
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

1

Effect of the Guess Function &
Continuation Method on the Run Time of

MATLAB BVP Solvers

Fikri Serdar Gökhan
Gazikent University, Faculty of Engineering and Architecture,

Department of Electrical and Electronic Engineering, Gaziantep
Turkey

1. Introduction

The MATLAB computing environment is a package used extensively throughout industry,
research and education by users of a complete range in proficiency. MATLAB provides then
an ideal platform to introduce such an item of Boundary Value Problem (BVP) software and
indeed, Kierzenka and Shampine (Kierzenka & Shampine, 2001) developed the core BVP
Ordinary Differential Equation (ODE) software bvp4c to solve a large class of two-point
boundary value problems of the form;

 () (, (),)y x f x y x p′ = (1)

 (, , (), (),) 0L R L Rg x x y x y x p = (2)

where f is continuous and Lipschitz function in y and p is a vector of unknown parameters.
Their view was that a user solving a BVP of form (1) in MATLAB would be most interested
in the graphical representation of a solution, and as such a solver with a MIRK4-based
Simpson Method would be appropriate for graphical accuracy.
If information is specified at more than one point the problem (1) becomes a Boundary

Value Problem. The most common types of BVP are those for which information given at

precisely two points. These are known as two-point boundary value problems.

The MATLAB BVP solver of bvp4c is introduced as a Residual control based, adaptive mesh

solver. An adaptive mesh solver is an alternative approach to that of a uniform mesh, which

would specify a uniform grid of data points xi over the interval [xi, xi+1] and solve

accordingly. The adaptive solver will adjust the mesh points at each stage in the iterative

procedure, distributing them to points where they are most needed. This can lead to obvious

advantages in terms of computational and storage costs as well as allowing control over the

grid resolution. The concept of a residual is the cornerstone of the bvp4c framework; being

responsible for both errors control and mesh selection (Hale, 2006).

The most difficult part for the solution of BVPs is to provide an initial estimation to the
solution. In order to direct the solver for the solution of interest, it is necessary to assist the
solver by informing it with a guess. Not only for the computation of the solution of interest

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

4

but also whether any solution is achieved or not depends strongly on the initial guess.
Therefore, depending of the guess function, BVPs may have no solution or a single solution,
or multiple solutions. Moreover, the quality of the initial guess can be critical to the solver
performance, which reduces or augments the run time. However, coming up with a
sufficiently good guess can be the most challenging part of solving a BVP. Certainly, the
user should apply the knowledge of the problem's physical origin (MATLAB
Documentation).
In MATLAB, when solving BVPs the user must provide a guess to assist the solver in
computing the desired solution (Kierzenka & Shampine, 2001). MATLAB BVP solvers call
for users to provide guesses for the mesh and solution. Although MATLAB BVP solvers take
an unusual approach to the control of error in case of having poor guesses for the mesh and
solution, especially for the nonlinear BVP, a good guess is necessary to obtain convergence
(Shampine et al., 2003).
Whatever intuitive guess values/functions are imposed, eventually the BVP solver fails for
some parameters or for some lengths. If any guess values works for the range of length, the
rest of the length may be extended using continuation. The method of continuation exploits
the fact that the solution obtained for one input will serve as the initial guess for the next
value tried. In case of any difficulty in finding a guess for the interval of interest, generally it
will be easier to solve the problem on a shorter interval. Then the solution of the sequence of
BVPs on the shorter interval will be used as a guess for the next section. With modest
increases in the interval, this will continue until the interval of interest is spanned
(Shampine et al., 2003).
The cost of the continuation method is the increased run time. How the guess value good is,
the less computation time it takes with the continuation method. This is due the fact that, the
remaining length depends of the convergence length (based on the guess value) which its
higher value reduces the computation time.

2. Initial setup

The first step in solving a problem is defining it in a way the software can understand. The
bvp4c framework uses a number of subfunctions which make it as simple as possible for the
user to enter the ODE function, initial data and parameters for a given problem. By way of
the following example we see exactly how a problem is supplied and solved by bvp4c. For
the evaluation of the guess value /function, the steady-state Brillouin equation is exploited.
The coupled ODEs for the evolution of the intensities of pump Ip and Stokes Is can be written
as (Agrawal, 2001),

 B P S p

dIp
g I I I

dz
α= − − (3)

 B P S S

dIs
g I I I

dz
α= − + (4)

where 0 ≤ z ≤ L is the propagation distance along the optical fiber of the total length L, α is
the fiber loss coefficient, gB is the Brillouin gain coefficient, respectively. Here, it is assumed
that, Stokes wave is launched from the rear end of the fiber. Then the known values of the
input pump power Ip(0) and the Stokes wave power Is (L) are referred as the boundary
values.

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

5

The first task is to define the ODEs in MATLAB as a function to return these equations.
Similarly the user then rewrites the boundary conditions to correspond to this form of the
problem. We may code the ODEs for scalar evaluation and boundary conditions,
respectively as,

function dydx = bvpode(x,y)
global alpha_s gb K

dydx = [-gb *y(1)*y(2)-alpha_s*y(1)
 -gb *y(1)*y(2)+alpha_s*y(2)];

function res = bvpbc(ya,yb)
 global Ip0 IsL

 res = [ya(1)- Ip0
 yb(2)- IsL];

The next step is to create an initial guess for the form of the solution using a specific
MATLAB subroutine called bvpinit . The user passes a vector x and an initial guess on this
mesh in the form bvpinit (x, Yinit), which is then converted into a structure useable by
bvp4c. Aside from a sensible guess being necessary for a convergent solution the mesh
vector passed to bvpinit will also define the boundary points of the problem, i.e. xL = x[1]
and xR = x[end].
The initial guess for the solution may take one of two forms. One option is a vector where
Yinit(i) is a constant guess for the i-th component y(i,:) of the solution at all the mesh points
in x. The other is as a function of a scalar x, for example bvpinit(x,@yfun) where for any x in
[a, b], yfun(x) returns a guess for the solution y(x). It must be pointed out that even when a
function is supplied that approximates the solution everywhere in the interval; the solver
uses its values only on the initial mesh. The guess can be coded as a function of a scalar x as,

function v = guess(x)

global alpha_s L gb k Pp0 PsL Aeff
a=alpha_s*L;
k=gb/Aeff*Pp0*L;
epsilon=PsL/Pp0;
kappa=-log(gb/Aeff*PsL*L);
T=log(kappa*(1-kappa/k));
c0=-(PsL + PsL*k - 1)/((PsL*k^2)/2 + 1);
A=c0./(1-(1-c0).*exp(-c0*k.*x));
B=c0*(1-c0)./(exp(c0*k.*x)-1+c0);
w=(A.^(exp(-a))).*exp(-a.*x);
u=(B.*exp(a.*(x-1)));

v=[w*Pp0; u*Pp0];

The next subroutine to look at is bvpset, that specifies which options bvp4c should be use in
solving it. The function is called options = bvpset(’name1’,value1,...) and since MATLAB

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

6

documentation gives an in depth account of each of the options only a brief outline of those
notable is given here (Hale, 2006).

options = []; % default
%options = bvpset('Stats','on','RelTol',1e-5,'abstol',1e-4);
%options = bvpset(options,’Vectorized’,’on’);
%options = bvpset(options,’FJacobian’,@odeJac);
%options = bvpset(options,’BCJacobian’,@bcJac);

RelTol - Relative tolerance for the residual [positive scalar 1e-3]
The computed solution S(x) is the exact solution of S’(x) = F(x, S(x)) + res(x). On each

subinterval of the mesh, component i of the residual must satisfy norm

()
Re

max((()), () / Re)

⎛ ⎞
≤⎜ ⎟

⎝ ⎠

res i
norm lTol

abs F i AbsTol i lTol

AbsTol - Absolute tolerance for the residual [positive scalar or vector 1e-6]
Elements of a vector of tolerances apply to corresponding components of the residual
vector. AbsTol defaults to 1e-6.
FJacobian \ BCJacobian - Analytical partial derivatives of ODEFUN \ BCFUN
Computation of the Jacobian matrix at each mesh point can be a very expensive process. By

passing an analytic derivative of the ODE and BC functions the user can greatly reduce

computational time. For example when solving y’ = f(x, y), setting FJacobian to @FJAC

where ∂f/∂y = FJAC(x, y) evaluates the Jacobian of f with respect to y.

Stats - Display computational cost statistics [on — off]

Vectorized - Vectorized ODE function [on — off]
As will be discussed in section 6, bvp4c is able to accept a vectorised function which can

markedly increase the efficiency of calculating local Jacobians over using finite differences

with the odenumjac subroutine. Hence in the following programs, we will define

options = bvpset('Stats','on','RelTol',1e-5,'abstol',1e-4);
solinit = bvpinit(linspace(0,L,2), @guess);

And call the bvp4c routine with:
sol = bvp4c(@ode,@bc,solinit,options);

The above essentially ends the user input in solving the BVP system and the rest is left to
bvp4c. Within the framework there are several notable steps which should be expounded.

3. Derivation of the guess

In this chapter, four guess functions are derived for the assistance of the MATLAB BVP
solvers with the help of MATLAB symbolic toolbox.

3.1 1
st

 Guess

If the constant guess is used as the initial values i.e., for the pump “Ip0” and for the Stokes

“IsL” and L = 10000;

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

7

solinit = bvpinit(linspace(0,L,2),@guess);
options = bvpset('Stats','on','RelTol',1e-5);
function v = guess(x)
global Ip0 IsL
v=[Ip0 ; IsL];

It prompts as, “Unable to solve the collocation equations -- a singular Jacobian
encountered”. However, if the computation length is decreased as, L = 1000,the solver is
able to solve coupled equations with these poor guesses v=[Ip0 ; IsL]. Therefore, with these
guess values the convergence length (the maximum length which the solver is able to
converge) is 1000 meter. The evolution of the guess values (estimate) with the real solution
is shown in Fig. 1

Fig. 1. Evolution of the guess values and real solution according to 1st guess

a

b

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

8

3.2 2
nd

 Guess

If we guess that Ip and Is is linearly changing as,

Ip ~ Ip0+A*z ;
Is ~ Is0+B*z ;

Exploiting with the MATLAB Symbolic Toolbox using the following script,

syms Is Ip Is0 Ip0 IsL gb L alpha A B z

 Ip = Ip0+A*z ;
 Is = Is0+B*z ;

 eqn1 = collect(diff(Ip,'z') + (gb)*Ip*Is+alpha*Ip);
 eqn2 = collect(diff(Is,'z') + (gb)*Ip*Is-alpha*Is);

 eqn3=collect(taylor(eqn1,1,0),z)
 eqn4=collect(taylor(eqn2,1,L),z)

The below output is produced;

eqn3 = A + Ip0*alpha + (Ip0*Is0*gb)
eqn4 = B - Is0*alpha - L*(B*alpha - (gb*(A*Is0 + B*Ip0))) +

(Ip0*Is0*gb) + (A*B*L^2*gb)

Is0=IsL-B*L;

Here, there are two equations and two unknowns A and B. With the substitution of Is0, It

can be solved simultaneously by the below script,
eqn=

solve(A + Ip0*alpha + (Ip0*(IsL-B*L)*gb),...
 B - (IsL-B*L)*alpha - L*(B*alpha - (gb*(A*(IsL-B*L) + B*Ip0)))+

 (Ip0*(IsL-B*L)*gb) + (A*B*L^2*gb),...
 'A','B')
eqn =

 A: [1x1 sym]
 B: [1x1 sym]

Here A and B can be obtained as,

A=-(Ip0*alpha_s + Ip0^2*IsL*L*gb^2 + Ip0*IsL*gb –
 Ip0*IsL*L*alpha_s*gb)/(Ip0*IsL*L^2*gb^2);

B=(IsL*alpha_s + Ip0*IsL^2*L*gb^2 - Ip0*IsL*gb +
 Ip0*IsL*L*alpha_s*gb)/(Ip0*IsL*L^2*gb^2)

Ip ~ Ip0+A.*x ;

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

9

Is ~ (IsL-B.*L)+B.*x ;

The evolution of the 2nd guess values with the real solution is shown in Fig. 2

Fig. 2. Evolution of the guess values and real solution according to 2nd guess

a

b

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

10

3.3 3
rd

 Guess

If it is guessed that Ip and Is is exponentially changing as,

Ip ~ Ip0*exp(gamma1*z) ;
Is ~ Is0*exp(kappa1*z) ;

with using the following script,
syms Ip Is Is0 Ip0 gb z L IsL alpha gamma1 kappa1

Ip = Ip0*exp(gamma1*z) ;
Is = Is0*exp(kappa1*z) ;

eqn1 = collect(diff(Ip,'z') + (gb)*Ip*Is+alpha*Ip);
eqn2 = collect(diff(Is,'z') + (gb)*Ip*Is-alpha*Is);

eqn3=taylor(eqn1,1,0)
eqn4=taylor(eqn2,1,L)

The below output is produced;

eqn3 =Ip0*alpha + Ip0*gamma1 + (Ip0*Is0*gb)
eqn4 =Is0*kappa1*exp(L*kappa1) - Is0*alpha*exp(L*kappa1) +
 (Ip0*Is0*gb*exp(L*gamma1)*exp(L*kappa1))

gamma1 and kappa1 can be obtained as;
eqn5=solve(Ip0*alpha + Ip0*gamma1 + (Ip0*Is0*gb),'gamma1')
gamma1= -(alpha + Is0*gb)

using the same way;
kappa1 = (alpha - Ip0*gb*exp(L*gamma1));

Here, Is0 can be readily found by,

Is(z) = Is0*exp(kappa1*z) ;
For z=L
IsL= Is0*exp(kappa1*L);
Is0= IsL/exp(kappa1*L);

Therefore,

Ip ~ Ip0*exp(gamma1*z) ;
Is ~ IsL/exp(kappa1*L)*exp(kappa1*z) ;

The evolution of the 3rd guess values with the real solution is shown in Fig. 3

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

11

Fig. 3. Evolution of the guess values and real solution according to 3rd guess

3.4 4
th

 Guess

Highly intuitive guess function may be derived the using the solution of lossless system, i.e.,
with eliminating the α coefficient in the Eq (3) and Eq. (4),

 B P S

dIp
g I I

dz
= − (5)

 B P S

dIs
g I I

dz
= − (6)

With neglecting the attenuation coefficient, the solution of the Eq.(5) and Eq.(6) is found as
(Kobyakov et al., 2006),

 1

0 0 0() [1 (1)exp()] (0)PA c c c k Pζ ζ −= − − − (7)

 1

0 0 0 0() (1)[exp() 1] (0)PB c c c k c Pζ ζ −= − − + (8)

a

b

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

12

where,

 0

1
ln (1)c

k k

⎧ ⎫Λ⎡ ⎤≈ Λ + Λ −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
, (0)B

P

eff

g
k P L

A
= ,

z

L
ζ = (9)

where,

0

ln() ln[]SL B
SL

p eff

P g
k P L

P A
Λ = − = − ,

0

1SL

p

P
k

P
2 (10)

Exploiting the solution of Eq.(7) and Eq. (8), general expression of Pp(z) and PS(z) can be

derived as,

 2() () [1 ()]= ⋅ − ⋅ ⋅ + ⋅PP z A z a A x B x (11)

 2() () [1 ()]= ⋅ − ⋅ ⋅ + ⋅SP z B z a C x D x (12)

If a→0, then () ()PP z A z= and () ()SP z B z=

syms z k A B C D a AA BB c0 x

AA=c0/(1-(1-c0)*exp(-c0*k*z));
BB=c0*(1-c0)/(exp(c0*k*z)-1+c0);
w=(AA*(1-a*(A*x+B*x^2)));

u=(BB*(1-a*(C*x+D*x^2)));
eqn1 = collect(diff(w,1,'z') + (k*u*w)+a*w)
eqn2 = collect(diff(u,1,'z') + (k*u*w)-a*u)
The output produces,

eqn1 =
 …+ ((c0^2*k*(A*a + C*a)*(c0 - 1))/(((c0 - 1)/exp(c0*k*z) + 1)*(c0 +
exp(c0*k*z) - 1)) - (A*a^2*c0)/((c0 - 1)/exp(c0*k*z) + 1) -
(2*B*a*c0)/((c0 - 1)/exp(c0*k*z) + 1) - (A*a*c0^2*k*(c0 -
1))/(exp(c0*k*z)*((c0 - 1)/exp(c0*k*z) + 1)^2))*x …
+ (a*c0)/((c0 - 1)/exp(c0*k*z) + 1) - (A*a*c0)/((c0 - 1)/exp(c0*k*z)
+ 1) + (c0^2*k*(c0 - 1))/(exp(c0*k*z)*((c0 - 1)/exp(c0*k*z) + 1)^2)
- (c0^2*k*(c0 - 1))/(((c0 - 1)/exp(c0*k*z) + 1)*(c0 + exp(c0*k*z) -
1))

 eqn2 =

 … + ((2*D*a*c0*(c0 - 1))/(c0 + exp(c0*k*z) - 1) - (C*a^2*c0*(c0 -
1))/(c0 + exp(c0*k*z) - 1) + (c0^2*k*(A*a + C*a)*(c0 - 1))/(((c0 -
1)/exp(c0*k*z) + 1)*(c0 + exp(c0*k*z) - 1)) -

(C*a*c0^2*k*exp(c0*k*z)*(c0 - 1))/(c0 + exp(c0*k*z) - 1)^2)*x …
+ (a*c0*(c0 - 1))/(c0 + exp(c0*k*z) - 1) + (C*a*c0*(c0 - 1))/(c0 +

exp(c0*k*z) - 1) - (c0^2*k*(c0 - 1))/(((c0 - 1)/exp(c0*k*z) + 1)*(c0
+ exp(c0*k*z) - 1)) + (c0^2*k*exp(c0*k*z)*(c0 - 1))/(c0 +

exp(c0*k*z) - 1)^2

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

13

We are interested in the behavior as z → 0 and so, the higher the power of x, the less effect it
has in these expansions. Our goal is to satisfy the equations as well as possible, so we want
to choose coefficients that make as many successive terms zero as possible, starting with the
lowest power. To eliminate the constant terms, we see from the expansions that we must
take

A= 1; C=-1;
B= -(a - a/exp(c0*k*z) + (a*c0)/exp(c0*k*z) - (c0*k)/exp(c0*k*z) +
 (c0^2*k)/exp(c0*k*z))/((2*c0)/exp(c0*k*z) - 2/exp(c0*k*z) + 2)
D= (a - a/exp(c0*k*z) + (a*c0)/exp(c0*k*z) - (c0*k)/exp(c0*k*z) +
 (c0^2*k)/exp(c0*k*z))/((2*c0)/exp(c0*k*z) - 2/exp(c0*k*z) + 2)

The evolution of the 4rd guess values with the real solution is shown in Fig. 4

Fig. 4. Evolution of the guess values and real solution according to 4th guess

b

a

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

14

Guess
Length(mt)

/mesh
Convergence
length/mesh

Computation Time
(with bvp4c) at

8000 meter

1st Guess - values (Ip0,IsL) 8000/ 40 8000/40 ~1.18 sec

2nd Guess - functions (linear) 8000/ 40 9000/453 ~1.13 sec

3rd Guess -functions
(exponential)

8000/ 40 15000/56 ~1.13 sec

4th Guess functions (modified
exponential)

8000/ 35 30000/61 ~1.0 sec

Table 1. Guess values/functions versus convergence length/mesh and run time.

As can be seen from Table 1 and Fig.4 the best estimation is the 4th guess. Because its’
convergence length (30000) is more than the others (15000, 9000, 8000, respectively). The
performance of the 2nd guess is approximately same as the first one. Because it hardly
converge the solution using 453 points at 9000 meter. However, its performance is same as
the first one with 40 points at 8000 meter.

4. Continuation

The method of continuation exploits the fact that generally the solution of one BVP is a good
guess for the solution of another with slightly different parameters. If you have difficulty in
finding a guess for the solution that is good enough to achieve convergence for the interval
of interest, it is frequently the case that the problem is easier to solve on a shorter interval.
The idea is then to solve a sequence of BVPs with the solution on one interval being used as
a guess for the problem posed on a longer interval. Of course, this technique cannot be used
to extend the interval ad infinitum; no matter how good the guess is, eventually the solver
will not be able to distinguish the different kinds of solutions (Shampine et al., 2003).
For the range of interested lengths bigger than the convergence lengths, the continuation
process can be applied. Some types of snippets of continuation are illustrated below,

=================#1#=========================
options = bvpset('FJacobian',@sampleJac,...
 'BCJacobian',@sampleBCJac,...
 'Vectorized','on');

sol = bvpinit([-1 -0.5 0 0.5 1],[1 0]);

c = 0.1;
for i=2:4
 c = c/10;
 sol = bvp4c(@sampleODE,@sampleBC,sol,options);
end

=================#2#========================

infinity = 3;
maxinfinity = 6;

solinit = bvpinit(linspace(0,infinity,5),[0 0 1]);
sol = bvp4c(@fsode,@fsbc,solinit);

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

15

eta = sol.x;
f = sol.y;

for Bnew = infinity+1:maxinfinity

 solinit = bvpinit(sol,[0 Bnew]); % Extend solution to Bnew.
 sol = bvp4c(@fsode,@fsbc,solinit);
 eta = sol.x;
 f = sol.y;

=================#3#======================

L=30000;
for i = 1:1000:L
D = 5*i/1000; d = 1/D;
if i == 1
solinit = bvpinit(linspace(1,i,10),@guess);
else
solinit = bvpinit(sol,[d,D]);
end

sol = bvp4c(@odes,@bcs,solinit);
end
=================#4#======================
function Boundary_value_increment
global a b

a= XL; %[a
b= XR; % b]
sol = bvpinit(linspace(0,L,2),[Boundary values for each pump and
signal power]);

options = bvpset('Stats','on','RelTol',1e-5);

for k=1:Desired_Power
b=b+k;
sol = bvp4c(@bvpode,@bvpbc,sol,options);
end

If the interested length is bigger than the convergence length then continuation can be

applied with the bvpxtend function. In the recent version of MATLAB, bvpinit function is

simplified to a new function bvpxtend. Besides offering new possibilities, this function

permits extension of length of interval to only one end point at a time (Kierzenka &

Shampine, 2008). Briefly,

solinit = bvpxtend(sol,xnew,ynew) uses solution sol computed on [a,b] to form a

solution guess for the interval extended to xnew. The extension point xnew must be outside

the interval [a,b], but on either side. The vector ynew provides an initial guess for the

solution at xnew.

For example, if it is assumed that the convergence and interested lengths are 15 and 30
km, respectively, the continuation can be applied via the below codes (Gokhan & Yilmaz,
2011a),
=================#5#======================

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

16

L= 15000;
Interested=30000;
solinit = bvpinit(linspace(0,L,2),[Guess expression running with 15
km]);
sol = bvp4c(@bvpode,@bvpbc,solinit,options);

.
for Bnew=L:2000:Interested
 solinit=bvpxtend(sol,Bnew);
 sol = bvp4c(@bvpode,@bvpbc,solinit,options);
end

In the above codes, 2000 is the step size which is the modest increment range. In case of
bigger step size, the solver may fail but the computation time reduces. On the other hand, if
this increment is kept little, it takes more time to reach the end of the computation.
Therefore, selecting the step size is important factor for the efficiency of the computation for
continuation. One advantage of using bvpxtend function is the reduced computation time.
Because, bvp solvers try to use mesh points as few as possible, the step size is incremented
automatically depending on the previous mesh points. In bvpxtend, after obtaining
convergence for the mesh, the codes adapt the mesh so as to obtain an accurate numerical
solution with a modest number of mesh points. Here it must be emphasized that, for BVPs
the most difficult part is providing an initial approximation to the solution.

5. Effect of the step size on the run time

Using the snippets 5 and the 1st Guess of Table 1, the performance of the continuation over
step size is illustrated in Table 2.

Convergence
Length (km)

Computation
Length

(km)

Linspace
(0,L,N)

Optimal
N

Step Size
(mt.)

Computation
Time at

Convergence
Length

(with bvp4c)

Total
Computation

time

Mesh
number

(between)
(with

bvp4c)

40 50 10 50 ~3.2 sec ~110.0 sec 482-541

40 50 10 100 ~3.2 sec ~60.0 sec 482-541

40 50 10 200 ~3.2 sec ~32.8 sec 482-553

40 50 10 300 ~3.2 sec ~25.3 sec 482-560

40 50 10 400 ~3.2 sec ~23.6 sec 482-663

40 50 10 500 ~3.2 sec ~44.5 sec 482-1984

40 50 10 600 Computation fails.

Table 2. The performance of continuation method versus step size

If the step size is increased over the 600 meter, the computation fails with the below warning
message;
Warning: Unable to meet the tolerance without using more than 5000
mesh points.

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

17

The last mesh of 4106 points and the solution are available in the
output argument.

The maximum residual is 0.00018931, while requested accuracy is 1e-
005.

As can be seen on Table 2, for some step size over the modest increment, computation blows
up (i.e. 600 m). When the step size is between 50 and 400, the number of used mesh is
slightly different from each other. However, when it is 500 m, abruptly increase in the
number of used mesh is a sign of lack of confidence.
In Fig.5, it can be seen that the distance between some mesh points, especially near the

boundaries are denser than the others. This is because the solver tries to control the residual

of the interpolating polynomial: r(x) = S’(x) – f(x,S(x)). The behavior of this residual

depends on the behavior of some high derivatives of the solution (that the solver does not

have access to). In the solver, the residual is estimated at each mesh subinterval, and

additional mesh points are introduced if the estimate is bigger than the tolerance.

The mesh selection algorithm is ‘localized’, which means that if the residual is just above the

tolerance, the interval will be divided into two (and likely on each of those subintervals, the

residual will be much smaller than the tolerance). Also, the algorithm for removing mesh

points is quite conservative, so there could be regions where the residual will be quite a bit

smaller that the tolerance (i.e., the mesh could be quite a bit denser than necessary)(

Kierzenka & Shampine, 2001).

Fig. 5. Evolution of mesh density along the computation

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

18

5.1 Effect of the constructing an initial guess with bvpinit function on the run time

As can be seen from Table 3, when constructing an initial guess using
bvpinit(linspace(0,L,N), starting with a mesh of 5-10 points could often result in a
more efficient run. It must be pointed out that with adaptive collocation solvers, using that
many points (N=50,100) with a poor guess could often be counterproductive. In the case of
N=100, the solver still achieved the sufficient accuracy as it is between 2 and 10.

Linspace
(0,L,N)

Optimal N

Computation Time
(with bvp4c)

Mesh number
(with bvp4c)

Maximum Residual

2-4
Singular Jacobian

encountered

5 ~3.20 sec 498 9.791e-006

6 ~2.85 sec 475 9.967e-006

7 ~3.10 sec 483 9.983e-006

8 ~2.75 sec 487 9.913e-006

9 ~2.87 sec 464 9.848e-006

10 ~2.68 sec 469 9.817e-006

50 ~2.81 sec 478 9.938e-006

100 ~3.10 sec 485 9.959e-006

Table 3. Performance of equally spaced N points for the mesh of a guess

6. Speeding up the run time of BVP solvers

The first technique which is used to reduce run time is vectorizing the evaluation of the
differential equations. Vectorization is a valuable tool for speeding up MATLAB programs
and this greatly reduces the run time (Shampine et al., 2003). By vectorization, the function
f(x,y) is coded so that when given a vector x=[x1,x2,...] and a corresponding array of column
vectors y=[y1,y2,...], it returns an array of column vectors [f(x1,y1),f(x2,y2),...]). By default,
bvp4c and bvp4c approximate a Jacobian using finite differences. The evaluation of the
ODEs is vectorized by changing the vectors to arrays and changing the multiplication to an
array multiplication. It can be coded by changing scalar quantities like y(1) into arrays like
y(1,:) and changing from scalar operations to array operations by replacing * and ˆ with .*
and .ˆ, respectively. When vectorizing the ODEs, the solver must be informed about the
presence of vectorization by means of the option 'Vectorized','on'.

options = bvpset('Stats','on','RelTol',1e-3,'Vectorized','on');

The second technique is that of supplying analytical partial derivatives or to supply a

function for evaluating the Jacobian matrix. This is because, in general, BVPs are solved

much faster with analytical partial derivatives. However, this is not an easy task since it is

too much trouble and inconvenient, although MATLAB Symbolic Toolbox can be exploited

when obtaining analytical Jacobians. The third technique is to supply analytical partial

derivatives for the boundary conditions. However, it has less effect on the computation time

compared with supplying analytical Jacobians and vectorization. The solver permits the

user to supply as much information as possible. It must be emphasized that supplying more

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

19

information for the solvers results in a shorter computation run time (Gokhan & Yilmaz,

2011b).

The set of equations (3) and (4) is vectorized by changing the vectors to arrays and changing

the multiplication to an array multiplication as seen below,

function dydx = bvpodevectorized(x,y)
global alpha_s gb K

dydx = [-gb *y(1,:).*y(2,:)-alpha_s*y(1,:)
 -gb *y(1,:).*y(2,:)+alpha_s*y(2,:)];

Using vectorized ODEs with N=8, the performance of the vectorization is illustrated in

Table 4.

Length
(mt)

Computation Time with
scalar evaluation

(with bvp4c)

Computation Time with
vectorization
(with bvp4c)

5000 ~1.83 sec ~1.79 sec

10000 ~2.26 sec ~2.15 sec

20000 ~2.60 sec ~2.45 sec

30000 ~2.70 sec ~2.58 sec

40000 ~3.00 sec ~2.85 sec

Table 4. Comparison of the computation time with scalar evaluation and with vectorization

The code bvp4c permits you to supply analytical partial derivatives for either the ODEs or

the boundary conditions or both. It is far more important to provide partial derivatives for

the ODEs than the boundary conditions. The solver is informed that a function is written for

evaluating ∂f/∂y by providing its handle as the value of the FJacobian option. Similarly, the

solver can be informed of a function for evaluating analytical partial derivatives of the

boundary conditions with the option BCJacobian (Shampine et al., 2003). FJacobian and

BCJacobian can be introduced as with the below codes,

%options = bvpset(options,’FJacobian’,@odeJac);
%options = bvpset(options,’BCJacobian’,@bcJac);

The MATLAB Symbolic Toolbox has a function jacobian that can be very helpful when

working out partial derivatives for complicated functions. Its use is illustrated with a script

for the partial derivatives of the ODEs of this example.

syms res y1 y2 y1 y2 alpha_s gb

res = [-gb*y1*y2 – alpha_s*y1
 -gb*y1*y2 + alpha_s*y2];
dFdy = jacobian(res,[y1; y2])

dFdy =

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

20

[- alpha_s - gb*y2, -gb*y1]
[-gb*y2, alpha_s - gb*y1]

The performance of the insertion of analytical partial derivatives and vectorization, and both
are compared in Table 5. As can be seen from Table 5, with vectorization and analytical partial
derivatives, the computation time is reduced approximately 15 %. The calculations are
simulated using the MATLAB 7.9 (R2009b) on an Intel Core i5 2.53 GHz laptop computer.

Length
(mt)

Computation
Time with

scalar
evaluation

(with bvp4c)

Computation
Time with only
vectorization
(with bvp4c)

Computation Time
with only

analytical partial
derivatives

(with bvp4c)

Computation
Time with both
vectorization &

analytical partial
derivatives

(with bvp4c)

5000 ~1.83 sec ~1.79 sec ~1.69 sec ~1.59 sec

10000 ~2.26 sec ~2.15 sec ~2.05 sec ~1.80 sec

20000 ~2.60 sec ~2.45 sec ~2.26sec ~1.96sec

30000 ~2.70 sec ~2.58 sec ~2.40 sec ~2.04 sec

40000 ~3.00 sec ~2.85 sec ~2.60 sec ~2.18 sec

Table 5. Comparison of the computation time of bvp4c with vectorization, with analytical
partial derivatives and with both

In Table 6, the performance of the bvp5c is illustrated. In terms of scalar evaluation, the
performance of bvp5c solver is better than bvpc4 and it is evident as the length is increased.
This improvement is about 47 % at 40 km. As in the case of bvp4c, the performance can be
increased with vectorization and analytical partial derivatives or with both. Compared with
the scalar evaluation, only with vectorization and only with analytical partial derivatives this
improvement is 8% and 13 %, respectively. If both is used this improvement is about 24 %.

Length
(mt)

Computation
Time with

scalar
evaluation

(with bvp5c)

Computation
Time with only
vectorization
(with bvp5c)

Computation
Time with only

analytical
partial

derivatives
(with bvp5c)

Computation Time with
both vectorization &

analytical partial
derivatives

(with bvp5c)

5000 ~1.32 sec ~1.32 sec ~1.30 sec ~1.23 sec

10000 ~1.38 sec ~1.38 sec ~1.35 sec ~1.27 sec

20000 ~1.44 sec ~1.42 sec ~1.38sec ~1.30sec

30000 ~1.55 sec ~1.50 sec ~1.43 sec ~1.34 sec

40000 ~1.60 sec ~1.52 sec ~1.47 sec ~1.36 sec

Table 6. Comparison of the computation time of bvp5c with vectorization, with analytical
partial derivatives and with both

If the comparison among two solvers has made, it could be expressed that bvp5c “looks”
exactly like bvp4c. However, bvp5c controls scaled residual and true error but bvp4c
controls residual in a different norm. And, bvp5c is more efficient at stringent tolerances.

www.intechopen.com

Effect of the Guess Function & Continuation Method on the Run Time of MATLAB BVP Solvers

21

Also, bvp5c solves singular BVPs, but not multipoint BVPs. Moreover, bvp5c handles
unknown parameters in a different way. And also, bvp5c was added to MATLAB at R2007b
(Shampine, 2008)

7. Conclusion

Within the chapter, in order to analyze the effect of guess functions on the computation
time, four guess functions are derived. For better understanding, while exploiting physical
origin, guess functions are derived with the help of MATLAB Symbolic toolbox.
Continuation method with functional snippets is presented to cope with poor guesses. Effect
of the step size and bvpinit function on the computation time is analyzed. Speeding up the
run time with vectorization and analytical partial derivatives are discussed and the
comparison between bvp4c and bvp5c has been made.
As a conclusion, it is illustrated that, intuitive guess values/functions improves the
convergence length, leads the computation with fewer mesh points and consequently
lessens the computation time. On the other hand, regarding with the continuation, adjusting
the step size is important for the reduction of run time. It is illustrated that, over the modest
step size, the solver fails and below the optimum step size, the computation time is
increased. Moreover, it is showed that when constructing an initial guess using
bvpinit(linspace(0,L,N), starting with a mesh of 5-10 points could often result in a more
efficient run. Another outcome of the chapter is the illustration of the efficiency of the
vectorization and analytical partial derivatives. It is showed specifically with an example
and with bvp4c that, with the application of vectorization and analytical partial derivatives,
the computation time is reduced approximately 15 %. The performance of the bvp4c and
bvp5c is also compared. In terms of scalar evaluation, the performance of bvp5c solver is
better than bvpc4 and it is evident as the computation length is increased. Compared with
the scalar evaluation, for the bvp5c, only with vectorization and only with analytical partial
derivatives this improvement is 8% and 13 % respectively. If both is used this improvement
is about 24 %.

8. Acknowledgments

The author gratefully acknowledges the financial support from the head of scientific
research projects commission of Gazikent University.

9. References

Kierzenka J. & Shampine Lawrence F. (2001), A BVP Solver Based on Residual Control and the
MATLAB PSE, ACM TOMS, vol. 27, No. 3, pp. 299-316.

Hale N.P., (2006), A Sixth-Order Extension to the MATLAB bvp4c Software of J. Kierzenka and L.
Shampine, Msc Thesis. Accessed 06.04.2011, Available from:
< http://people.maths.ox.ac.uk/hale/files/hale_mastersthesis.pdf >

MATLAB Documentation, Continuation, Accessed 06 April 2011, Available from:
 < http://www.mathworks.com/help/techdoc/math/f1-713877.html>
Shampine, L.F., Gladwell, I. & Thompson, S. (2003), Solving ODEs with MATLAB, 1st ed.,

Cambridge University Press, ISBN, 978-0-521-82404-4, New York
Agrawal G. P. (2001), Nonlinear Fiber Optics, 3rd ed. Academic, Chap. 9.

www.intechopen.com

MATLAB – A Ubiquitous Tool for the Practical Engineer

22

Kobyakov A., Darmanyan S., Sauer M. & Chowdhury D (2006), High-gain Brillouin
amplification: an analytical Approach, Opt.Lett. 31 1960

Kierzenka, J. & Shampine, L.F. (2008), BVP solver that controls residual and error, Journal of
Numerical Analysis, Industrial and Applied Mathematics (JNAIAM), Vol. 3 Nos
1/2, pp. 27-41, available at: www.jnaiam.org/downloads.php?did=44

 (Accessed 06 April 2011).
Gokhan F. S., & Yilmaz G, (2011a), Solution of Raman fiber amplifier equations using MATLAB

BVP solvers, COMPEL: The International Journal for Computation and
Mathematics in Electrical and Electronic Engineering, Vol. 30 Iss: 2, pp.398 – 411

Gokhan F. S., & Yilmaz G, (2011b), Novel Guess Functions for Efficient Analysis of Raman Fiber
Amplifiers, COMPEL: The International Journal for Computation and Mathematics
in Electrical and Electronic Engineering, accepted in 2010

Shampine L.F, (2008). Control of Residual and Error, In: CAIMS-Canadian Mathematical
Society, Accessed 06 April 2011,

 Available from: < http://faculty.smu.edu/shampine/Montreal.pdf>

www.intechopen.com

MATLAB - A Ubiquitous Tool for the Practical Engineer

Edited by Prof. Clara Ionescu

ISBN 978-953-307-907-3

Hard cover, 564 pages

Publisher InTech

Published online 13, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

A well-known statement says that the PID controller is the â€œbread and butterâ€ of the control engineer. This

is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the

paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that

MATLAB is the â€œbreadâ€ in the above statement. MATLAB has became a de facto tool for the modern

system engineer. This book is written for both engineering students, as well as for practicing engineers. The

wide range of applications in which MATLAB is the working framework, shows that it is a powerful,

comprehensive and easy-to-use environment for performing technical computations. The book includes

various excellent applications in which MATLAB is employed: from pure algebraic computations to data

acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user

interface design for educational purposes to Simulink embedded systems.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Fikri Serdar Go ̈khan (2011). Effect of the Guess Function & Continuation Method on the Run Time of MATLAB

BVP Solvers, MATLAB - A Ubiquitous Tool for the Practical Engineer, Prof. Clara Ionescu (Ed.), ISBN: 978-

953-307-907-3, InTech, Available from: http://www.intechopen.com/books/matlab-a-ubiquitous-tool-for-the-

practical-engineer/effect-of-the-guess-function-continuation-method-on-the-run-time-of-matlab-bvp-solvers

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

