being 

responsible for both errors control and mesh selection (Hale, 2006). 

The most difficult part for the solution of BVPs is to provide an initial estimation to the 
solution. In order to direct the solver for the solution of interest, it is necessary to assist the 
solver by informing it with a guess. Not only for the computation of the solution of interest 
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but also whether any solution is achieved or not depends strongly on the initial guess. 
Therefore, depending of the guess function, BVPs may have no solution or a single solution, 
or multiple solutions. Moreover, the quality of the initial guess can be critical to the solver 
performance, which reduces or augments the run time. However, coming up with a 
sufficiently good guess can be the most challenging part of solving a BVP. Certainly, the 
user should apply the knowledge of the problem's physical origin (MATLAB 
Documentation). 
In MATLAB, when solving BVPs the user must provide a guess to assist the solver in 
computing the desired solution (Kierzenka & Shampine, 2001). MATLAB BVP solvers call 
for users to provide guesses for the mesh and solution. Although MATLAB BVP solvers take 
an unusual approach to the control of error in case of having poor guesses for the mesh and 
solution, especially for the nonlinear BVP, a good guess is necessary to obtain convergence 
(Shampine et al., 2003).  
Whatever intuitive guess values/functions are imposed, eventually the BVP solver fails for 
some parameters or for some lengths. If any guess values works for the range of length, the 
rest of the length may be extended using continuation. The method of continuation exploits 
the fact that the solution obtained for one input will serve as the initial guess for the next 
value tried. In case of any difficulty in finding a guess for the interval of interest, generally it 
will be easier to solve the problem on a shorter interval. Then the solution of the sequence of 
BVPs on the shorter interval will be used as a guess for the next section. With modest 
increases in the interval, this will continue until the interval of interest is spanned 
(Shampine et al., 2003). 
The cost of the continuation method is the increased run time. How the guess value good is, 
the less computation time it takes with the continuation method. This is due the fact that, the 
remaining length depends of the convergence length (based on the guess value) which its 
higher value reduces the computation time.  

2. Initial setup 

The first step in solving a problem is defining it in a way the software can understand. The 
bvp4c framework uses a number of subfunctions which make it as simple as possible for the 
user to enter the ODE function, initial data and parameters for a given problem. By way of 
the following example we see exactly how a problem is supplied and solved by bvp4c. For 
the evaluation of the guess value /function, the steady-state Brillouin equation is exploited. 
The coupled ODEs for the evolution of the intensities of pump Ip and Stokes Is can be written 
as (Agrawal, 2001), 

 B P S p

dIp
g I I I

dz
α= − −   (3) 

 B P S S

dIs
g I I I

dz
α= − +   (4) 

where 0 ≤ z ≤ L  is the propagation distance along the optical fiber of the total length L, α is 
the fiber loss coefficient, gB is the Brillouin gain coefficient, respectively. Here, it is assumed 
that, Stokes wave is launched from the rear end of the fiber. Then the known values of the 
input pump power Ip(0) and the Stokes wave power Is (L) are referred as the boundary 
values.  
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The first task is to define the ODEs in MATLAB as a function to return these equations. 
Similarly the user then rewrites the boundary conditions to correspond to this form of the 
problem. We may code the ODEs for scalar evaluation and boundary conditions, 
respectively as, 
 
function dydx = bvpode(x,y)      
global alpha_s gb K 
  
dydx =  [ -gb *y(1)*y(2)-alpha_s*y(1)    
          -gb *y(1)*y(2)+alpha_s*y(2) ]; 
           

----------------------------------------------------------- 
  

function res = bvpbc(ya,yb) 
 global Ip0 IsL 
   
 res = [ya(1)- Ip0 
        yb(2)- IsL ]; 
 

The next step is to create an initial guess for the form of the solution using a specific 
MATLAB subroutine called bvpinit . The user passes a vector x and an initial guess on this 
mesh in the form bvpinit (x, Yinit), which is then converted into a structure useable by 
bvp4c. Aside from a sensible guess being necessary for a convergent solution the mesh 
vector passed to bvpinit will also define the boundary points of the problem, i.e. xL = x[1] 
and xR = x[end]. 
The initial guess for the solution may take one of two forms. One option is a vector where 
Yinit(i) is a constant guess for the i-th component y(i,:) of the solution at all the mesh points 
in x. The other is as a function of a scalar x, for example bvpinit(x,@yfun) where for any x in 
[a, b], yfun(x) returns a guess for the solution y(x). It must be pointed out that even when a 
function is supplied that approximates the solution everywhere in the interval; the solver 
uses its values only on the initial mesh. The guess can be coded as a function of a scalar x as, 
 

function v = guess(x) 
  
global alpha_s L gb k Pp0 PsL Aeff 
a=alpha_s*L; 
k=gb/Aeff*Pp0*L; 
epsilon=PsL/Pp0; 
kappa=-log(gb/Aeff*PsL*L); 
T=log(kappa*(1-kappa/k)); 
c0=-(PsL + PsL*k - 1)/((PsL*k^2)/2 + 1); 
A=c0./(1-(1-c0).*exp(-c0*k.*x));    
B=c0*(1-c0)./(exp(c0*k.*x)-1+c0); 
w=(A.^(exp(-a))).*exp(-a.*x); 
u=(B.*exp(a.*(x-1))); 
 
v=[w*Pp0; u*Pp0]; 

 
The next subroutine to look at is bvpset, that specifies which options bvp4c should be use in 
solving it. The function is called options = bvpset(’name1’,value1,...) and since MATLAB 
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documentation gives an in depth account of each of the options only a brief outline of those 
notable is given here (Hale, 2006). 
 
options = [];  % default 
%options = bvpset('Stats','on','RelTol',1e-5,'abstol',1e-4); 
%options = bvpset(options,’Vectorized’,’on’); 
%options = bvpset(options,’FJacobian’,@odeJac); 
%options = bvpset(options,’BCJacobian’,@bcJac); 

 
RelTol - Relative tolerance for the residual [ positive scalar 1e-3 ] 
The computed solution S(x) is the exact solution of S’(x) = F(x, S(x)) + res(x). On each 

subinterval of the mesh, component i of the residual must satisfy norm 

( )
Re

max( ( ( )),  ( ) / Re )

⎛ ⎞
≤⎜ ⎟

⎝ ⎠

res i
norm lTol

abs F i AbsTol i lTol
 

 

AbsTol - Absolute tolerance for the residual [positive scalar or vector 1e-6] 
Elements of a vector of tolerances apply to corresponding components of the residual 
vector. AbsTol defaults to 1e-6.  
FJacobian \ BCJacobian - Analytical partial derivatives of ODEFUN \ BCFUN 
Computation of the Jacobian matrix at each mesh point can be a very expensive process. By 

passing an analytic derivative of the ODE and BC functions the user can greatly reduce 

computational time. For example when solving y’ = f(x, y), setting FJacobian to @FJAC 

where ∂f/∂y = FJAC(x, y) evaluates the Jacobian of f with respect to y.  

Stats - Display computational cost statistics [ on — off ] 

Vectorized - Vectorized ODE function [ on — off ] 
As will be discussed in section 6, bvp4c is able to accept a vectorised function which can 

markedly increase the efficiency of calculating local Jacobians over using finite differences 

with the odenumjac subroutine. Hence in the following programs, we will define 

 
 

options = bvpset('Stats','on','RelTol',1e-5,'abstol',1e-4); 
solinit = bvpinit(linspace(0,L,2), @guess); 

And call the bvp4c routine with: 
sol = bvp4c(@ode,@bc,solinit,options); 
 

The above essentially ends the user input in solving the BVP system and the rest is left to 
bvp4c. Within the framework there are several notable steps which should be expounded. 

3. Derivation of the guess  

In this chapter, four guess functions are derived for the assistance of the MATLAB BVP 
solvers with the help of MATLAB symbolic toolbox.  

3.1 1
st

 Guess  

If the constant guess is used as the initial values i.e., for the pump “Ip0” and for the Stokes 

“IsL” and L = 10000;   
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solinit = bvpinit(linspace(0,L,2),@guess); 
options = bvpset('Stats','on','RelTol',1e-5); 
function v = guess(x) 
global Ip0  IsL  
v=[Ip0 ; IsL]; 

 
It prompts as, “Unable to solve the collocation equations -- a singular Jacobian 
encountered”. However, if the computation length is decreased as, L = 1000,the solver is 
able to solve coupled equations with these poor guesses v=[Ip0 ; IsL]. Therefore, with these 
guess values the convergence length (the maximum length which the solver is able to 
converge) is 1000 meter. The evolution of the guess values (estimate) with the real solution 
is shown in Fig. 1 
 
 

 
 

 
 

Fig. 1. Evolution of the guess values and real solution according to 1st guess  

a

b 
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3.2 2
nd

 Guess 

If we guess that Ip and Is is linearly changing as, 
 
Ip ~ Ip0+A*z ; 
Is ~ Is0+B*z ; 

 
Exploiting with the MATLAB Symbolic Toolbox using the following script, 
 
syms Is Ip Is0 Ip0 IsL gb L alpha A B z 

  
 Ip = Ip0+A*z ; 
 Is = Is0+B*z ; 
  
 eqn1 = collect(diff(Ip,'z') + (gb)*Ip*Is+alpha*Ip); 
 eqn2 = collect(diff(Is,'z') + (gb)*Ip*Is-alpha*Is); 
 
 eqn3=collect(taylor(eqn1,1,0),z) 
 eqn4=collect(taylor(eqn2,1,L),z) 

 
The below output is produced; 
 
eqn3 =  A + Ip0*alpha + (Ip0*Is0*gb) 
eqn4 =  B - Is0*alpha - L*(B*alpha - (gb*(A*Is0 + B*Ip0))) + 

(Ip0*Is0*gb) + (A*B*L^2*gb) 

 
Is0=IsL-B*L; 

 
Here, there are two equations and two unknowns A and B. With the substitution of Is0, It 

can be solved simultaneously by the below script, 
eqn= 
 
solve(A + Ip0*alpha + (Ip0*(IsL-B*L)*gb),... 
    B - (IsL-B*L)*alpha - L*(B*alpha - (gb*(A*(IsL-B*L) + B*Ip0)))+ 

    (Ip0*(IsL-B*L)*gb) + (A*B*L^2*gb),... 
    'A','B') 
eqn =  
 
    A: [1x1 sym] 
    B:  [1x1 sym] 

 
Here A and B can be obtained as, 
 

A=-(Ip0*alpha_s + Ip0^2*IsL*L*gb^2 + Ip0*IsL*gb –  
    Ip0*IsL*L*alpha_s*gb)/(Ip0*IsL*L^2*gb^2); 

 
B=(IsL*alpha_s + Ip0*IsL^2*L*gb^2 - Ip0*IsL*gb +  
   Ip0*IsL*L*alpha_s*gb)/(Ip0*IsL*L^2*gb^2) 
 
Ip ~ Ip0+A.*x ; 
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Is ~ (IsL-B.*L)+B.*x ; 
 

The evolution of the 2nd guess values with the real solution is shown in Fig. 2 
 

 
 

 

 
 

Fig. 2. Evolution of the guess values and real solution according to 2nd guess 

a 

b 
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3.3 3
rd

 Guess 

If it is guessed that Ip and Is is exponentially changing as, 
 
Ip ~ Ip0*exp(gamma1*z) ; 
Is ~ Is0*exp(kappa1*z) ; 

with using the following script, 
syms Ip Is Is0 Ip0 gb z L IsL alpha gamma1 kappa1   
  
Ip = Ip0*exp(gamma1*z) ; 
Is = Is0*exp(kappa1*z) ; 
  
eqn1 = collect(diff(Ip,'z') + (gb)*Ip*Is+alpha*Ip); 
eqn2 = collect(diff(Is,'z') + (gb)*Ip*Is-alpha*Is); 
 
eqn3=taylor(eqn1,1,0) 
eqn4=taylor(eqn2,1,L) 

 
 
The below output is produced; 
 
 
eqn3 =Ip0*alpha + Ip0*gamma1 + (Ip0*Is0*gb) 
eqn4 =Is0*kappa1*exp(L*kappa1) - Is0*alpha*exp(L*kappa1) +  
 (Ip0*Is0*gb*exp(L*gamma1)*exp(L*kappa1)) 

  
 
gamma1 and kappa1 can be obtained as; 
eqn5=solve(Ip0*alpha + Ip0*gamma1 + (Ip0*Is0*gb),'gamma1') 
gamma1= -(alpha + Is0*gb) 

using the same way; 
kappa1 = (alpha - Ip0*gb*exp(L*gamma1));  

 
 
Here, Is0 can be readily found by, 
 
 
Is(z) = Is0*exp(kappa1*z) ; 
For z=L 
IsL= Is0*exp(kappa1*L); 
Is0= IsL/exp(kappa1*L);    

 
 
Therefore, 
 
Ip ~ Ip0*exp(gamma1*z) ; 
Is ~ IsL/exp(kappa1*L)*exp(kappa1*z) ; 

 
 
The evolution of the 3rd guess values with the real solution is shown in Fig. 3 
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Fig. 3. Evolution of the guess values and real solution according to 3rd guess 

3.4 4
th

 Guess 

Highly intuitive guess function may be derived the using the solution of lossless system, i.e., 
with eliminating the α coefficient in the Eq (3) and Eq. (4), 

 B P S

dIp
g I I

dz
= −  (5) 

 B P S

dIs
g I I

dz
= −  (6) 

With neglecting the attenuation coefficient, the solution of the Eq.(5) and Eq.( 6) is found as 
(Kobyakov et al., 2006), 

 1

0 0 0( ) [1 (1 )exp( )] (0)PA c c c k Pζ ζ −= − − −  (7) 

 1

0 0 0 0( ) (1 )[exp( ) 1 ] (0)PB c c c k c Pζ ζ −= − − +  (8) 

a

b
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where, 

 0

1
ln (1 )c

k k

⎧ ⎫Λ⎡ ⎤≈ Λ + Λ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
, (0)B

P

eff

g
k P L

A
= ,  

z

L
ζ =  (9) 

where,  

 
0

ln( ) ln[ ]SL B
SL

p eff

P g
k P L

P A
Λ = − = − ,  

0

1SL

p

P
k

P
2   (10) 

Exploiting the solution of Eq.( 7) and Eq. (8), general expression of Pp(z)  and PS(z)  can be 

derived as, 

 2( ) ( ) [1 ( )]= ⋅ − ⋅ ⋅ + ⋅PP z A z a A x B x  (11) 

 2( ) ( ) [1 ( )]= ⋅ − ⋅ ⋅ + ⋅SP z B z a C x D x  (12) 

If a→0, then ( ) ( )PP z A z=  and ( ) ( )SP z B z=  

syms z k A B C D a AA BB c0 x 

 
AA=c0/(1-(1-c0)*exp(-c0*k*z)); 
BB=c0*(1-c0)/(exp(c0*k*z)-1+c0); 
w=(AA*(1-a*(A*x+B*x^2))); 
 
u=(BB*(1-a*(C*x+D*x^2))); 
eqn1 = collect(diff(w,1,'z') + (k*u*w)+a*w) 
eqn2 = collect(diff(u,1,'z') + (k*u*w)-a*u) 
The output produces, 
 
eqn1 = 
 …+ ((c0^2*k*(A*a + C*a)*(c0 - 1))/(((c0 - 1)/exp(c0*k*z) + 1)*(c0 + 
exp(c0*k*z) - 1)) - (A*a^2*c0)/((c0 - 1)/exp(c0*k*z) + 1) - 
(2*B*a*c0)/((c0 - 1)/exp(c0*k*z) + 1) - (A*a*c0^2*k*(c0 - 
1))/(exp(c0*k*z)*((c0 - 1)/exp(c0*k*z) + 1)^2))*x … 
+ (a*c0)/((c0 - 1)/exp(c0*k*z) + 1) - (A*a*c0)/((c0 - 1)/exp(c0*k*z) 
+ 1) + (c0^2*k*(c0 - 1))/(exp(c0*k*z)*((c0 - 1)/exp(c0*k*z) + 1)^2) 
- (c0^2*k*(c0 - 1))/(((c0 - 1)/exp(c0*k*z) + 1)*(c0 + exp(c0*k*z) - 
1)) 
 
 eqn2 = 

 … + ((2*D*a*c0*(c0 - 1))/(c0 + exp(c0*k*z) - 1) - (C*a^2*c0*(c0 - 
1))/(c0 + exp(c0*k*z) - 1) + (c0^2*k*(A*a + C*a)*(c0 - 1))/(((c0 - 
1)/exp(c0*k*z) + 1)*(c0 + exp(c0*k*z) - 1)) - 

(C*a*c0^2*k*exp(c0*k*z)*(c0 - 1))/(c0 + exp(c0*k*z) - 1)^2)*x … 
+ (a*c0*(c0 - 1))/(c0 + exp(c0*k*z) - 1) + (C*a*c0*(c0 - 1))/(c0 + 

exp(c0*k*z) - 1) - (c0^2*k*(c0 - 1))/(((c0 - 1)/exp(c0*k*z) + 1)*(c0 
+ exp(c0*k*z) - 1)) + (c0^2*k*exp(c0*k*z)*(c0 - 1))/(c0 + 

exp(c0*k*z) - 1)^2 
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We are interested in the behavior as z → 0 and so, the higher the power of x, the less effect it 
has in these expansions. Our goal is to satisfy the equations as well as possible, so we want 
to choose coefficients that make as many successive terms zero as possible, starting with the 
lowest power. To eliminate the constant terms, we see from the expansions that we must 
take  
 
A= 1; C=-1; 
B= -(a - a/exp(c0*k*z) + (a*c0)/exp(c0*k*z) - (c0*k)/exp(c0*k*z) +  
    (c0^2*k)/exp(c0*k*z))/((2*c0)/exp(c0*k*z) - 2/exp(c0*k*z) + 2) 
D=  (a - a/exp(c0*k*z) + (a*c0)/exp(c0*k*z) - (c0*k)/exp(c0*k*z) +  
    (c0^2*k)/exp(c0*k*z))/((2*c0)/exp(c0*k*z) - 2/exp(c0*k*z) + 2) 
 

The evolution of the 4rd guess values with the real solution is shown in Fig. 4 
 
 

 
 

 

Fig. 4. Evolution of the guess values and real solution according to 4th guess 

b 

a 

www.intechopen.com



 
MATLAB – A Ubiquitous Tool for the Practical Engineer 

 

14

Guess 
Length(mt)

/mesh 
Convergence 
length/mesh 

Computation Time 
(with bvp4c) at 

8000 meter 

1st Guess - values (Ip0,IsL) 8000/ 40 8000/40 ~1.18 sec 

2nd Guess - functions (linear) 8000/ 40 9000/453 ~1.13 sec 

3rd Guess -functions 
(exponential) 

8000/ 40 15000/56 ~1.13 sec 

4th Guess functions (modified 
exponential) 

8000/ 35 30000/61 ~1.0  sec 

Table 1.  Guess values/functions versus convergence length/mesh and run time.  

As can be seen from Table 1 and Fig.4 the best estimation is the 4th guess. Because its’ 
convergence length (30000) is more than the others (15000, 9000, 8000, respectively). The 
performance of the 2nd guess is approximately same as the first one. Because it hardly 
converge the solution using 453 points at 9000 meter. However, its performance is same as 
the first one with 40 points at 8000 meter.  

4. Continuation 

The method of continuation exploits the fact that generally the solution of one BVP is a good 
guess for the solution of another with slightly different parameters. If you have difficulty in 
finding a guess for the solution that is good enough to achieve convergence for the interval 
of interest, it is frequently the case that the problem is easier to solve on a shorter interval. 
The idea is then to solve a sequence of BVPs with the solution on one interval being used as 
a guess for the problem posed on a longer interval. Of course, this technique cannot be used 
to extend the interval ad infinitum; no matter how good the guess is, eventually the solver 
will not be able to distinguish the different kinds of solutions (Shampine et al., 2003).  
For the range of interested lengths bigger than the convergence lengths, the continuation 
process can be applied. Some types of snippets of continuation are illustrated below,  
 

=================#1#========================= 
options = bvpset('FJacobian',@sampleJac,... 
                 'BCJacobian',@sampleBCJac,... 
                 'Vectorized','on'); 
 
sol = bvpinit([-1 -0.5 0 0.5 1],[1 0]); 
 
c = 0.1;  
for i=2:4  
    c = c/10;  
    sol = bvp4c(@sampleODE,@sampleBC,sol,options);  
end 
 

=================#2#======================== 
 

infinity = 3; 
maxinfinity = 6; 
 
solinit = bvpinit(linspace(0,infinity,5),[0 0 1]); 
sol = bvp4c(@fsode,@fsbc,solinit); 
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eta = sol.x; 
f = sol.y; 
 

for Bnew = infinity+1:maxinfinity 
   
  solinit = bvpinit(sol,[0 Bnew]); % Extend solution to Bnew. 
  sol = bvp4c(@fsode,@fsbc,solinit); 
  eta = sol.x; 
  f = sol.y; 
 

=================#3#====================== 
 

L=30000; 
for i = 1:1000:L 
D = 5*i/1000; d = 1/D; 
if i == 1 
solinit = bvpinit(linspace(1,i,10),@guess); 
else 
solinit = bvpinit(sol,[d,D]); 
end 
 
sol = bvp4c(@odes,@bcs,solinit); 
end 
=================#4#====================== 
function Boundary_value_increment 
global a b 
 
a= XL;    %[a  
b= XR;    %   b]   
sol = bvpinit(linspace(0,L,2),[Boundary values for each pump and 
signal power]); 
 
options = bvpset('Stats','on','RelTol',1e-5); 
  
for k=1:Desired_Power 
b=b+k; 
sol = bvp4c(@bvpode,@bvpbc,sol,options); 
end 
 

If the interested length is bigger than the convergence length then continuation can be 

applied with the bvpxtend function. In the recent version of MATLAB, bvpinit function is 

simplified to a new function bvpxtend. Besides offering new possibilities, this function 

permits extension of length of interval to only one end point at a time (Kierzenka & 

Shampine, 2008). Briefly,  

solinit = bvpxtend(sol,xnew,ynew)  uses solution sol computed on [a,b] to form a 

solution guess for the interval extended to xnew. The extension point xnew must be outside 

the interval [a,b], but on either side. The vector ynew provides an initial guess for the 

solution at xnew. 

For example, if it is assumed that the convergence and interested lengths are 15 and 30 
km, respectively, the continuation can be applied via the below codes (Gokhan & Yilmaz, 
2011a),  
=================#5#====================== 
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L= 15000; 
Interested=30000; 
solinit = bvpinit(linspace(0,L,2),[Guess expression running with 15 
km]); 
sol = bvp4c(@bvpode,@bvpbc,solinit,options); 

. 
for Bnew=L:2000:Interested              
    solinit=bvpxtend(sol,Bnew); 
    sol = bvp4c(@bvpode,@bvpbc,solinit,options); 
end 

 
In the above codes, 2000 is the step size which is the modest increment range. In case of 
bigger step size, the solver may fail but the computation time reduces. On the other hand, if 
this increment is kept little, it takes more time to reach the end of the computation. 
Therefore, selecting the step size is important factor for the efficiency of the computation for 
continuation. One advantage of using bvpxtend function is the reduced computation time. 
Because, bvp solvers try to use mesh points as few as possible, the step size is incremented 
automatically depending on the previous mesh points. In bvpxtend, after obtaining 
convergence for the mesh, the codes adapt the mesh so as to obtain an accurate numerical 
solution with a modest number of mesh points.  Here it must be emphasized that, for BVPs 
the most difficult part is providing an initial approximation to the solution.  

5. Effect of the step size on the run time  

Using the snippets 5 and the 1st Guess of Table 1, the performance of the continuation over 
step size is illustrated in Table 2.  
 

Convergence 
Length (km) 

Computation
Length 

(km) 

Linspace
(0,L,N) 

Optimal 
N 

Step Size 
(mt.) 

Computation 
Time at 

Convergence 
Length 

(with bvp4c)

Total 
Computation 

time 

Mesh 
number 

(between) 
(with 

bvp4c) 

40 50 10 50 ~3.2 sec ~110.0 sec 482-541 

40 50 10 100 ~3.2 sec ~60.0 sec 482-541 

40 50 10 200 ~3.2 sec ~32.8 sec 482-553 

40 50 10 300 ~3.2 sec ~25.3 sec 482-560 

40 50 10 400 ~3.2 sec ~23.6 sec 482-663 

40 50 10 500 ~3.2 sec ~44.5 sec 482-1984 

40 50 10 600 Computation fails. 

Table 2. The performance of continuation method versus step size  

If the step size is increased over the 600 meter, the computation fails with the below warning 
message; 
Warning: Unable to meet the tolerance without using more than 5000 
mesh points. 
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The last mesh of 4106 points and the solution are available in the 
output  argument. 
 
The maximum residual is 0.00018931, while requested accuracy is 1e-
005.  

As can be seen on Table 2, for some step size over the modest increment, computation blows 
up (i.e. 600 m). When the step size is between 50 and 400, the number of used mesh is 
slightly different from each other. However, when it is 500 m, abruptly increase in the 
number of used mesh is a sign of lack of confidence. 
In Fig.5, it can be seen that the distance between some mesh points, especially near the 

boundaries are denser than the others. This is because the solver tries to control the residual 

of the interpolating polynomial: r(x) = S’(x) – f(x,S(x)).  The behavior of this residual 

depends on the behavior of some high derivatives of the solution (that the solver does not 

have access to). In the solver, the residual is estimated at each mesh subinterval, and 

additional mesh points are introduced if the estimate is bigger than the tolerance.  

The mesh selection algorithm is ‘localized’, which means that if the residual is just above the 

tolerance, the interval will be divided into two (and likely on each of those subintervals, the 

residual will be much smaller than the tolerance). Also, the algorithm for removing mesh 

points is quite conservative, so there could be regions where the residual will be quite a bit 

smaller that the tolerance (i.e., the mesh could be quite a bit denser than necessary)( 

Kierzenka & Shampine, 2001). 

 
 
 
 
 

 
 
 

Fig. 5. Evolution of mesh density along the computation  
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5.1 Effect of the constructing an initial guess with bvpinit function on the run time  

As can be seen from Table 3, when constructing an initial guess using 
bvpinit(linspace(0,L,N), starting with a mesh of 5-10 points could often result in a 
more efficient run. It must be pointed out that with adaptive collocation solvers, using that 
many points (N=50,100) with a poor guess could often be counterproductive. In the case of 
N=100, the solver still achieved the sufficient accuracy as it is between 2 and 10. 
 

Linspace 
(0,L,N) 

Optimal N 

Computation Time  
(with bvp4c) 

Mesh number 
(with bvp4c) 

Maximum Residual 

2-4 
Singular Jacobian 

encountered 
  

5 ~3.20 sec 498 9.791e-006 

6 ~2.85 sec 475 9.967e-006 

7 ~3.10 sec 483 9.983e-006 

8 ~2.75 sec 487 9.913e-006 

9 ~2.87 sec 464 9.848e-006 

10 ~2.68 sec 469 9.817e-006 

50 ~2.81 sec 478 9.938e-006 

100 ~3.10 sec 485 9.959e-006 

Table 3. Performance of equally spaced N points for the mesh of a guess 

6. Speeding up the run time of BVP solvers 

The first technique which is used to reduce run time is vectorizing the evaluation of the 
differential equations. Vectorization is a valuable tool for speeding up MATLAB programs 
and this greatly reduces the run time (Shampine et al., 2003). By  vectorization, the function 
f(x,y) is coded so that when given a vector x=[x1,x2,...] and a corresponding array of column 
vectors y=[y1,y2,...], it returns an array of column vectors [f(x1,y1),f(x2,y2),...]). By default, 
bvp4c and bvp4c approximate a Jacobian using finite differences. The evaluation of the 
ODEs is vectorized by changing the vectors to arrays and changing the multiplication to an 
array multiplication. It can be coded by changing scalar quantities like y(1) into arrays like 
y(1,:) and changing from scalar operations to array operations by replacing * and ˆ with .* 
and .ˆ, respectively. When vectorizing the ODEs, the solver must be informed about the 
presence of vectorization by means of the option 'Vectorized','on'.  
 
options = bvpset('Stats','on','RelTol',1e-3,'Vectorized','on'); 

 
The second technique is that of supplying analytical partial derivatives or to supply a 

function for evaluating the Jacobian matrix. This is because, in general, BVPs are solved 

much faster with analytical partial derivatives. However, this is not an easy task since it is 

too much trouble and inconvenient, although MATLAB Symbolic Toolbox can be exploited 

when obtaining analytical Jacobians. The third technique is to supply analytical partial 

derivatives for the boundary conditions. However, it has less effect on the computation time 

compared with supplying analytical Jacobians and vectorization. The solver permits the 

user to supply as much information as possible.  It must be emphasized that supplying more 
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information for the solvers results in a shorter computation run time (Gokhan & Yilmaz, 

2011b). 

The set of equations (3) and (4) is vectorized by changing the vectors to arrays and changing 

the multiplication to an array multiplication as seen below, 

 
function dydx = bvpodevectorized(x,y)      
global alpha_s gb K 
  
dydx =  [ -gb *y(1,:).*y(2,:)-alpha_s*y(1,:)    
          -gb *y(1,:).*y(2,:)+alpha_s*y(2,:) ]; 

           
Using vectorized ODEs with N=8, the performance of the vectorization is illustrated in 

Table 4. 

 

Length 
(mt) 

Computation Time with 
scalar evaluation 

(with bvp4c) 

Computation Time with 
vectorization 
(with bvp4c) 

5000 ~1.83 sec ~1.79 sec 

10000 ~2.26 sec ~2.15 sec 

20000 ~2.60 sec ~2.45 sec 

30000 ~2.70 sec ~2.58 sec 

40000 ~3.00 sec ~2.85 sec 

Table 4. Comparison of the computation time with scalar evaluation and with vectorization  

The code bvp4c permits you to supply analytical partial derivatives for either the ODEs or 

the boundary conditions or both. It is far more important to provide partial derivatives for 

the ODEs than the boundary conditions. The solver is informed that a function is written for 

evaluating ∂f/∂y by providing its handle as the value of the FJacobian option. Similarly, the 

solver can be informed of a function for evaluating analytical partial derivatives of the 

boundary conditions with the option BCJacobian (Shampine et al., 2003). FJacobian and 

BCJacobian can be introduced as with the below codes,  

 
%options = bvpset(options,’FJacobian’,@odeJac); 
%options = bvpset(options,’BCJacobian’,@bcJac); 

 
The MATLAB Symbolic Toolbox has a function jacobian that can be very helpful when 

working out partial derivatives for complicated functions. Its use is illustrated with a script 

for the partial derivatives of the ODEs of this example.  

 
syms res y1 y2 y1 y2 alpha_s gb 
 
res = [ -gb*y1*y2 – alpha_s*y1 
        -gb*y1*y2 + alpha_s*y2]; 
dFdy = jacobian(res,[y1; y2]) 
 

dFdy = 
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[ - alpha_s - gb*y2,        -gb*y1] 
[          -gb*y2, alpha_s - gb*y1] 

 
The performance of the insertion of analytical partial derivatives and vectorization, and both 
are compared in Table 5. As can be seen from Table 5, with vectorization and analytical partial 
derivatives, the computation time is reduced approximately 15 %. The calculations are 
simulated using the MATLAB 7.9 (R2009b) on an Intel Core i5 2.53 GHz laptop computer. 
 

Length 
(mt) 

Computation 
Time with 

scalar 
evaluation 

(with bvp4c) 

Computation 
Time with only 
vectorization 
(with bvp4c) 

Computation Time 
with only 

analytical partial 
derivatives 

(with bvp4c) 

Computation 
Time with both 
vectorization & 

analytical partial 
derivatives 

(with bvp4c) 

5000 ~1.83 sec ~1.79 sec ~1.69 sec ~1.59 sec 

10000 ~2.26 sec ~2.15 sec ~2.05 sec ~1.80 sec 

20000 ~2.60 sec ~2.45 sec ~2.26sec ~1.96sec 

30000 ~2.70 sec ~2.58 sec ~2.40 sec ~2.04 sec 

40000 ~3.00 sec ~2.85 sec ~2.60 sec ~2.18 sec 

Table 5. Comparison of the computation time of bvp4c with vectorization, with analytical 
partial derivatives and with both 

In Table 6, the performance of the bvp5c is illustrated. In terms of scalar evaluation, the 
performance of bvp5c solver is better than bvpc4 and it is evident as the length is increased. 
This improvement is about 47 % at 40 km. As in the case of bvp4c, the performance can be 
increased with vectorization and analytical partial derivatives or with both. Compared with 
the scalar evaluation, only with vectorization and only with analytical partial derivatives this 
improvement is 8% and 13 %, respectively. If both is used this improvement is about 24 %. 
 

Length 
(mt) 

Computation 
Time with 

scalar 
evaluation 

(with bvp5c) 

Computation 
Time with only 
vectorization 
(with bvp5c) 

Computation 
Time with only 

analytical 
partial 

derivatives 
(with bvp5c) 

Computation Time with 
both vectorization & 

analytical partial 
derivatives 

(with bvp5c) 

5000 ~1.32 sec ~1.32 sec ~1.30 sec ~1.23 sec 

10000 ~1.38 sec ~1.38 sec ~1.35 sec ~1.27 sec 

20000 ~1.44 sec ~1.42 sec ~1.38sec ~1.30sec 

30000 ~1.55 sec ~1.50 sec ~1.43 sec ~1.34 sec 

40000 ~1.60 sec ~1.52 sec ~1.47 sec ~1.36 sec 

Table 6. Comparison of the computation time of bvp5c with vectorization, with analytical 
partial derivatives and with both 

If the comparison among two solvers has made, it could be expressed that bvp5c “looks” 
exactly like bvp4c. However, bvp5c controls scaled residual and true error but bvp4c 
controls residual in a different norm. And, bvp5c is more efficient at stringent tolerances. 
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Also, bvp5c solves singular BVPs, but not multipoint BVPs. Moreover, bvp5c handles 
unknown parameters in a different way. And also, bvp5c was added to MATLAB at R2007b 
(Shampine, 2008) 

7. Conclusion 

Within the chapter, in order to analyze the effect of guess functions on the computation 
time, four guess functions are derived. For better understanding, while exploiting physical 
origin, guess functions are derived with the help of MATLAB Symbolic toolbox.  
Continuation method with functional snippets is presented to cope with poor guesses. Effect 
of the step size and bvpinit function on the computation time is analyzed. Speeding up the 
run time with vectorization and analytical partial derivatives are discussed and the 
comparison between bvp4c and bvp5c has been made. 
As a conclusion, it is illustrated that, intuitive guess values/functions improves the 
convergence length, leads the computation with fewer mesh points and consequently 
lessens the computation time. On the other hand, regarding with the continuation, adjusting 
the step size is important for the reduction of run time. It is illustrated that, over the modest 
step size, the solver fails and below the optimum step size, the computation time is 
increased. Moreover, it is showed that when constructing an initial guess using 
bvpinit(linspace(0,L,N), starting with a mesh of 5-10 points could often result in a more 
efficient run. Another outcome of the chapter is the illustration of the efficiency of the 
vectorization and analytical partial derivatives. It is showed specifically with an example 
and with bvp4c that, with the application of vectorization and analytical partial derivatives, 
the computation time is reduced approximately 15 %. The performance of the bvp4c and 
bvp5c is also compared. In terms of scalar evaluation, the performance of bvp5c solver is 
better than bvpc4 and it is evident as the computation length is increased. Compared with 
the scalar evaluation, for the bvp5c, only with vectorization and only with analytical partial 
derivatives this improvement is 8% and 13 % respectively. If both is used this improvement 
is about 24 %. 
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