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1. Introduction  

The Candida genus is a polyphyletic genus with at least 150 species. Nine are recognized 
opportunistic pathogens of humans and animals. C. albicans is the species most frequently 
isolated from human infections, followed by Candida non-Candida species (CNCA), as C. 
glabrata, C. tropicalis, C. dubliniensis, C. parapsilosis, C. guilliermondii, C. lusitaniae, C. kefyr and 
C. krusei (Méan et al. 2008; Pfaller & Diekema, 2007; Almirante et al. 2005; Manzano-Gayosso 
et al. 2000).   
Some works describe the phylogenetic relationships of Candida genus and illustrate the 

limited relationship between the pathogenic Candida spp. The genus has been divided into: 

the CTG clade, which includes yeast that encodes CTG as serine instead of leucine (C. 

albicans, C. dubliniensis, C. tropicalis, C. parapsilosis and C. lusitaniae); and the WGD clade, 

which includes yeast that has undergone a genome duplication event (Saccharomyces spp., 

Kluyveromyces spp. and C. glabrata). Evidently, C. glabrata is more related to non-pathogenic 

yeasts, as Saccharomyces cerevisiae, than to the other pathogenic species (Scannell et al. 2007). 

C. albicans is a normal microorganism in humans, and colonise up to 70% of skin, mucoses, 

and faeces of individuals with no apparent detriment to health. However, in some 

circumstances, either through environmental factors or a weakening of the host immune 

system, a proliferation and infection by C. albicans arise inducing candidosis (Wei et al. 

2011). 

Biofilm formation, adhesion, cavitation, phenotypic switching, dimorphism, interaction with 
the host immune system, invasion and tissue damage are virulence virulence factors for C. 
albicans. All these factors are related to the secreted aspartyl proteases (Sap) family, which is 
considered an important virulence factor and is studied as a possible target for therapeutic 
drug design (Naglik et al. 2004; Chaffin et al. 1998; Hube, 1998; Naglik et al. 2003, 2004, 
2008). 
The topic of this chapter is to understand the molecular characteristics, evolution and 
putative functions of glycosylphosphatidylinositol (GPI)-linked aspartyl proteases (Yps), a 
protein superfamily distributed among all pathogenic Candida species. Cell location motifs, 
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gene duplications, similitude, synteny, putative transcription factor binding sites and 
genome traits of the Yps family members are analysed by bioinformatics tools in an 
evolutionary context.  

2. Aspartyl proteases  

Aspartyl proteases or acid proteases (optimum activity at acidic pH) are proteins with a 
signal peptide in the amino-terminal site, at least one aspartic residue in the active site, and 
4 cysteins (Hube & Naglik, 2001). The signal peptide is processed in the endoplasmic 
reticule and the protein is transported to their corresponding cell localization by the 
secretory pathway. The active site is formed by different amino acids. The consensus pattern 
described by PROSITE-EXPASY (http://expasy.org/prosite/) is [LIVMFGAC]-
[LIVMTADN]-[LIVFSA]-D-[ST]-G-[STAV]-[STAPDENQ]-{GQ}-[LIVMFSTNC]-{EGK}-
[LIVMFGTA], and the cysteins help the protein to the three dimensional structure by 
intramolecular disulfide bond (Fig. 1). According to the cell localization, aspartyl proteases 
could be secreted, or destined to vacuole or cell membrane by a GPI-linked site in the 
carboxyl-terminal residues (Alberch et al. 2006;  Jones, 1991; Naglik et al. 2003).  
 
 

 

Fig. 1. Typical molecular structure of aspartyl proteases. SP: signal peptide; ASP: aspartic 
residue in the active site, C: cystein. 

2.1 Secreted aspartyl proteases (Sap) 

The C. albicans secreted aspartyl protease family comprises ten members, eight of which are 
proper secreted Sap1-Sap8, and two, Sap9 and Sap10, that have been reclassified as GPI-
anchored aspartyl proteases (Alberch et al. 2006). Nevertheless, Sap9 and Sap10 are clearly 
more phylogenetically related to Sap than any GPI-anchored aspartyl proteases (Parra et al. 
2009). The function of Sap in C. albicans has been widely studied, and these proteases are 
important in proteolysis to get a source of nitrogen, and are differentially regulated 
depending on the environmental conditions (Schaller et al. 1998; 2003; Taylor et al. 2005; 
Naglik et al. 2008). SAP1-SAP3 are relevant in phenotypic switching during the opaque 
phase and are not expressed in the WO-1 phase (Morrow et al. 1992; White et al. 1993). Also, 
they are expressed when yeast colonize and damage reconstructed human epithelium, oral 
and vaginal, which means that these Sap are important in superficial infections (Schaller et 
al. 1998; 2003; Copping et al. 2005). SAP1-SAP8 are related to tissular damage (Taylor et al. 
2005). SAP1, SAP3 and SAP8 are expressed in oral and vaginal infections. On the other 
hand, SAP4-SAP6 are related to systemic infections and only they are expressed in yeast and 
germ tube at pH 5-7 (Hube et al. 1997; Sanglard et al. 1997; White & Agabian, 1995). 
Meanwhile SAP5 is important in epithelial colonization, invasion and infection (Naglik et al. 
2008; Lermann & Morschhäuser, 2008). 
This kind of proteases are no exclusive of C. albicans. Orthologous genes have been 

described in other closely related species, as C. dubliniensis (Sap1-4 and Sap7-10), C. tropicalis 

(Sapt1-12), C. guilliermondii (Sapg1-8), C. parapsilosis (Sapp1-14) and C. lusitaniae (Sapl1-3) 
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(Parra et al. 2009). Particularly in C. dubliniensis, the expression of SAPD3 and SAPD4 genes 

is related to the infection of keratinocyte (HaCAT cells) by yeast. The number and shape of 

the keratinocyte cells was altered by the infection, but these effects decreased in the presence 

of pepstatin A, an aspartyl protease inhibitor, suggesting that the Sapd3 and 4 of C. 

dubliniensis could be considered as virulence factors, like their orthologous genes from C. 

albicans (Loaiza-Loeza et al. 2009). The function of these proteases in metabolism and 

pathogenesis in the rest of pathogenic species is unknown.  

According to Dayhoff, protein superfamilies and families are defined as groups of related 
proteins that exhibit less than 50% and greater than 50% similarity, respectively. Subfamilies 
were defined as groups of proteins with at least 90% similarity and were often equivalent to 
clusters of orthologous groups (COGs) (Dayhoff, 1979). Behind this idea, the phylogeny of 
pathogenic Candida spp. Saps allows for the recognition of a superfamily with at least 12 
paralogous families and nine orthologous subfamilies. In several Sap families, at least two 
subfamilies or orthologous groups are proposed (Parra et al. 2009). 

2.2 Vacuolar aspartyl proteases (PrA) 

The vacuole is a hydrolytic organelle similar to lysosomes in animals and is the site of non-
specific degradation of cytoplasmic proteins (Robinson et al.  1988), proteins delivered via 
autophagy (Klionsky & Emr, 2000), or plasma membrane proteins turned over via 
endocytosis (Hicke, 1996). In S. cerevisiae the vacuole has been studied and possesses 
different vacuolar proteases (Table 1). 
One of the most important vacuolar proteins is the proteinase A (PrA), encoded by the PEP4 
gene. Mutants in PEP4 (pep4) accumulate multiple zymogens, indicating that PrA initiates 
processing, maturation and activation of multiple different precursors of PrB, DAP, CPY 
and PrA, because of their autocatalytic activity and their lack of production of dead cells in 
nutritional stress. Also, PrA is important in cellular response to starvation, microautophagy, 
proteolysis involved in cellular and vacuolar protein catabolic process, and sporulation 
(Palmer, 2007; Jones, 1991; Teichert et al. 1989). 
The function of PrA, encoded by the CaPEP4 gene in the metabolism of C. albicans, has also 
been studied. Null mutants of CaPEP4 maintain their hydrolytic activity intact, clearly 
suggesting that C. albicans possesses an alternative system that compensates for the lack of 
this gene (Palmer, 2007). In C. albicans, the vacuole is important in cell differentiation, 
surviving into macrophages, and elimination of drugs as hygromicin B, orthovanadate and 
rapamicine (Palmer, 2005). 
In C. dubliniensis, this protein could be important in carbon and nitrogen metabolism and 
might participate in protein degradation and precursor processing as occurs in S. cerevisiae 
(Loaiza et al. 2007). The genome-wide environmental stress response expression profile of  
C. glabrata revealed that CgPEP4 is induced in osmotic stress and glucose starved conditions. 
Meanwhile, in S. cerevisiae no changes in the expression were observed in the same 
conditions (Gash et al. 2000; Roetzer et al. 2008).  
Bioinformatic genomic analysis of Candida pathogenic species exhibited that only one 
version of PrA is harboured by yeast (Table 3), but apparently the CgPEP4 gene is 
universally distributed among C. glabrata strains, as revealed by PCR multiplex in a 
collection of 52 C. glabrata clinical strains (Table 5; Fig. 3; for PCR conditions see 2.3 section). 
Phylogenetic analysis was performed by an aligment of PrA homologues identified in silico 
and those previously characterized. The aligment was conducted using MUSCLE in 
SeaView 2.4 program (Galtier et al. 1996) with default alignment parameter adjustments. 
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The phylogenetic analyses were performed in the MEGA4 program (Tamura et al. 2007) 
using Maximun Parsimony evolution. A similitude and identity matrix were computed with 
the MatGAT4.50.2 software (Campanella et al. 2003). The phylogenetic reconstruction and 
similarity of PrA reproduce the phylogenetic tree topologies of Candida spp. obtained with 
other genes, suggesting a common ancestral gene (Fig. 2; Table 2). In brief, C. albicans was 
more related to C. dubliniensis, followed by C. tropicalis, C. parapsilosis, C. guilliermondi and C. 
lusitaniae. Meanwhile, C. glabrata PrA was more related to S. cerevisiae PrA than other 
Candida species.  
 

Name/systematic 
name 

Gene/ 
Protein

Access number Function Reference 

Proteinase A 
YPL154C 

PEP4/ 
PrA 

NM_001183968
/ NP_015171 

Activities of other yeast 
vacuolar hydrolases 

Parr et al., 2007 

Carboxypeptidase 
Y 

YMR297W 
CPY 

NM_001182806
/NP_014026 

Contributes to the 
proteolytic function of the 

vacuole 

Wünschmann et 
al.,  2007 

Proteinase B 
YEL060C 

PRB1 
NM_001178875

/NP_010854 

Involved in protein 
degradation in the vacuole 

and required for full 
protein degradation during 

sporulation 

Teichert et al., 
 1989 

Carboxypeptidase S
YJL172W 

CPS 
X63068/ 

CAA44790 

Nitrogen compound 
metabolic process,  

proteolysis involved in 
cellular protein catabolic 

processes 

Bordallo & 
Suarez-

Rendueles, 1993 

Dipeptidyl 
aminopeptidase B*

YHR028C 
DAP-B 

X15484/ 
CAA33512 

Protein processing  

Aminopeptidase 
YKL103C 

APEI 
NM_001179669

/NP_012819 
Catabolic processes  

Table 1. Soluble and membrane-bound *  vacuolar proteolytic system of S. cerevisiae. 

 

 C. albicans (Calorf19 1891)

 C. dubliniensis (Cd36 21670)

 C. tropicalis (CTRG 01724)

 C. parapsilosis (CPAG 03663)

 C. guilliermondii (PGUG 04145)

 C. lusitaniae (CLUG 04124)

 S. cerevisiae (YPL154C)

 C. glabrata (CAGL0M02211g)
 

Fig. 2. Maximun Parsimony phylogenetic analysis of vacuolar aspartyl proteases (PrA) 
superfamily from pathogenic Candida spp.  
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 1 2 3 4 5 6 7 8 

1. S. cerevisiae YPL154C 62 66 66 66 66 65 68 

2. C. glabrata CAGL0M02211g 77 55 55 54 54 55 57 

3. C. albicans orf19_1891 77 69 98 90 85 75 78 

4. C. dubliniensis Cd36_21670 77 69 99 91 85 76 79 

5. C. tropicalis CTRG_01724 76 69 97 97 86 75 77 

6. C. parapsilosis CPAG_03663 76 67 91 92 93 74 78 

7. C. guilliermondii PGUG_04145 79 69 84 85 85 85 78 

8. C. lusitaniae CLUG_04124 78 69 86 86 87 86 87

Table 2. Similarity and identity (UP/down) between PrA proteins from pathogenic Candida 
spp. 

 

PrA (AN) 
Amino 

acid 
residues

MM 
(kDa) 

IP MOTIF 
Signal 

peptide 
(aa)

C 

C. albicans 
Calorf19_1891 

 
419 45.4 4.5

119-130: 
VILDTGSSNLWV

304-315: 
AAIDTGTSLITL 

20 7 

C. dubliniensis 
Cd36_21670 

419 45.4 4.5 14 2 

C. tropicalis 
CTRG_01724 

422 45.6 4.5

121-132: 
VILDTGSSNLWV

306-317: 
AAIDTGTSLITL 

24 
 

2: 1400605-
1401870- 

C. parapsilosis 
CPAG_03663 

428 46 4.5

127-138: 
VILDTGSSNLWV

312–323: 
AAIDTGTSLITL 

25 
 
 

130: 135636-
136919 - 

C. guilliermondii
PGUG_04145 

409 44 4.3

109-120: 
VILDTGSSNLWV

294-305: 
AAIDTGTSLITL 

21 5: 355498-356724 - 

C. glabrata 
CLUG_04124 

 
407 43 4.3

107-118: 
VILDTGSSNLWV

292–303: 
AAIDTGTSLITL 

19 5: 46984-48204 - 

Table 3. Vacuolar aspartyl proteases in pathogenic Candida species. (AN): Access number in 
the respective genome; MM: molecular mass; IP: Isoelectric Point; C: Chromosome or Contig 
or supercontig.  

C. glabrata is an opportunistic haploid yeast that suffered evident and extensive reductive 
evolutionary events. A lot of genes involved in nitrogen metabolism, carbohydrate 
assimilation (saccharose, galactose, etc.), as well as sulfur, phosphor, thiamine, pyridoxine 
and nicotinic acid biosynthesis have been lost from the genome (Byrne & Wolfe, 2005; 
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Wolfe, 2006). This species produces between 15-20% of reported systemic yeast infections 
(Almirante et al. 2005; Manzano-Gayosso et al. 2000; Trick et al. 2002; Méan et al. 2008). C. 
glabrata is the most common yeast species isolated from patients with cancer, organ 
transplantation and fluconazole therapy  (Safdar et al. 2001; Bodey et al. 2002). The mortality 
associated with C. glabrata in systemic infections of cancer patients is 50% and almost 100% 
in transplant patients (Anaissie et al. 1992; Goodman et al. 1992; Krcmery et al. 1998). This 
scenario is related to indiscriminate antifungal use, and to the innate resistance of C. glabrata 
(Sobel, 2006). 
According to Table 4, virulence factors of C. albicans and C. glabrata are quite different. 

However, an evident feature is the difference in number and kind of aspartyl proteases. A 

total of 12 YPS genes, but no SAP genes have been detected in C. glabrata. Contrarily, a total 

of  10 SAP genes, but no YPS genes have been recognized in C. albicans. Clearly, the 

phylogenetic trees constructed with ribosomal or other gene groups include the majority of 

the clinical relevant Candida species, with exception of C. glabrata, which is grouped in 

another cluster with non-pathogenic yeasts, as S. cerevisiae and Kluyveromyces spp. This 

evidence suggests that the aspartyl proteases in Candida spp. have evolved independently as 

virulence factors at least two times, and possibly the amplification by duplication of SAP 

and YPS gene superfamilies in clinically relevant species is an example of convergent 

evolution. 

A physiological approach could possibly contribute to the understanding of which C. 

glabrata YPS (CgYPS) genes are covering the functions of each secreted aspartyl protease of 

C. albicans under different conditions. Evidently, the comparison of virulence strategies, 

expression profiles, complementation of mutants, among other experiments, could suggest 

common and particular features and roles for all SAP and YPS genes. For now, the questions 

remain open. Have the function of C. glabrata CgYPS and SAP C. albicans genes functionally 

converged? 

The transcription profile of 11 CgYPS was studied when yeast were ingested by 

macrophages. Apparently, CgYPS are important in survival and virulence of the the yeast in 

macrophages, damage to mousses, Epa1 protein processing, and cell wall integrity, as occur 

in S. cerevisiae, which possesses 5 ScYPS (ScYPS1-ScYPS3, ScYPS6 and ScYPS7) (Kaur et al. 

2007; Krysan et al. 2005). They are important to cell wall synthesis and glucan homeostasis, 

mainly ScYPS1 and ScYPS7. It seems that ScYPS3 does not have functions associated with 

the cell wall (Krysan et al. 2005).  

C. albicans SAP9 and C. glabrata CgYPS1 genes complement the defects in the cell wall 

provoked by yps1 of S. cerevisiae. One important difference is that SAP9 complement yps1 

only when SAP9 is under a heterologous and constitutive promoter from S. cerevisiae, while 

CgYPS1 complements the mutation, using its promoter (Krysan et al. 2005), evidence that 

supports the othologous status proposed above for these gene pairs. As happened with 

ScYPS1, SAP9 gene expression increases during the stationary phase and damage of the cell 

wall (Monod et al. 1998; Copping et al. 2005), and protects the yeast from caspofungin (an 

inhibitor of 1,3-glucan synthesis) (Lesage et al. 2004). Also, inhibitors of ScYps1p disable 

the specificity of both proteins, ScYps1p and Sap9 (Cawley et al. 2003). 

Distribution of the SAP gene superfamily among C. albicans strains is universal (Gilfillan et 

al. 1998; Bautista et al. 2003; Parra et al. 2009), although one study concludes that the 

distribution of SAP genes in clinical strains depends on infection associated with isolation 
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(Kalkanci et al. 2005). Given the number of CgYPS in C. glabrata and their potential role in 

pathogenesis, it is important to establish the universality of CgYPS in C. glabrata 

populations. 

 

Factor C. glabrata C. albicans Reference 

Infection sites Oral, vaginal, bloodstream Fidel et al. 1999 

Mortality in systemic infection urinary tract 
Abi-Said et al. 1997; 

Krcmery, 1999 

Virulence in animal models High Arendrup et al. 2002 

Filamentation Present 
Lachke et al. 2002; Csank 

& Haynes, 2000 

Biofilm formation High Castaño et al. 2006 

Adherence to oral 
keratinocytes 

Lower Higher 
Nikawa et al. 1995; 
Biasoli et al. 2002 

Adherence to denture material Lower Higher 
Luo & Samaranayake, 

2002 

Extracellular proteinase 
activity 

Absent Present Chakrabarti et al. 1991 

Phospholipase activity 
Isolation site 
dependent 

High 
Samaranayake et al. 1994; 

Ghannoum, 2000 

Phenotypic switching Low High Brockert et al. 2003 

IL-8 induction in oral 
keratinocytes 

Pseudohyphae 
True hyphae 

and 
pseudohyphae

Schaller et al. 2002 

GM-CSF induction in oral 
keratinocytes 

Weak Strong 
Schaller et al. 2002; Li et 

al. 2007a 

Human-defensin resistance Strong Weak 
Joly et al. 2004; Feng et al. 

2005 

Histatin resistance Partially resistant Susceptible Helmerhorst et al. 2005 

Azole resistance High Low Sanglard et al. 1999 

Molecules involved in 
adherence 

20 EPA genes ALS proteins 
Castaño et al. 2005; Hoyer 

et al. 2001 

SAP genes 0 10 Parra et al. 2009 

YPS genes 12 0 
Albrecht et al. 2006; Kaur 

et al. 2007 
This work 

Table 4. Comparison of virulence factors of C. glabrata and C. albicans (modified from Li, 
2007b). 

Our group explored the CgYPS gene distribution among clinical isolates (n=52) and type 

strains CBS138 and BG6 (N=2) by an original multiplex PCR procedure (Table 5). The yeasts 

were routinely grown on YPD broth and DNA was extracted using a previously reported 

protocol (Hoffman & Winston 1987). PCR was performed in a DNA thermal cycler 9600 
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(Applied Biosystems, Foster City, CA). Amplification reactions (25 μL) were performed 

using a buffer containing 20 mM Tris-HCl (pH 8.4), 50 mM KCl, 2 mM MgCl2, 0.2 mM of 

each deoxynucleoside triphosphate, 0.6 μM each primers, 4 ng/μL of genomic DNA, and 1.5 

U/μL of Taq polymerase (Invitrogen). The PCR conditions included a denaturation step for 

3 min at 94°C, followed by 38 amplification cycles consisting of 1 min at 94°C, 1 min 

annealing temperature and 1 min at 72°C. A final extension step was performed for 7 min at 

72°C. Fig. 3 shows the amplification products of CgYPS gene fragments of some 

representative C. glabrata clinical strains electrophoresed in 1% agarose gels. Similar PCR 

conditions were used to study the universal distribution of PrA. 

 
 

Gene Primer Location 

Expected 
amplified 
fragment 

(bp) 

Tm (ºC) 

CgYPS1 
CAGL0M04191g 

F:5´-TTCTGGTGACAGTTGTATCTTGG-3´ 
R:5´-GATAAATGAAACCAAAAGACCAGCG-3´ 

+1326 a +1348 
+1779 a +1803 

477 55 

CgYPS2 
CAGL0E01419g 

F:5´-ACTCAACTTGTTTTTAACTTCGGTGGTGC-3´ 
R:5´-TAGCATGGAGAGTAGGATGTTAAACACC-3´ 

+1234 a +1262 
+1743 a +1770 

536 61 

CgYPS3 
CAGL0E01727g 

F:5´-AAAGCAAGTCGTCGATGTCATCG-3´ 
R:5´-TTGCAACTAACACTAAAGTGGTGC-3´ 

+951 a +973 
+1580 a +1603 

652 58 

CgYPS4 
CAGL0E01749g 

F:5´-TTCTGTGTTACCAGCAAAGGTTGC-3´ 
R:5´-TTAATGTAGTTCTCTTACGGAGAGC-3´ 

+933 a +956 
+1411 a +1435 

502 55 

CgYPS5 
CAGL0E01771g 

F:5´-TATACATATATGCCAAGCAGCGTTGC-3´ 
R:5´-AACAAGGCAGTAACTGCTGATAAAGC-3´ 

+934 a +959 
+1528 a +1553 

619 
58 

 

CgYPS6 
CAGL0E01793g 

F:5´-ACCAGAAGGTAGCTGCATTAATCG-3´ 
R:5´-AATGGTAGCTAATATGGCAGCAACG-3´ 

+887 a +910 
+1542 a +1518 

631 
58 

 

CgYPS7 
CAGL0A02431g 

F: 5´-TATGGGACCAATCTATATAACGTCC-3´ 
R: 5´-TAAGTAGCATACGGTATGTAGCCC-3´ 

+831 a +855 
+1404 a +1427 

596 
55 

 

CgYPS8 
CAGL0E01815g 

F: 5´-TTGGGATTACAGGGTAATGATGC-3´ 
R: 5´-AACTCTTTTTTGAAGGTCAAAACGCG-3´ 

+856 a +878 
+1457 a +1482 

626 
58 

 

CgYPS9 
CAGL0E01837g 

F: 5´-TTCCGTAAATGTGACTGATTTCATGG-3´ 
R: 5´-ATCATAATGAGTATGGCAGAGTTGGC-3´ 

+1071 a +1096 
+1510 a +1535 

464 
58 

 

CgYPS10 
CAGL0E01859g 

F: 5´-TAATAAGACGGAAGCCATCAGACTGC-3´ 
R: 5´-TTGTAATTGCTGCTAGTACTAGGACG-3´ 

+978 a +1003 
+1479 a +1504 

526 
58 

 

CgYPS11 
CAGL0E01881g 

F: 5´-TTGGTGTCCCATACAAGGAAATGGTC-3´ 
R: 5´-AATCCACAAG ACCAGCAACA GGATAGC-3´ 

+1100 a +1125 
+1495 a +1521 

421 
61 

 

CgYPS12 
CAGL0J02288g 

F: 5´-AATTGCACATGAAGATTCCGTTGCG-3´ 
R: 5´-TATCAGTTATTGTAGCAGTTACTGGC-3´ 

+1001 a +1025 
+1542 a +1567 

566 
58 

 

CgPEP4 
CAGL0M02211g 

F 5´ -TATCTGAAGAGTGTCAATGACCCAGC-3´ 
R 5´-TACAGCCTCAGCTAAACTGACAACATTGG-3´ 

+691 - +716 
+1208 - +1236 

545 
58 

 

 
 

Table 5. Primer pairs used for conventional multiplex PCR of C. glabrata YPS genes. Bp, Base 
pair; Tm, Melting temperature. 
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The universality of the 12 CgYPS genes among all C. glabrata clinical isolates and type strains 

was confirmed (Fig. 3), which suggests that all CgYPS are important to yeast life cycle as 

pathogen or commensal, and probably are differentially regulated according to each 

environmental condition, as occurs with C. albicans SAP. 
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Fig. 3. Amplification of CgYPS C. glabrata gene fragments by multiplex PCR. A, CgYPS2 and 
CgYPS11; B, CgYPS7 and CgYPS1; C, CgYPS3 and CgYPS4; D, CgYPS3 and CgPEP4; E, 
CgYPS8, CgYPS12 and CgYPS9; F, CgYPS6 and CgPEP10. 

2.3.1 YPS genes in clinically relevant Candida species 
The genome sequence projects of Candida species allows for the exploration of whether YPS 
genes are harboured in these opportunistic pathogen yeasts. C. dubliniensis sequences were 
obtained from the Sanger Institute Microorganisms Sequencing Group 
(http://www.sanger.ac.uk/sequencing/Candida/dubliniensis/). Sequences from C. 
guilliermondii, C. lusitaniae, C. tropicalis and C. parapsilosis were obtained from 
(http://www.broad.mit.edu/annotation/genome/candida_group/MultiHome.html). The 
GenBank database (http://www.ncbi.nlm.nih.gov) was also used. The detection was made 
by using the previous YPS and SAP genes detected in S. cerevisiae 
(http://www.yeastgenome.org), C. glabrata (http://cbi.labri.fr/Genolevures/elt/CAGL) 
and C. albicans (http://www.candidagenome.org) genomes, and the proteins detected by 
BLAST analysis in NCBI. Also, the different patterns of motif that could be obtained were 
used as a new query. In C. lusitaniae and C. guilliermondii only one YPS was detected. 
Meanwhile in C. dubliniensis and C. albicans four YPS genes were detected, in C. tropicalis 
two, and in C. parapsilosis six. Theoretical isoelectric point, molecular weight and amino acid 
content were calculated using Antheprot 2000 version 5.2 (Table 6).  
Prediction of motif sequences was performed with PROSITE (http://www.expasy.org) 
(Falquet et al. 2002). Some of the proteins possess a typical molecular structure of aspartyl 
proteases, but others have some differences in composition (Fig. 4; Table 6). Some of them 
possess high Ser/Thr content in the amino terminal, suggesting that this zone is exposed at 
the surface of the protein. The presence of Ser/Thr in the carboxyl terminal in almost all YPS 
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is postulated to be heavily O-glycosylated. The exact function of this Ser/Thr-rich domain in 
yapsins has not been investigated. However, O-mannosylation is important for proper cell-
wall biogenesis and integrity. It has also been proposed that clustered O-glycans create rigid 
stalks that keep protein domains away from membranes or wall surfaces (Lipke & Ovalle, 
1998). 
 

Yps (AN) 
Amino 

acid 
residues

MM 
(kDa) 

IP MOTIF 
Signal peptide 

(aa) 
C 

ScYps1 
YLR120C 

569 60 4.5 

98-109: 
VLVDTGSSDLWI 

368-379: 
ALLDSGTTLTYL

21 XVII 

ScYps2 
YDR144C 

596 64.2 4.3 

96-107: 
VLVDTGSSDLWV 

356-368: 
VLLDSGTTISYM 

496-570: 
SER

18 IV 

ScYps3 
YLR121C 

508 54.5 8.4 

78-89: 
VLLDTGSADLWV 

285-296: 
ALLDSGTTLTYL 

439-470: 
THR

20 XVII 

ScYps6 
YLR039C 

537 58.2 3.9 
82-93: LQLDTGSSDMIV

321-32: 
VMLDSGTTFSYL

24 IX 

ScYps7 
YDR349C 

596 64.4 4.6 

71-82: 
LLVDVIIQPYINL 

318-329: 
ALLDSTSSVSYL

16 IV 

ScBar1 
YIL015W 

587 
  

60-71:
VLFDTGSADFWV 

284-295: 
VLLDSGTSLLNA

  

CgYps1 
CAGL0M04191g

601 63.8 5.0 
88-99: VLVDTGSSDLWI

375-386: 
ALLDSGTTLTYL

18 M 

CgYps2 
CAGL0E01419g 

591 63.2 4.4 

82-92: 
LLLDTGSSDMWV 

366-377: 
ALLDSGTTVSYL

18 E 

CgYps3 
CAGL0E01727g 

539 58.9 6.4 

66-79: 
VQLDTGSSDLWF 

305-316: 
VLLDTGTTLAYA

14 E 

CgYps4 
CAGL0E01749g 

482 53.2 8.4 

65-76: 
VQLDTGSSDLWF 

303-14: 
TLLDTGVTTSVL

15 E 
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Yps (AN) 
Amino 

acid 
residues

MM 
(kDa) 

IP MOTIF 
Signal peptide 

(aa) 
C 

CgYps5 
CAGL0E01771g 

519 57.2 5.5 

66-77: 
VQLDTGSSDLWF 

304-315: 
ALLDTGTTYTYM 

60-70: 
LECT

15 E 

CgYps6 
CAGL0E01793g 

516 55.9 4.6 

65-76: 

VQLDTGSADLWF 

301-312: ALIDSGTTISEF

62-68: 

LECT 

15 E 

CgYps7 
CAGL0A02431g 

587 63.4 4.7 

64-75: 

LGLGLAQPYVWV 

302-313: 

VLLDPSFALSYL 

18 A 

CgYps8 
CAGL0E01815g 

519 56.7 6.8 

65-76: 

VQLDTGSSDLWF 

304-315: 

ALLDSGTTLTVV 

15 E 

CgYps9 
CAGL0E01837g 

521 56.9 5.1 

65-76: LQIDTGSSDLFV

300-311: 

TLLDSGSTISLL 
16 E 

CgYps10 
CAGL0E01859g 

505 55.3 7.3 

61-72: 

AQLDTGSSDLWF 

298-309: 

ALFDSGTSYSYV 

13 E 

CgYps11 
CAGL0E01881g 

508 55.6 5.0 

63-74: 

LLVDTGSSDFWV 

310-321: 

ALLDTGSTDTHL 

29 E 

CgYps12 
CAGL0J02288g 

541 59.5 4.6 

68-79: 

LVLDTGSSDLWV 

279-290: 

ALLDTGSTLIEL 

448-495: 

SER 

19 J 

orf19_852 365 39.6 5.4 

73-84: LAADTGSWLIQI

245-256: 

YTIDTGGRYGFL 
17 2 

orf19.6481 702 75.9 4.4 

159-170: 

LRLDLIQPEIWV 

406-417: 

VLLDSRASNFYL 

565-662: 

SER 

20 7 
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Yps (AN) 
Amino 

acid 
residues

MM 
(kDa) 

IP MOTIF 
Signal peptide 

(aa) 
C 

orf19_853 364 39.1 5.7 

72-83: LSIDTGSWLTHI

244-255: 

YTLDTGGGTGFL 

42-44: 

RGD 

17 2 

orf19_2082* 436 47.7 3.8 

53-64:  

VIVDSGSSDLMI 

229-240: 

YQIDSGTNGFVP 

14 2 

Cd36_18360 
   

72-82: 

VVII-1DTGSWLTHI 

848-859: 

YTLDTGGGNGYL 

17 2 

Cd36_18370 365 40 5.6 

73-84:  

IAADTGSWLTQI 

246-257: 

YTMDTGGGYGYL 

17 2 

Cd36_72090 
 

697 76.6 4.6 

149-150: 

LRLDLIQPEIWVM 

402-412: VILDSRASNFY
13 7 

Cd36_15430 
 

442 48.7 4.2 

60-71: 

VII-1VDSGSSDLMI 

236-47: 

YQIDSGTNGFVP 

27 2 

CTRG_05014 690 74.8 4 

151-162: 

LRLDLIQPEIWV 

401-412: 

VLIDSRSSYFYL 

20 
7: 407395-
409464 - 

CTRG_01112 
 

432 47.9 3.8 

55-66: 

VII-1VDSGSSDLMI 

232-243: 

YQIDSGSNGFLP 

392-423: 

THR 

20 
2: 57814-
59109 - 

CPAG_04785 369 40.5 4.5 

72-83: 

VMIDTGSWRLNV 

245-256: 

IGIDSGNPRLAF 

20 
139:296423
-297529 - 

CPAG_04801 374 40.5 5.7 

251-262: 

LALDTGNPGIGL 

76-77: VFIDTGSWALNF
19 

139:334234
-335355 - 

CPAG_04802 371 40.4 6.1 

76-87: 

VVII-1DTGSWALNF 

248-259: 
19 

139:337822
-338934 + 
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Yps (AN) 
Amino 

acid 
residues

MM 
(kDa) 

IP MOTIF 
Signal peptide 

(aa) 
C 

LAFDTGSAGLIL 

CPAG_03253 366 40.9 6.4 

74-85: 

VLLDTASTVLNV 

246-257: 

VLHDSGTPTMEL 

15 
126: 70630-

71727 + 

CPAG_02564 366 40.5 6.5 

74-85:  

VLLDTASIVLNV 

246-255: 

VLHDSGTPTMAL 

15 
116:138449
-139546 - 

CPAG_04713 700 75.5 4.5 

157-168: 
LRLDLIQPEVWV 

417-428: 
VLLDSRILYSYL 

19-55: SER 

27 
139:123872
-125971 + 

PGUG_04882 
583 

 
63.5 4.1 

81-92:  
LRLDLTQPEIWV 

224-235: 
LVQQGVIIKSSAY 

16 
6: 496161-

497909 

CLUG_00903 722 74 3 

63-74: 
VLLDTGSSDLWV 

275-286: 
ALLDSGTSLQYL 

470-701: SER 
540–638:  THR 

14 
1: 1836367-
1838532 + 

Table 6. Aspartyl proteases GPI- linked to cell membrane in pathogenic Candida spp. AN: 

Access number in the respective genome; MM: molecular mass in kilodaltons (kDa); IP: 

Isoelectric Point; C: Chromosome/Contig or supercontig; the atypical amino acids in the 

PROSITE motif are shown in black (Eukaryotic and viral aspartyl protease active site). 

The presence of a GPI attachment site, a characteristic feature of the yapsin family, was 

determined with big-PI predictor (http://mendel.imp.univie.ac.at/gpi/gpi_server.html), 

and GPI-SOM. GPI-anchor signals were identified by a Kohonen Self Organizing Map 

(http://gpi.unibe.ch/). A total of 36 protein sequences were analyzed, but GPI sites were 

recognized only in 21 proteins. GPI sites were not detected in ScYps2 and CgYps2, although 

both proteins have been previously confirmed as Yps proteins. The software programs must 

be enhanced, but an experimental approach to confirm the cell location is necessary. 

PSORTII (http://www.psort.org/) and Softberry (http://www.softberry.com) programs 

were used to predict subcellular localization. All proteins detected seem to be extracellular, 

which could be because of the presence of a signal peptide in the amino terminal extreme. 

Nevertheless during their synthesis, yapsins are cotranslocated and modified by the 

addition of GPI to the lumen of the endoplasmic reticulum (ER). Then proteins are 

glycosylated in Golgi apparatus, associated to membrane vesicles and sent to plasma 

membrane or the cell wall (Mayor & Rieaman, 2004; Caro et al. 1997). Softberry program 

was also used to find exons, which were absent in all genes studied. A search was made for 
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internal protein sequence repeats to detect possible internal duplication events, but none 

were detected by TRUST (Szklarczyk & Heringa, 2004) even though it is likely were not  

 

 

Fig. 4. Motifs of Candida spp. GPI-anchored aspartyl proteases (Yps). Rectangle boxes (SP): 

amine terminal signal peptide; pentagon (ASP): aspartyl protease domains in agreement 

with PROSITE; circles (ASP): atypical aspartyl protease domains proposed as 

[LIVMFGACTPSYF]-(LIVMTADNQSFH)-(LIVFSAE)-D-(STP)-(GS)-(STAV)-(STAPDENQY)-

X-(LIVMFSTNCGQ)-(LIVMFGTAW); hexagons: serine (SER), threonine (THR), lecithin 

(LEC) rich regions; star: RGD motif; rhombus (C): cysteine residues, semicircles. Ca, C. 

albicans; Cd, C. dubliniensis; Cg, C. glabrata; Cgu, C. guilliermondii; Cl, C. lusitaniae; Cp, C. 

parapsilosis; Ct, C. tropicalis; Sc, S. cerevisiae. A) ScYps1 (YLR120C), ScYps6 (YLR139C), 

CgYps1 (CAGL0M04191g), CgYps2 (CAGL0E01419g), CgYps11 (CAGL0E01881g); B) ScYps2 

(YDR144C); C) ScYps3 (YLR121C); D) ScYps7 (YDR349C), CdYps (Cd36_18370), CpYps 

(CPAG_04785), CpYps (CPAG_04801), CpYps (CPAG_04802), CpYps (CPAG_03253), CpYps 

(CPAG_02564), CguYps (PGUG_04882), CgYps3 (CAGL0E01727g), CgYps4 

(CAGL0E01749g), CgYps7 (CAGL0A02431g), CgYps9 (CAGL0E01837g), CaYps (orf19_852), 

CdYps (Cd36_72090); E) CdYps (Cd36_15430), CaYps (orf19.2082); F) CtYps (CTRG_01112); 

G) CpYps (CPAG_04713); H) CgYps8 (CAGL0E01815g), CgYps10 (CAGL0E01859g); I) 

ClYps (CLUG_00903); J) CtYps (CTRG_05014); K) CgYps5 (CAGL0E01771g), CgYps6 

(CAGL0E01793g); L) CgYps12 (CAGL0J02288g); M) CaYps (orf19.6481); N) CaYps 

(orf19_853), CdYps (Cd36_18360). 
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detected by TRUST (Szklarczyk & Heringa, 2004) even when it is likely that the Yps and Sap 
superfamilies have duplicated aspartyl protease motifs. 
The analysis of possible evolutive and molecular events that has given place to the presence 
of different numbers of YPS in each pathogenic Candida species was made to establish the 
COGs between Yps. Phylogenetic analysis was performed by an alignment of YPS 
homologues identified in silico and those of the previously characterized. The alignment was 
carried out using MUSCLE in SeaView 2.4 program (Galtier et al. 1996) with default 
alignment parameter adjustments. The phylogenetic analyses were performed in the 
MEGA4 program (Tamura et al. 2007) using minimum evolution computed with the Poisson 
correction. A similitude and identity matrix were computed with the MatGAT4.50.2 
software (Campanella et al. 2003). To corroborate support for the branches on trees, 
bootstrap analysis (1,000 replicates) was performed. Synteny analysis was made to 
recognize the putative COGs (Fig. 5). 
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Fig. 5. Minimum evolution phylogenetic tree of GPI-anchored aspartyl proteinase (Yps) 
superfamily of opportunistic pathogenic Candida species. Ca, C. albicans; Cd, C. dubliniensis; 
Cg, C. glabrata; Cgu, C. guilliermondii; Cl, C. lusitaniae; Cp, C. parapsilosis; Ct, C. tropicalis; Sc, 
S. cerevisiae. Bootstrap values > 50% are on branches. Curly brackets and arrows indicate the 
Yps protein families defined by phylogenetic relationships, similitude percentage (> 50%), 
synteny and motif array. Yps are grouped into 8 families. Family A, CgYps2-6 and 8-11; 
family B, CgYps1, ScYps1-3 and ScYps6; family C, CgYps12 and ScBar1; family D, ClYps (C. 
lusitaniae); family E, CgYps7, ScYps7, CaYps (orf19.6481), CdYps (Cd36_72090), CtYps 
(CTRG_05014), CpYps (CPAG_04713) and CguYps (PGUG_04882); family F, CaYps 
(orf19.2082), CdYps (Cd36_15430) and CtYps (CTRG_01112); family G, CaYps (orf19.852), 
CdYps (Cd36_18370), CaYps (orf19.853) and CdYps (Cd36_18360); family H, CpYps 
(CPAG_03253, CPAG_02564, CPAG_04785, CPAG_04801 and CPAG_04802). 
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Fig. 6. Synteny of YPS genes of S. cerevisiae (Sc), C. glabrata (Cg), C. albicans (Caand 
C.dubliniensis (Cd). A) ScYPS1 and CgYPS1; B) ScYPS2 and CgYPS2; C) ScYPS7 and CgYPS7; 
D) CaYPS7 (orf19.6481) and CdYPS7 (Cd36_72090); E) CaYPS (Sap99), Cd (orf19.853 and 
Sap98, orf19.852); F) CaYPS and CdYPS (Bar1); G) CgYPS and ScBar1. CgYPS1, CgYPS7, 
ScYPS1, ScYPS3, CaYPS7, CaSAP98, CaSAP99 and BAR1 are GPI anchored aspartyl 
proteases; APC2 and CAGL0M04235g, subunit of the anaphase-promoting; APT1, acyl-
protein thioesterase; ATP22, mitochondrial inner membrane protein; CAGL0M04147g, 
similar to low affinity vacuolar membrane, is a localized monovalent cation/H+ antiporter 
protein; CAGL0M04169g, similar to cell wall glycoprotein involved in beta-glucan assembly; 
CDH1, cell-cycle regulated activator of the anaphase-promoting complex/cyclosome 
(APC/C); CLF1, crooked neck-like factor; DOP1, protein essential for viability; EKL1, 
ethanolamine kinase; FAF1, protein required for pre-rRNA processing and 40S ribosomal 
subunit assembly; HAT, histone acetyltransferase; HXT3, low affinity glucose transporter of 
the major facilitator superfamily; LDG3 and LDG4, leucine, aspartic acid, glycine rich;  
MNN42, putative positive regulator of mannosylphosphate transferase; MNT3, alpha-1,3-
mannosyltransferase; MTQ2, S-adenosylmethionine-dependent methyltransferase; MRP1, 
mitochondrial ribosomal protein of the small subunit; NOP16, constituent of 66S pre-
ribosomal particles; NTA1, amidase; orf19.2088, shared subunit of DNA polymerase (II) 
epsilon and of ISW2/yCHRAC chromatin accessibility complex; PDR11, ATP-binding 
cassette transporter, PEX7, peroxisomal signal receptor; PFK27, 6-phosphofructo-2-kinase; 
PHHB, transposon mutation affects filamentous growth; PMI40, mannose-6-phosphate 
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isomerase; POM152, nuclear pore membrane glycoprotein; RPL2B, protein component of the 
large ribosomal subunit; SAN1, ubiquitin-protein-ligase; SBE2, protein involved in the 
transport of cell wall components from the Golgi to the cell surface; SEC1, Sm-like protein 
involved in docking and fusion of exocytic vesicles through binding to assembled SNARE 
complexes at the membrane; SNL1, putative protein involved in nuclear pore complex 
biogenesis and maintenance; SRN2, component of the ESCRT-I complex; SVF1, protein with 
a potential role in cell survival pathways; SW15, transcription factor that activates 
transcription of genes expressed at the M/G1 phase boundary and in G1 phase; TAF12, 
subunit (61/68 kDa) of TFIID and SAGA complexes; TIR3, cell wall mannoprotein of the 
Srp1p/Tip1p family of serine-alanine-rich proteins; TMA20, protein associated with 
ribosomes with a putative RNA binding domain; UGA11: gamma-aminobutyrate 
transaminase (4-aminobutyrate aminotransferase); VID28, protein involved in proteasome-
dependent catabolite degradation of fructose-1,6-bisphosphatase (FBPase); v-SNARE, 
component of the vacuolar SNARE complex involved in vesicle fusion; YCF1, putative 
glutathione S-conjugate transporter; YLR126C, protein with similarity to glutamine 
amidotransferase proteins; YMD8, putative nucleotide sugar transporter; ORF, APM2, BSC6, 
CAGL0M04125g, Cd36_72050, Cd36_72080, FM02, IFK2, orf19.6482, RTC1, tRNA-Glu,  
YDR352W, YDR348C and YLR125W and ORF, unknown predicted open reading frame.  

The lack of SAP genes and the expansion of 12 CgYPS genes in C. glabrata, and the extended 

family of SAP genes in C. albicans support the hypothesis that both protein superfamilies are 
an example of convergent evolution. Although more research is necessary to reach definite 
conclusions, apparently YPS of C. glabrata and SAP of C. albicans have developed some 
equivalent physiological functions and roles in virulence. The rest of pathogenic Candida 
species are less virulent, and, curiously, harbour less genes in their genomes than C. albicans. 
These facts lead to the supposition that SAP and YPS have evolved in an independent way 
for at least 700 million years. However, more SAP duplication events have happened in C. 
albicans (Parra et al. 2009).  
Phylogenetic analyses of Yps deduced protein sequences of Candida spp. and S. cerevisiae 

allow for the definition of 8 Yps families, A-H (Fig. 5). In particular, CgYps1-12 proteins of 

C. glabrata were clustered in four families. Family A was constituted exclusively of nine Yps 

of C. glabrata (CgYps2-6 and CgYps8-11) encoded in chromosome E. With exception of 

CgYps2, all codifying genes of these proteins are organized in tandem, and possibly derived 

from at least eight recent duplication events that occurred exclusively in the C. glabrata 

genome. Apparently these recent duplications led to the emergence of a paralogous gene 

family with novel or slightly different functions. No pseudogenes were detected in CgYPS1-

11 genes, but in their deduced proteins a moderate amino acid similitude (48-53%) and 

identity (36-38%) were retained. Frequently, very high similitudes are maintained by 

concerted evolution in paralogous members of some multigene families (László, 1999). 

However, in CgYPS genes, this evolutive phenomenon is not evident. Previously, CgYPS4 

and CgYPS11 were recognized as GPI anchored aspartyl proteases (Kaur et al., 2007), but 

comparative studies of the regulatory region and expression of each CgYPS genes are 

necessary to clearly define the physiological role and orthology relationships of each gene. 

Family B was formed by a set of Yps proteins, detected exclusively in S. cerevisiae (ScYps2-3 

and ScYps6), and a highly similar putative orthologous pair (ScYPS1/CgYPS1) (Fig. 6A). 

Also, the partial synteny observed between the ScYPS2/CgYPS2 gene pair supports the 

hypothesis that those protein-coding genes are probable orthologous (Fig. 6B). Family C was 
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integrated by CgYps12 and ScBar1 of S. cerevisiae, a putative orthologous pair with low 

similitude synteny, but with a clear ancestor-descendant relationship (Fig. 6G). Finally, 

family E was formed by a representative of each Candida spp. Yps, CgYps7 and ScYps7. This 

family forms a sub tree with the same topology as those phylogenies constructed with 

ribosomal and other protein sequences (Diezman et al., 2004). The CgYPS7 and ScYPS7 

genes exhibited an extensive synteny (Fig. 6C), but no synteny with CaYPS (orf19.6481) and 

CdYPS (Cd36_72090) was observed (Fig. 6D). In C. albicans and C. dubliniensis genome 

databases these YPS are described as ScYPS7 orthologous genes (Schaefer et al., 2007). 

Nevertheless, both YPS exhibited low similarity with ScYPS7 (37.2-38.7%) and no-synteny. 

The final decision to consider family E as an orthologous family will depend on comparative 

analyses of functional features not yet performed. 

Families C, F, G and H have not any C. glabrata or S. cerevisiae Yps representative protein. 

Families C and H were formed only by one ClYps gene of C. lusitaniae and seven CpYps 

genes of C. parapsilosis, respectively (Fig. 5). Curiously, C. lusitaniae is the species that 

harbours the fewest ClYPS (n=1) and SAP (n=3) genes, and its isolation frequency from 

clinical samples ,as well as its virulence, are lower than the other Candida species (Abi-Said 

et al. 1997). This evidence supports a hypothesis of relevance of aspartyl proteases in 

virulence. That is, species with numerous aspartyl proteases in virulence; species with broad 

aspartyl proteases are more virulent than those with a limited number of these proteins. 
Family F harboured C. albicans, C. dubliniensis and C. tropicalis yapsins organized 
congruently according to the ribosomal phylogenetic tree. The C. albicans CaBar1 
(orf19.2082) and C. dubliniensis CdBar1 (Cd36_15430) gene, found in family F, has been 
described as orthologous to S. cerevisiae BAR1 (Schaefer et al., 2007) found in family C. In 
both species, C. albicans and S. cerevisiae, the protein is involved in alpha pheromone 
degradation and secreted to the periplasmic space of mating alpha-type cells. These proteins 
help cells find mating partners by cleaving and inactivating the alpha factor, which allows 
cells to recover from alpha-factor-induced cell cycle arrest (Mackay et al., 1988). The in silico 
analysis performed in this work established that these proteins and the Bar1 from C. 
dubliniensis are extracellular, but anchored to the cell wall or cell membrane. Also, 
phylogenetic analysis shows that Bar1 from C. albicans and C. dubliniensis belongs to the Yps 
superfamily, with a similarity of 40%, and are not grouped with CgYps12 of C. glabrata 
(CgYps12 or CgBar1) and Bar1 of S. cerevisiae. The reason for which an aspartyl protease, 
that apparently is secreted, is groupedwith the yapsines superfamily could be a mistake in 
the cell location method because almost all software use the signal peptide, transmembranal 
regions, and the GPI site in the C-terminal, to predict the cell location.  In C. albicans it has 
been detected that aspartyl proteases are associated with the plasmatic membrane, or to 
both the plasmatic membrane and cell wall. This makes the experimental corroboration of 
the cell location necessary. The Bar1 protein of C. albicans has been described as a protein 
with three domains: 2 aspartyl protease domains and another unidentified. Apparently, this 
GPI-membrane anchored domain determines that Bar proteins are not secreted, but 
anchored to cellular membranes, and their two actives sites are oriented to cellular 
membranes, and their two actives sites are oriented to the exterior to inactivate alpha 
pheromone, which is secreted by Mat-alpha cells. In C. albicans, the degradation of secreted 
alpha pheromone is not exclusive to Bar1. CaYPS7 (orf19.6481) of family E also encodes for 
this function with lesser efficiency (Schaefer et al., 2007). This physiological redundancy has 
not been demonstrated in S. cerevisiae ScYps7. C. albicans can mate under some in vitro and in 
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vivo conditions when alpha pheromone is degraded (Hull et al., 2000; Magee & Magee, 2000) 
and C. glabrata harbours homologous genes of S. cerevisiae that control the mating (Srikantha 
et al., 2003). Nevertheless, in C. glabrata a cell cycle has not been demonstrated, and the 
participation of CgYps7 of C. glabrata in alpha pheromone inactivation has not been 
demonstrated. No possible gene orthologous to  possible gene orthologous to ScBar1 was 
detected in C. guilliermondii, C. lusitaniae, C. parapsilosis, C. tropicalis, C. guilliermondii or C. 
lusitaniae. All these yeasts have a heterothallic sex cycle (cross-mating only), but C. 
parapsilosis and C. tropicalis mating has never been observed (Butler et al., 2009). 
Family G is formed by two C. albicans/C. dubliniensis Yps protein pairs with high similitude 

(>88%), located in tandem in chromosome 2 and with very similar synteny. All this data is 

evidence from the recent speciation of both species (Fig. 6E). According to the Candida 

genome database (http://www.candidagenome.org/cgi-bin/locus.pl?locus=orf19.852) Cal 

orf19.852 and Cdu Cd36_18370 sequences are described as CaSAP98 and CdSAP98 genes, 

respectively, and have their best hits with PEP4 of S. cerevisiae (Pra protein). S. cerevisiae PrA 

is a vacuolar protease, and clearly C. albicans/C. dubliniensis Yps are not phylogenetically 

grouped with PrA. In our opinion no orthology relationship among these proteins exists. 

Cal orf19.853 and Cdu Cd36_18360 formed a second pair, described as CaSAP99 and 

CdSAP99 genes, which had their best hits with ScYPS3 of S. Cerevisiae. Similarly, it is clear 

that CaSAP99 has no synteny, phylogenetic relationship, or possible common physiological 

role with ScYPS3.  

3. Conclusion  

Why have C. albicans/C. dubliniensis and C. glabrata/S. cerevisiae been suffering some genetic 

duplication events in their Sap and Yps superfamilies? This is something that has not been 

resolved, but it is clear that the decrease in virulence in null mutants, in both CaSAP and 

CgYPS, endorse the idea that the presence and expansion of SAP and YPS families is 

necessary for adaptation to the host, and therefore for survival and virulence. Also, species 

with broad aspartyl protease families are more virulent than those with a limited number of 

these proteins. C. glabrata belongs to a phylogenetic group with no pathogenic yeast, and its 

virulence attributes could be evolving independently from the CTG clade, where C. albicans 

is the main opportunistic pathogenic species. The expansion of the CgYPS gene superfamily 

of C. glabrata maintains a parallelism with the expansion of the SAP gene superfamily of C. 

albicans, and constitutes a possible example of convergent evolution. The transition from a 

commensally life style to a successful opportunistic pathogen could be related to gene 

expansion that encodes for each kind of aspartyl protease. A lot of experimental 

methodologies must be performed to recognize the orthologous gene families, as well as the 

virulence, participation and transition commensal-pathogen roles of aspartyl proteases, 

including Sap and Yps.  
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