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The Use of Bioinformatics Software for Data
Analysis in Studies on Osteoporosis
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1. Introduction

Complex diseases are common within human populations and communities and pose a
great burden not only to affected individuals, but also to society and the health system.
Disorders such as chronic heart disease, diabetes, Alzheimer’s, epilepsy and many others,
are caused by complex interactions of a number of genetic and environmental factors. This
makes the identification of the responsible genes difficult if using the same methodologies
used for monogenic diseases. For more than fifteen years there has been a collective effort by
researchers from around the world to identify genes and genetic variations that increase the
risk for osteoporosis and fractures in ageing populations to identify novel therapeutic and
prognostic targets, but predominantly most studies have been inconclusive. Genetic
heterogeneity between different populations is the main factor responsible for this lack of
concordance between different studies. Using different approaches such as association,
family linkage, genome-wide association and meta-analysis, researchers reported numerous
genes that might play a role in bone physiology, most of the time searching for correlation
with phenotypes such as low bone mineral density (BMD) and fractures. Unfortunately,
most of these genetic variations were not further investigated for their functional role and
how these could lead to the disease. Some monogenic bone diseases led to the identification
of genes that were never considered to be involved in bone physiology such as the low
density lipoprotein receptor-related protein (LRP)-5 (Gong et al., 2001) and sclerostin (SOST)
genes (Brunkow et al., 2001).

A genome-wide linkage scan was performed in two Maltese families with a very high
incidence of osteoporosis, where suggestive linkage to chromosome 11p12 was observed.
After investigating the genes known to be found at this region by DNA sequencing, we
identified a variant in the CD44 gene that was co-segregating with the inherited haplotype
in all affected members within one of the families. Further studies on this variant suggested
that it could affect pre-messenger RNA splicing, or organisation, leading to different levels
of slightly modified variants of the same protein (isoforms). Other loci were identified in
both families.

Without doubt, the analysis of data would not have been possible without the number of
bioinformatic tools and software that are available. The advances in computer technology
including the internet, led to the development of various software and online tools. In this
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chapter, we will take a look at software and other online tools used in this study. We will
discuss the basic concepts of the study, how the analysis was performed using different
software and the interpretation of results.

1.1 Gene mapping using families

One of the greatest challenges for geneticists is the identification of genes responsible for
complex disease. Unlike classical Mendelian disorders, these diseases do not show obvious
Mendelian patterns of inheritance and involve complex interactions between various
environmental and genetic factors. Confounding factors such as heterogeneity, phenocopies,
genetic imprinting and penetrance further complicate the identification of susceptibility genes.
When performing a genetic study, correlation between phenotype and genotype is sought.
In complex traits, this correlation might be very low due to incomplete penetrance where
not all individuals having the same susceptibility allele are affected or where affected
individuals do not have a susceptibility allele (phenocopies). These factors lead a wide
ranging severity of disease even within a single family. Further more, late onset diseases
such as cardiovascular disease and osteoporosis show up later in life and thus unaffected
individuals tested today might become affected in the near future. Late onset diseases are
more sensitive to environmental (mostly lifestyle related) factors and are observed to have a
higher level of genetic variation due to weak selective pressures on these variants that are
usually neutral early in life (Wright et al., 2003). Besides testing for a qualitative trait where
individuals are grouped as either having or not having the disease, one can use quantitative
or a continuous measurement such as BMD. When using a quantitative variable one must be
very cautious as it might not completely correlate with the disease and it could also be
dependent on a number of other non-genetic factors including limitations of methodology.
Complex disorders are most often polygenic where multiple genes contribute to the
phenotype. Complex patterns of inheritance might be due to allelic or locus heterogeneity
where different variants within the same gene are responsible for the disease or where a
number of different genes are involved in the same biological process. When studying
complex disorders, therefore, one is looking for susceptibility alleles at multiple loci that
together increase the individual’s risk for the disease. In polygenic traits, penetrance is
determined by the genotypes of other loci and therefore it is likely to be low and will vary
between individuals. To increase the chance of successful gene mapping, it is important to
identify families from probands with extreme phenotypes, earlier age at onset or else to
study families from an isolated population with a very high incidence of disease. Wright
and colleagues (2003) suggested that it is important to identify genes with the largest
contribution to the extremes of the trait and avoid quantitative trait loci (QTL) that have
minimal effects on the individual or disease mechanism. Using single extended families
from populations that are homogeneous and consanguineous has proven to be a successful
approach in localising the genes and novel mutations in type 2 diabetes (Kambouris, 2005).
Using one extended family, Kambouris reported similar results to those obtained from
previous genome-wide scans using hundreds of individuals (Hanson et al., 1998). This
shows that costs and time to identify novel genes responsible for complex disorders can be
significantly reduced, when using extended and consanguineous families coming from
homogeneous populations.

1.1.2 Linkage analysis
In linkage analysis, the non-independent co-segregation of marker and disease locus is
tested in families with multiple affected individuals. Linked alleles (marker with disease-
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causing allele) on the same chromosome segregate together more often than expected by
chance; i.e. against Mendel’s law of independent assortment. Gene mapping of a trait
identifies chromosomal loci that are shared among affected individuals and that differ
between affected and non-affected family members. Positive linkage can only be obtained
for marker alleles inherited together with disease allele on the same chromosome. This is a
major limitation for linkage analysis when different disease alleles present at the same locus
are on different chromosomes, hence in trans, as in a case of coeliac disease (Vidal et al.,
2009a). In this study, no evidence of linkage was observed to the human major
histocompatibility complex (MHC) locus on chromosome 6, in a family with high incidence
of celiac disease. Further investigations showed that this was because inherited risk alleles
coding for HLA group DQ2.2 occur in trans and so cannot be detected by linkage.

For a linkage study family members from pedigrees with normal and osteoporotic
individuals are genotyped for a set of polymorphic markers either across the whole genome
or at specific chromosomal loci, where known candidate genes are located. Genetic linkage
is measured by the recombination fraction that is the probability that a parent will produce a
recombinant offspring and is dependent upon the distance between loci. The more distant
two markers are from each other the higher is the chance that a recombination event occurs
between them during meiosis. The recombination fraction theta () ranges from 0 for
completely linked markers to 0.5 for unlinked loci. Genetic linkage is measured in
centiMorgans (cM), where 1cM represents 1% recombination or 6 = 0.01 that is equivalent to
1 million base pairs. So using the recombination fraction one can calculate the physical
distance on the chromosome, although recombination rates might vary depending on
location on chromosome. Recombination rate is usually lower closer to the centromere. Also
these measurements might not be so accurate for longer chromosomal distances where
multiple crossovers might occur during a single meiotic event, a phenomenon known as
interference. Two mapping functions to convert recombination fraction into map distance
are Haldane’s, that does not assume interference, and Kosambi’s, which assumes
interference as 1 - 26.

1.1.3 Parametric linkage analysis

Parametric linkage analysis is a statistical approach using the logarithm of the odds ratio
(LOD score) to assess the strength of linkage. This is also known as a model based linkage
where the mode of inheritance, frequencies of disease and marker loci together with
penetrance must be known. The statistic assumes the likelihood (or probability) that a
disease and marker loci in a family are not inherited together (6 = 0.5) compared with the
likelihood that they are linked over a selected range of recombination fractions (0 range of 0
to 0.5). The LOD score is the base ten logarithm of the likelihood ratio that is calculated for
each value of 6. A two point LOD (z) score (between disease locus and marker) is calculated
using the following equation:

2(x) = logo [L(B=x) + L(6=0.5)] (1)

where x is a value of recombination fraction and L is the likelihood.

Significant evidence of linkage is taken at a LOD score of 3.0 or higher and linkage is
completely excluded with a LOD score of -2.5. A LOD score of 3.0 corresponds to odds of
1000:1 that means that it is 1000 times more likely that the alternate hypothesis in favour of
linkage holds while a LOD score of 3.5 is equivalent to odds of 3162:1. The LOD score can be
converted to a chi-square statistic by simply multiplying by 4.6 and calculating a p-value at
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1 degree of freedom (df) for ordinary LOD and at 2 df for heterogeneity LOD scores
(HLOD), under the null hypothesis (Ott, 1991). The p-values obtained are always divided by
2 for one-sided tests except when calculating p-values for multi-point LOD (MLOD). Using
these calculations a LOD score of 3.0 is equivalent to a p-value of 0.0001 while that of 3.6 is
equivalent to 0.00002. However, a chi-square derived p-value applies more for large sample
sizes and can be underestimated when sample size is too small. Lander and Kruglyak (1995)
suggested that linkage must be reconfirmed by other independent investigators where a
nominal p value of 0.01 would be required, while they advised caution when reporting LOD
scores that are less than 3.0 and so are only suggestive of linkage. In case of suggestive
linkage, additional family data would be required before conclusions can be drawn (Lander
& Kruglyak, 1995).

LOD scores can be influenced by a number of factors including the phase or whether
parental genotypes are known, misspecification of disease and marker allele frequencies,
penetrance, heterogeneity and mostly by phenotypic misclassification. Also for more
accurate linkage information and to better localize the disease gene, multi-point linkage
analysis is preferred over two-point analysis. Statistical analyses in complex pedigrees are
carried out using software such as MLINK and GENEHUNTER where the LOD score can
also be adjusted for locus heterogeneity (HLOD) (Kruglyak et al., 1996).

Another kind of analysis which is thought to be useful when analysing linkage data for
complex traits is the MOD-score. In complex traits both the genetic model and disease allele
frequency are very difficult to specify correctly. An incorrect assumption of the genetic
model can significantly affect the analysis and can lead to a false negative result. The MOD
score is calculated by maximising the LOD score over a number of replicates using different
penetrances and disease allele frequencies, to obtain a maximum LOD score using the best
genetic model (Strauch et al., 2003). To control type I errors, it was found that a MOD-score
of 3.0 should be adjusted by a value ranging from 0.3 - 1.0 where it was proposed that a
MOD-score of 2.5 is indicative of suggestive linkage (Berger et al., 2005). MOD-score
analysis can be used to determine the best genetic model for those regions indicated by an
initial genome scan using ordinary LODs and it can also be calculated assuming paternal or
maternal imprinting. When assuming imprinting a heterozygote paternal penetrance is also
used with the other three penetrances with a total of four penetrance values. If a low
heterozygote frequency is calculated for paternal imprinting, it indicates that maternal genes
are preferentially expressed at that locus (Strauch et al., 2005; Berger et al., 2005).

1.1.4 Non-parametric linkage analysis

Since the mode of inheritance for complex disorders is uncertain, evidence of linkage might
be missed by using the LOD score method described above. A more appropriate approach is
that described by Kruglyak et al (1996) known as a non-parametric linkage (NPL) or a model
free analysis. The NPL statistic measures allele sharing among affected relative pairs (ARP)
and/or affected sib-pairs (ASP) within a pedigree. By chance it is expected that siblings
share zero, one or two marker alleles identical by descent (IBD) with a probability of 0.25,
0.50 and 0.25, respectively. If disease and marker alleles are linked then affected siblings will
share these alleles more frequently than expected by chance regardless of the mode of
inheritance. Comparison between expected and observed allele sharing between ASPs is
then analysed using the chi-square statistic. Highly heterozygous markers, multipoint
linkage and genotyping of non-affected siblings when parents are not available help to
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increase the sharing information. One great advantage of the NPL statistic is that data from
markers on a chromosome can also be evaluated in a multipoint approach using software
such as GENEHUNTER which uses the Lander-Green algorithm to calculate IBD
distribution (Kruglyak, 1996).

1.2 Phenotype definition, selection of family and population

1.2.1 Phenotype

Phenotype definition is one of the most important factors and should be determined by
proper diagnosis or exclusion of other medical conditions that could lead to the same
disease. To exclude disease and other factors leading to secondary osteoporosis, individuals
were asked to answer a questionnaire and a series of other medical tests were performed.
Measurement of bone mineral density (BMD) together with t-scores (number of standard
deviations from the mean BMD of a control group of young women at peak bone mass) is
the gold standard to diagnose osteoporosis, as recommended by World Health Organisation
(WHO). However, this methodology does not show the whole picture partly because bone
strength, thus fracture risk, is not completely assessed by measuring bone density. Also,
individuals with normal BMD, who might become osteoporotic in ten or twenty years time,
could still carry the responsible allele. As discussed above, miss-classification of affected
status might seriously affect the results obtained by statistical analysis. To overcome this
issue, and unlike other linkage studies for osteoporosis, we used different thresholds of t-
scores and z-scores at the lumbar and femoral sites obtained after measuring BMD, to define
discreet phenotypes as simply affected or not-affected. Statistical analyses were performed
in five different scenarios defining discreet phenotypes using the guidelines suggested by
the International Society of Clinical Densitometry (Khan et al., 2004).

1.2.2 Families

Extended families with a number of affected individuals are ideal for identifying variants
with higher penetrance but are less frequently found in populations. Development of novel
treatments can be targeted to these pathways. Factors such as mode of inheritance,
penetrance and disease or allele frequencies together with technical factors such as accuracy
of genotyping, all affect power to detect a significant linkage.

1.2.3 Population

The genetic component within a population is strongly affected by its history and
demography. The genetic pool of a population is determined by mutations, population
admixture as well as by random genetic drift that occurs most often due to catastrophic
events that result in a major decrease in population (Wright et al., 1999). Genetically isolated
populations (by geography and/or culture), that recently expanded from a very small
number of founders with occasional interbreeding with other ethnic groups, are more likely
to share haplotypes identical by descent (IBD) over longer genetic distances (Wright et al.,
1999).

The present Maltese population, although geographically (but not genetically) isolated, is
thought to have expanded exponentially from a much smaller population during the last
four hundred years with a possibility of a number of founder effects introduced by
admixture with other populations coming from Sicily, the eastern Mediterranean and
northern Africa. Founder effects were reported in the Maltese population, including a
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mutation (R1160X) found in the NPHS1 gene coding for nephrin that causes nephrotic
syndrome (Koziell et al, 2002) and the 68G>A mutation within the quinoid
dihydropteridine reductase gene that causes a rare form of hyperphenylalaninaemia and
phenylketonuria (Farrugia et al., 2007). The introduction of founder effects and major
bottlenecks may increase the chance of creating sub-populations with particularly high
allele frequencies when compared to the rest of the population (Heiman, 2005). Significant
fluctuations in the population were brought about by emigration of the Maltese in fear of
further attacks by the Turks, death by famine or plague. On the other hand, the existence of
a relatively frequent disease in an island population does not necessarily always indicate a
possible founder effect since this might result from multiple mutations in a single gene or in
different genes that could lead to the same phenotype (Zlotogora, 2007).

Genetically isolated populations proved to be very useful for the identification of genes not
only in the case of the BMP-2 gene in Iceland but also for a number of other diseases
(Styrkarsdottir et al., 2003). More than 15 mutated genes were successfully identified by
positional cloning in families from the isolated population of Finland. The Finnish
population demographic history was characterised by rapid expansion from a much smaller
population with a number of founder effects (Peltonen, 2000). Another island population
that proved successful for the identification of a mutation responsible for uric acid
nephrolithiasis by linkage was the Sardinian population (Gianfrancesco et al., 2003). Linkage
studies in Maltese families resulted in successful identification of rare genetic variants
responsible for other human disorders such as coeliac disease (Vidal et al., 2009a), epilepsy
(Cassar, 2008) and recently in the identification and confirmation of the role played by the
erythroid transcriptional factor KLF1 in hereditary persistence of foetal haemoglobin (Borg
et al., 2010).

2. Materials and methods

2.1 Patient recruitment

Two extended families consisting of a total of 27 family members with several individuals
having low BMD were recruited for this study. Families were selected through index
patients (or probands) referred to the Bone Density Unit, Department of Obstetrics and
Gynaecology, St. Luke’s Hospital, Malta for an osteoporosis risk evaluation. The proband in
Family 1 was a 61-year-old female diagnosed with osteoporosis six years earlier and was
known to have a family history of osteoporosis. Five out of seven of her siblings were
recruited while the other two were not willing to participate in the study. Osteoporosis was
confirmed in all six recruited siblings. All female siblings were osteoporotic at the lumbar
spine and one male was osteoporotic at the femoral neck. One sibling had an asymptomatic
compressed vertebral fracture. Three daughters of the proband were recruited (age range 33
- 38 years) and all of them were found to have very low BMD for their relatively young age.
Their 37-year-old cousin was also found to have very low BMD at both the lumbar (t-score -
2.25) and femoral neck (t-score -1.07), and had very low body mass index (BMI) (16.2
kg/m?2). It was not possible to collect blood for DNA analysis from this participant.

The proband in Family 2 was a 55-year-old woman with osteoporosis at the lumbar spine,
diagnosed five years earlier. A closer investigation of this family revealed four osteoporotic
siblings out of five. Their children were healthy young adults, some of whom had very low
BMD relative to their age. The presence of males with low BMD and history of fractures in a
severely osteoporotic sibling were good indicators that a genetic factor might be involved.
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As already discussed, five different scenarios were tested using thresholds for t-scores and
z-scores as previously described (Khan et al., 2004). Osteoporosis for post-menopausal
women and men over fifty years of age was defined using a lumbar and/or femoral t-score
of less than -2.50 (WHO criteria). Definition of affected status for younger individuals was
determined using z-scores of less than -1.0 and less than -2.0 for a more severe phenotype,
for scenarios III and IV, respectively. For scenario V, analysis was performed using only
affected individuals having femoral z-scores of less than -1.0. In all five scenarios, family
members having normal BMD measurements were assumed to have an unknown
phenotype. This assumption takes into consideration the possibility that any apparently
clinically unaffected individual might actually be affected, thus reducing the chance of
obtaining false negative results.

2.2 Genotyping

To perform a successful gene mapping study, a number of polymorphic markers have to be
typed in affected and non-affected individuals to identify genes that increase the risk of
disease. Different types of genotyping markers were used in recent years and new
techniques for typing are constantly being developed to increase efficiency, accuracy and
throughput while reducing costs.

2.2.1 Microsatellite genotyping

Short tandem repeats (STRs) or microsatellites are widely distributed in the genome and so
are useful tools for genome-wide scans. These tandem repeats can be dinucleotide,
trinucleotide or tetranucleotide repeats where polymorphisms are generated by gain or loss
of repeats usually as a result of both replication slippage and point mutation. Microsatellites
have several advantages for typing, the most important of which is that they are highly
polymorphic with a very high heterozygosity (>70%), so making them ideal for use in
linkage studies. Another advantage is that they can be very easily typed using PCR
techniques where fluorescently labelled primers flanking the polymorphic region are
designed. The variable number of repeats creates amplicons of different sizes which can be
typed using automated sequencers such as those by Applied Biosystems (ABI) (PE Applied
Biosystems Division, Foster City, CA). Different sets of markers across the whole genome
are electronically available from databases such as those of Marshfield Institute of Genetics
(http:/ /research.marshfieldclinic.org/genetics/),  deCode  (http://www.decode.com/
services/microsatellite-genotyping-genome-wide-scans.php) and the Cooperative Human
Linkage Centre (http://gai.nci.nih.gov/CHLC/). Markers can be selected from these
databases either across the whole genome or at candidate loci usually with an average
spacing of 10cM and for a higher resolution at < 5cM. To increase throughput and reduce
costs, the amplified fragments are carefully pooled in sets in such a way that the allele size
range does not overlap within a set and by using different dyes for different sets.

An initial genome-wide scan, 400 microsatellite markers spread across the 22 autosomes and
x-chromosome with an average spacing of 8.63cM and heterozygosity of 0.77, was
performed. The average performance of markers for all samples was of 96.96%. Fine-
mapping was performed by increasing the markers at indicated loci from the initial scan.
Genotyping was performed by polymerase chain reaction (PCR) followed by fragment
analysis using a 3730x] ABI genetic analyser (Applied Biosystems, Foster City, CA, USA).
The average performance of the markers was of 96.02%. Genotyping was performed
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commercially at the McGill University and Genome Quebec Innovation Centre, Quebec,
Canada.

2.3 Analysis of linkage data

PedCheck (O’Connell and Weeks, 1998) was used to determine if the inheritance of marker loci
was according to Mendel’s laws. Multipoint parametric and non-parametric linkage analyses
were performed using GENEHUNTER-PLUS (Markianos et al., 2001) which is an improved
version of GENEHUNTER (Kruglyak et al., 1996). GENEHUNTER v1.2 was used to calculate
Zlr scores according to Kong and Cox (1997). Linkage analysis of markers on the X-
chromosome was performed using a specific application for this chromosome included with
the GENEHUNTER package. All analyses were performed using EasyLinkage v5.05
(http:/ /www.uni-wuerzburg.de/nephrologie/ molecular_genetics/ molecular_genetics.htm)
(Lindner and Hoffmann, 2005). Parametric analysis was carried out using variable
penetrances for both a dominant and recessive mode of inheritance. Penetrances used for
the dominant model were 0.01 for the wild-type homozygote, 0.90 for mutant heterozygote
and 0.90 for mutant homozygote, respectively. The recessive model was defined by
penetrances 0.01, 0.01, and 0.80 for the wild-type homozygote, mutant heterozygote and
mutant homozygote, respectively. A more complex model was also analysed using
penetrances 0.01, 0.05, 0.30 for wild-type homozygotes, mutant heterozygotes and mutant
homozygotes, respectively. A parametric analysis assuming heterogeneity was computed
using data from both families (HLOD).

A co-dominant allele frequency algorithm was used for the analysis, as suggested in the
EasyLinkage manual, for extended families. For all models, the disease allele frequency
assumed was 0.001, and phenocopy rate of 1%. This disease allele frequency is equivalent to
a population prevalence of 0.2% assuming Hardy-Weinberg equilibrium calculated using
the following equation (Xu & Meyers, 1998):

2(1-9)q+q2 (2)
q = disease allele frequency.
Analysis was performed using other penetrance values for loci showing evidence of linkage
in the initial genome-wide scan. The exact genetic model was determined using
GENEHUNTER-MODSCORE v1.1 (Strauch et al, 2005), where MOD scores were calculated
from simulations of different models and disease allele frequencies with and without
imprinting. This analysis was suggested by Strauch et al (2003) for complex trait analysis
and was done only for those regions showing suggestive linkage. The deCode genetic map
was used throughout the study.

2.3.1 Using EasyLinkage v5.05 graphical user interface (GUI)

EasyLinkage is a Microsoft Windows® based GUI, developed in recent years. This was a
step forward for researchers wanting to perform linkage analysis. Using EasyLinkage and a
common input file format, one can analyse data using all major software such as PedCheck,
GENEHUNTER, Merlin and Allegro. EasyLinkage can be used to analyse data generated
from projects using both single nucleotide polymorphisms (SNPs) as well as STRs. Analysis
can be performed on chromosome by chromosome or else genome-wide basis, making use
of the appropriate genetic maps (such as deCode and Marshfield), using male, female or
sex-averaged maps, from which more accurate genetic positions can be drawn. Both
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graphical and text output files are automatically generated for each individual family
together with a collective report averaging all families, in text or pdf formats and stored into
an appropriately labelled folder showing date and type of analysis. These files show
statistical analyses results such as LOD scores, NPL, p-values and input parameters given
by the user for that model including penetrances, disease allele frequencies and genetic
positions of markers ranked according to the most significant results.

There are four allele frequency algorithms to choose from depending on the type of analysis
needed. Several versions of this software have been developed, improving its capabilities to
handle large amounts of data generated from SNP arrays such as the Affymetrix 500k and
[Nlumina 650k chips. For SNP analysis, allele frequencies of all the major ethnic groups form
part of the EasyLinkage software package.

2.3.2 Data entry

There are two main types of files needed to perform linkage analysis using microsatellites or
STRs. In this study, a qualitative type of analysis was performed using discrete phenotypes
(affected vs unaffected). One type of input file should contain family or families” information
in a standard linkage format. The marker file should include the genotype results for each
family member. All family or families’” information including pedigree structure has to be
entered into a pedigree file. Shown below is part of the pedigree file as created in our study
(only obligatory columns were used). From left to right columns represents (i) unique family
identifier; (ii) individual unique identifier (iii) father and (iv) mother identifiers; (v) sex
identification code (1=male, 2=female, O=unknown); (vi) affected status (1=unaffected,
2=affected, 0=unknown). In case parents are unknown then enter ‘0". As explained previously
is an unknown phase and so it reduces the power of the study, even though the software is
able to assume the genotypes of these individuals using the known genotypes from their
offspring (inferred genotypes). An example for using the unknown option in column (v) is
when you do not know the sex of a child due to death in utero.

Al A_101 A 111 A 112 2 2
Al A 102 A_111 A 112 1 2
Al A_1.03 A_111 A 112 2 2
Al A_1.10 0 0 1 0
Al A 111 0 0 1 0
A2 A 211 A_2 28 A 229 1 1
A2 A 212 A 2 28 A 229 2 2

Phenotype definition has to be done using appropriate criteria and diagnostic tests, for
example in our study, measurements of BMD together with blood tests were used to exclude
other medical conditions that could also affect BMD. In complex disorders, it might be
difficult to define the phenotype correctly and this could seriously affect the outcome of
results. Select 1 and 2 wherever diagnostic tests were performed and phenotype is known.
Any individuals not tested should be defined as having an unknown status. This is a better
option because individuals wrongly defined as normal could give a false negative result
(type II error) as these might be carrying the causative alleles and might become affected at a
later stage in their life. As described in the phenotype definition section, we analysed our
data using five different scenarios defined by t-scores and z-scores. For each scenario a
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different pedigree file was created and saved in a folder together with the marker files
described in the next section.

Creating marker files

Marker files should include genotyping results for all family members tested. Entering data
is the most laborious part of the study because different files have to be created for each
marker, i.e. if 400 markers were tested then 400 different marker files have to be created and
saved in the same folder together with pedigree files. These files should be named with the
marker identification corresponding with that in the marker map file (.map) used by the
software e.g. “D1S200_FINAL.abi'. If the marker is not found within the marker map file
then an error is given when running the analysis. This error can be corrected manually by
adding the marker into the marker map file found in the EasyLinkage folder in Program
Files.

This is an example of the method used to input data into marker files:

MARKER LANE ID A1l A2
D1S200 Al A_101 165 176
D1S200 A2 A 102 161 176
D1S200 A3 A_1.03 165 176
D1S200 A4 A_1 04 161 176
D1S200 A5 A_1.05 161 176
D1S200 A6 A_1 06 161 176
D1S200 Bl A 210 161 176
D1S200 B2 A 211 161 176
D15200 B3 A 212 161 161

Column (i) name of marker e.g. D15200; (ii) PCR reaction position in a 96-well PCR plate
(information not used by software); (iii) individual identification number corresponding
with pedigree file; (iv) allele 1 in base pairs (bp) and (v) allele 2 in bp. Any missing
genotypes should be entered as ‘0°. When analysing data, the software will re-code these
alleles numbering them consecutively as 1, 2 etc depending on the number of alleles
observed for that marker in all genotyped individuals. The higher the number of alleles
observed the higher the heterozygosity and thus the more informative that marker is.

2.3.3 Running EasyLinkage analysis

On the main screen of the GUI, we selected a ‘Single Locus™ analysis, the linkage software
(GENEHUNTER) and microsatellites project type. Next step was to select whether to
perform a genome-wide analysis, one chromosome at a time or even to analyse small
segments from a chromosome. Analysing small segments from a chromosome is useful to
analyse large scale SNP data possibly analysing 500 markers in one segment. A lower LOD
score was observed when analyzing a large number of markers, which would mean that for
SNP analysis, it is better to avoid SNPs that are very close to each other. LOD scores were
observed to be lower in such instances most likely due to allele frequencies used. It would
be advisable to first analyse the whole chromosome for SNP analysis, and if significant
results are observed, then re-analyse blocks of 100 markers at a time and as overlapping
blocks. Another suggestion would be to use different and appropriate allele frequency
algorithms, as will be described below.
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After choosing the chromosomes, the sex-averaged deCode genetic map was selected to
position the markers. There is a difference of approximately 10 cM between the male and
female genetic maps, being longer in females due to a higher recombination rate. Other
general options selected included ‘recode alleles™ for continuous recoding of alleles within
the marker files, Mendelian testing using PedCheck and the autoscale Y-axis for LOD /
NPL plots.

Finally we chose the folder where the pedigree files were saved and the option to give
individual pedigree results as well as totals. As decribed earlier, five different phenotype
scenarios were used and each one had to be analysed using a different pedigree file.

GENEHUNTER (GH)

This computer package was developed to perform multipoint linkage analysis (parametric
and non-parametric) in pedigrees of moderate size (Kruglyak et al., 1996). The program can
compute LOD scores for pedigrees using a mode of inheritance and penetrance specified by
user. It also allows the user to test for linkage under genetic heterogeneity. The multipoint
NPL analysis tests for IBD allele sharing among affected individuals within pedigrees that is
not affected by the mode of inheritance. It is thus ideal to be used for complex traits. GH
also constructs the most likely haplotypes indicating crossovers even if there is missing data.
A major advantage of GH over other statistical software, such as VITESSE and MLINK, is
that it uses the Lander-Green algorithm and therefore it can perform multipoint analysis
using several markers on a chromosome. Major drawbacks of GENEHUNTER include
restrictions on pedigree size and its relatively slow speed when compared to similar
software such as Allegro. Another limitation of GENEHUNTER is that it cannot analyse
large number of markers which means that if one was analysing more than 100 markers on
same chromosome, one would have to analyse these in groups of 100, repeating the analysis
with different set sizes so as not to miss the signal. A recent version of GH can also perform
transmission disequilibrium testing (TDT) analysis and analysis of quantitative traits
making GH the ideal software to use for genetic analysis (Nyholt, 2001). In this study
GENEHUNTER v1.2 was used to calculate Zlr scores using the Kong and Cox (1997) model.
This algorithm addresses the problem encountered by previous versions of GENEHUNTER
where NPL scores were found to be too conservative when inheritance data was incomplete.
Another application used in this study was GENEHUNTER-MODSCORE v1.1 that
maximises LOD scores with a series of penetrances and disease allele frequencies (Strauch et
al., 2005).

Using GENEHUNTER (GH) with EasyLinkage GUI

Performing linkage analysis using GH through the Easylinkage GUI is easy and
straightforward and saves time. After choosing the GENEHUNTER package software as
described above, one has to go to Program Options from the main dashboard to be able to
define a model for analysis. We analysed our data using both dominant and recessive
models of disease. GENEHUNTEr v1.2 and GENEHUNTER-MODSCORE v1.1 were used
for the analysis. A ‘Codominant™ allele frequency algorithm was used for our analysis.
EasyLinkage gives you four different algorithms to choose from. The Codominant algorithm
was the best choice to use for extended families. This algorithm uses only alleles from
genotyped individuals within the pedigree file. Frequencies of the alleles are calculated to
sum up to 1, which means that if 5 different alleles were observed, then the allele frequency
for each allele will be set to 0.200 or if 10 then to 0.100. If less than 5 alleles are found then
still the frequency is set to 0.200. Other allele frequency algorithms include either all
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individuals within the marker file or all individuals from pedigree file, both suitable for the
affected sib pair (ASP) design. There are also specialised algorithms such as ‘founders only",
suitable only for pedigrees with large number of founders. SNP projects will use reference
allele frequencies from different ethnic groups.

As described before, we analysed our data using variable penetrances of disease starting
with a highly pentetrant form (90%) down to 50%, for each scenario. Disease allele
frequency was taken as 0.001 and the analysis steps between markers for multi-point
analysis were set to 5, with recombination counting set to ‘On’. Penetrances were entered
into the appropriate fields as described before, turning the haplotyping options to ‘on” and
choosing the ‘Display all family plots’. The haplotyping option significantly increases the
run time of the analysis but it creates plots for each family with haplotypes and marker
positions tog