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1. Introduction 

In response to ischemic damage, the heart undergoes vicious process of remodeling wherein 

the damaged myocardium is replaced by scar tissue and as compensatory mechanism, its 

existing collateral vessels and neovascularization with concomitant changes in cell 

recruitment, multiplication and cytokine/growth factor action. Angiogenesis is a complex 

process which involves an interplay between multiple pro- and anti-angiogenic factors and 

a harmonized interaction between endothelial progenitor cells, smooth muscle cells, 

pericytes and supportive environment. Besides Vegf/ Vegf receptor system, angiopoietin 

family of pro-angiogenic growth factors in conjunction with their receptor system are critical 

for vascular protection, remodeling, proliferation and maturation beside preservation of the 

integrity of newly formed vascular structures for functional activity (Thurston et al. 2000; 

Saharinen et al. 2005; Brindle, Saharinen et al. 2006).  

An outside intervention to support the inefficient intrinsic myocardial repair processes by 
administration of stem/ progenitor cells has emerged as a promising strategy for the 
treatment of ischemic heart diseases. The transplanted stem cells have shown both myogenic 
as well as vasculogenic differentiation potential and participate in the myocardial 
regeneration via angiomyogenesis (Chen et al. 2010; Uemura et al. 2006; Eguchi et al. 2007). 
In addition to differentiation, stem cells can also ameliorate inflammation, migrate to 
ischemic regions and secrete bioactive molecules as a part of their paracrine activity and 
significantly contribute myocardial protection and angiogenesis. Alternatively, multimodal 
therapeutic strategies have also been adopted to accentuate the angiomyogenic potential of 
stem cells. This includes preconditioning of stem cells with growth factor treatment, their 
genetic modification with plasmids encoding for various angiogenic growth factors and 
concomitant administration of recombinant angiogenic growth factor proteins (Jiang et al. 
2006; Haider et al. 2008; Kim et al. 2009; Lu et al. 2009). Such multimodal treatment 
strategies have elicited beneficial effects in terms of improving stem cell survival and 
enhancing their paracrine behavior besides stimulation of angiogenesis through direct 
recruitment, proliferation and maturation of precursor cells such as endothelial progenitor 
cells, mesenchymal stem cells and monocytes to the ischemic heart (Banai et al. 1994; Hiasa 
et al. 2004; Elmadbouh et al. 2007; Haider et al. 2008). We discuss here the biological 
regulation of angiopoietin-1 expression, its interaction with specific receptor system and the 
advantages of transgenic over expression of angiopoietin-1 either alone or in combination 
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with Vegf to support angiogenesis as a therapeutic option for the treatment of ischemic 
heart disease. 

2. Angiopoietin-1 

2.1 Angiopoietin-1 and Tie2 ligand/receptor interaction in angiogenesis 

The angiopoietin family of proteins consists of four members, all of which interact with the 
endothelial receptor tyrosine kinase, (tunica intima endothelial kinase 2, Tie2) (Thomas & 
Augustin 2009). Whereas two of these factors, angiopoietin-1 and angiopoietin-4, are 
constitutive agonists and Tie2 receptor activators (Davis et al. 1996), angiopoietin-2 and 
angiopoietin-3 have different effector functions and may activate or antagonize 
angiopoietin-1 induced Tie2 phosphorylation (Suri et al. 1996; Valenzuela et al. 1999; Fiedler 
et al. 2003). The essential role of angiopoietin-1 in the expansion and stabilization of newly 
formed vessels has been widely demonstrated (Suri et al. 1998). The process of 
vasculogenesis consists of differentiation, proliferation, and coalescence of vascular 
endothelial cells to establish a primitive vascular network in the early stage. This is followed 
by maturation of the neovasculature through the process of angiogenic remodeling that 
involves  sprouting, branching, pruning, differential growth of vessels, and the recruitment 
of supporting cells (Suri et al. 1998; Hattori et al. 2001).  
Both angiopoietin-1 and angiopoietin-2 have discrete participation in the occurrence of 
angiogenic cascade wherein angiopoietin-2 accumulates at the leading edge of proliferating 
vessels and angiopoietin-1 shows diffused localization behind the leading edge (Suri et al. 
1998). Based on this distinct pattern of expression, it is suggested that angiopoietin-2 
negatively mediates Tie2 activation and destabilizes the vessels to make these responsive to 
other angiogenic growth factors including Vegf, Pdgf and Fgf. On the contrary, 
angiopoietin-1 activates Tie2 and triggers remodeling and stabilization of the newly formed 
vasculature which leads to its maturation (Suri et al. 1998; Huang et al. 2009). The 
antagonizing activity of angiopoietin-2 is imperative for normal vascular maturation and 
spatial configuration (Feng et al. 2009). Over expression of angiopoietin-1 results in 
increased number, size and branches of the blood vessels without affecting the association 
among endothelial cells and with no evidence of plasma leakage, edema, or erythrocyte 
extravasation unlike Vegf (Suri et al. 1998; Thurston et al. 1999; Thurston et al. 2000; Kim et 
al. 2002). Angiopoietin-1 also contributes to attenuation of inflammatory response by 
mediating anti-permeability effects to counter Vegf and tumor necrosis factor (TNF)-
induced inflammatory molecules in the endothelial cells such as vascular adhesion 
molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and endothelin-1 which 
control cell-cell interaction, maintain vascular quiescence and prevent leakiness (Kim et al. 
2002; Hughes et al. 2003; Jeon et al. 2003; McCarter et al. 2006).  
Tie2 receptor, a member of receptor tyrosine kinase family, consists of an extracellular 
domain, a trans-membrane domain and a split intracellular kinase domain (Takahara et al. 
2004). This receptor is more specifically expressed on vascular endothelium in both 
quiescence and active states although it is also found on some other cell types such as 
smooth muscle cells, fibroblasts, mural cells, ganglion cells and carcinoma cells (Dumont et 
al. 1992; Takahara et al. 2004; Kosacka et al. 2005; Nakayama et al. 2005; Hamaguchi et al. 
2006). Tie2 is highly conserved from zebra fish to mammals with the greatest amino acid 
homology occurring in the kinase domain, indicating the importance of its biological 
function (Lyons et al. 1998). Disrupting the function of Tie2 in transgenic mice was lethal 
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and resulted in early embryonic death due to failure of vascular branching and 
differentiation. Homozygous mutated embryos also displayed abnormalities in the 
development of the heart (Dumont et al. 1994; Sato et al. 1995). Lack of Tie2 also resulted in 
angiogenic defects in term of vessel branching and remodeling, and displayed defects in the 
developing vessels to have scarce peri-endothelial cells and thinner collagen-like fibers (Suri 
et al. 1996). Dysregulated expression of Tie2 have also been observed in several clinical 
diseases including venous malformations, intramuscular hemangiomas, pulmonary 
hypertension and infantile hemangiomas (Yu et al. 2001; Wang et al. 2004; Morris et al. 
2005). On the contrary, overexpression of angiopoietin-1 in the skin of experimental animal 
models led to the formation of highly branched and larger vessels, and resulted in reduction 
of microvascular leakage (Suri et al. 1998; Thurston et al. 1999). Tie2 over expression in the 
skin caused psoriasis-like phenotype after birth and persisted throughout adulthood, and 
was featured by epidermal hyperplasia, accumulation of inflammatory cells and altered 
dermal angiogenesis (Voskas et al. 2005). These findings clearly suggested that a delicate 
level of Tie2 receptor was required for physiological functioning and any unregulated 
induction or loss of Tie2 resulted in potentially worsened effects. Despite considerable 
similarity with Tie1, experiments with Tie1- or Tie2-deficient mice have provided evidence 
of their distinct functions in response to different members of angiopoietin family (Seegar et 
al. 2011). 

2.2 Angiopoietin-1, Tie2 receptor and intracellular signaling 

It is interesting to note that angiopoietin-1 and angiopoietin-2 have different effects on 
vascular formation and development, however, they bind to Tie2 receptor with distinct 
kinetics of release following binding thus indicating that activation of Tie2 receptor is 
regulated independently by these two molecules. In fact, angiopoietin-2, a natural 
antagonist of angiopoietin-1 (Maisonpierre et al. 1997), binds to Tie2 receptor without its 
activation (Davis et al. 2003). Similarly, structural characteristics and distinguishable 
interaction with other molecules in the extracellular environment of the ligands may also 
essentially contribute to their counteractive properties (Kim et al. 2005). More recent studies 
have shown that the effects of angiopoietin-1 and angiopoietin-2 on the receptor tyrosine 
kinase Tie2 are differentially regulated at the endothelial cell surface (Hansen et al. 2010) 
and a critical balance is maintained between angiopoietin-1 and angiopoietin-2 expression 
by sonic hedgehog and fibroblast growth factor-2 during angiogenesis (Fujii & Kuwano, 
2010). Phosphorylation of tyrosine residues of Tie2 occurs subsequent to binding with 
angiopoietin-1 and activates kinase domain of the receptor to initiate various downstream 
intracellular signaling cascades (Murray et al. 2001). The phosphorylation of tyrosine 
residues on the intracellular domain of Tie2 receptor interacts with the p85 subunit of PI3K 
via Src homology 2 or phosphotyrosine binding domain. These molecular changes result in 
activation of PI3K and its downstream Akt in the endothelial cells and ultimately lead to 
multiple responses such as cell survival, differentiation and chemotaxis (Witzenbichler et al. 
1998; Fujikawa et al. 1999; Abdel-Malak et al. 2009; Bai et al. 2009). Although some studies 
have already demonstrated that angiopoietin-1 mediated activation of Tie2 does not cause 
mitogenesis of endothelial cells, the others have reported a pro-proliferative effect of 
angiopoietin-1 on vascular cells (Kanda et al. 2005; Abdel-Malak et al. 2009). These 
contradictions in the data may be explained on the basis of the observation that 
angiopoietin-1 may induce various effects on endothelial cells depending on the tissue type 
and conditional environments.  
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Angiopoietin-1 activity also involves Forkhead box O-1 (FOXO1) transcription factor which 
principally acts as a regulator of cell cycle and endothelial cell functions in vascular 
destabilization and remodeling (Kanda et al. 2005; Evans-Anderson et al. 2008). 
Angiopoietin-1 is known to inhibit the activity of FOXO1 via phosphorylation and promotes 
cell proliferation in the cultured endothelial cells by upregulation of cyclin D1 downstream 
of FOXO1 (Kanda et al. 2005; Huang & Tindall 2007). Phosphorylation of FOXO1 by Akt in 
the endothelial cells occurs at three conserved sites which results in the inhibition of FOXO1 
by promoting its translocation from the nucleus to the cytoplasm (Daly et al. 2004; Huang & 
Tindall 2007). In addition to interaction with FOXO1, GATA3 which is highly expressed in 
human endothelial cells especially in the large vessels, plays a significant role in the 
expression of angiogenesis related genes and endothelial cell functions subsequent to 
stimulation with angiopoietin-1 (Song et al. 2009). Knock down of GATA3 significantly 
abrogated these effects of angiopoietin-1. Besides these transcription factors, angiopoietin-1 
can activate MAPK in the cultured endothelial cells (Fujikawa et al. 1999; Kim et al. 2002; 
Zhu et al. 2002). Pharmacological inhibition of ERK1/2 abolishes Tie2 phosphorylation and 
its downstream signaling for morphogenesis of capillary endothelium and suppresses 
endothelial cell proliferation which are involved in angiogenesis (Kim et al. 2002). However, 
inhibition of ERK1/2 activity in endothelial cells does not effect angiopoietin-1-induced 
survival and migration (Fujikawa et al. 1999). Hence, it is suggested that MAPK activity as a 
consequence of Tie2 activation during angiogenesis is more important for endothelial 
sprouting and branching than for endothelial recruitment and maintenance. On the other 
hand, angiopoietin-1 mediated activation of p38 MAPK signaling promoted mural cell 
recruitment during angiogenesis (Zhu et al. 2003). Angiopoietin-1 also has the ability to 
directly bind to the monocytes without interacting with Tie2 and promote their 
transendothelial migration by directly activating PI3K for its role in inflammatory 
angiogenesis (Ahmad et al. 2010). 

2.3 Angiopoietin-1, Tie2 receptor and extracellular response 

Under physiological conditions, endothelial cells of the vasculature remain quiescent in the 
inner layer of vessels. However, during active vascular remodeling in response to 
pathological conditions like vascular occlusion, myocardial infarction or de-novo vascular 
formation, circulating endothelial progenitors and local endothelial cells migrate to the 
ischemic areas. More so, some of these cells penetrate and traverse to distant sites of the 
occluded vessels to participate in the repair process. Angiopoietin-2, which is mainly 
released by endothelial cells and localized at the site of vascular remodeling, functions as a 
Tie2 blocker and promotes the destabilization of pericytes from existing vessels and 
increases vascular permeability. This in turn allows the infiltration of proteases, cytokines 
and angiogenic cells to support robust angiogenic response. The blood vessels are thus 
formed by the complex contribution of an intricate network of smooth muscle layer that 
surrounds endothelial cells in arteries, arterioles and veins resulting from migration, 
proliferation and interaction of different cell types like pericytes, smooth muscle cells and 
fibroblasts (Asahara et al. 1999; Carmeliet 2000; Bentley et al. 2009). It is suggested that 
interaction between angiopoietin-1 and Tie2 also regulates cross-talk between endothelial 
cells and pericytes (Davis et al. 1996; Sundberg et al. 2002). Angiopoietin-1 is a pericyte 
derived signal that mediates maturation and quiescence of the microvascular endothelium 
(Armulik et al. 2005). In addition to its role as an effector for the secondary step of vascular 
formation, angiopoietin-1 can stimulate endothelial cell migration and induce angiogenesis 
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independent of its interaction with angiopoietin-2 or Vegf (Koblizek et al. 1998; Hayes et al. 
1999; Babaei et al. 2003). The pro-angiogenic activity of angiopoietin-1 independent of Vegf 
involves phosphorylation of Tie2 and activation of PI3K/Akt signaling. These observations 
have been substantiated by in-vivo experimental evidence which showed that the angiogenic 
efficacy of angiopoietin-1 alone was comparable to that of Vegf stimulation (Babaei et al. 
2003). More recent studies have shown that angiopoietin-1 also regulate the functions of 
hematopoietic stem cells in the bone marrow. Treatment of ckit+ cells with angiopoietin-1 
helped the cells to maintain their functional activity in vitro on long term basis, however, 
with little influence on their colony forming potential (Gomei et al. 2010).  

2.4 Angiopoietin-1, Tie2 and anti-apoptotic effect 

Angiopoietin-1 is critical for cell survival and proliferation and functions via PI3K/Akt and 
MAPK/ERK signaling pathway (Daly et al. 2004; Kanda et al. 2005). ERK1/2 kinases have 
important role in regulation of apoptosis in various cells including endothelial cells wherein 
ERK1/2 have been consistently shown to mediate the anti-apoptotic effects of VEGF and 
angiopoietin-1 by targeting caspase-9, -3 and -7. Angiopoietin-1 also induces p38 MAPK 
phosphorylation as a part of its anti-apoptotic activity in the endothelial cells (Gratton et al. 
2001; Harfouche et al. 2003). The pro-survival effects of angiopoietin-1 have been extensively 
studied in variety of cells against pro-apoptotic stimuli (Tuo et al. 2010; Lee et al. 2008; Liu et 
al. 2008; Bai et al. 2009). In most cases, angiopoietin-1 treatment phosphorylated Tie2 
receptors leading to activation of Akt signaling. Treatment of neuronal progenitor cells with 
angiopoietin-1 protected the cells against oxygen-glucose deprivation induced apoptosis by 
activation of PI3K/Akt to inhibit pro-apoptotic signaling (Bai et al. 2009). Similarly, 
activation of pro-apoptotic signaling was reversed in myocardial endothelial cells in high 
glucose culture conditions upon treatment with angiopoietin-1 which incidentally also 
increased angiogenesis (Tuo et al. 2010). These salutary effects of angiopoietin-1 were 
however, antagonized and blunted by angiopoietin-2. Treatment with angiopoietin-1 
protein or its transgenic expression in endothelial cells also induces some secondary 
mediators such as interleukin-8 through ERK1/2, SAPK/JNK, and PI3K pathways, which 
trigger c-Jun phosphorylation on Ser63 and Ser73 (Abdel-Malak et al. 2008). Interleukin-8 
then acts in autocrine fashion to suppress apoptosis and facilitate cell proliferation and 
migration (Abdel-Malak et al. 2008). 

3. Angiopoietin-1 gene delivery in combination with Vegf  

Whereas Vegf is one of the most potent vasoactive growth factors which is involved in 
angiogenesis and regulates vascular permeability, angiopoietin-1 is also being recognized 
for its angiogenic potential besides its role as a vascular stability factor. Both of these growth 
factors are discretely produced in a succession during the development of mature blood 
vessels (Thurston, 2002). Angiopoietin-1 acts as a mitogen for endothelial cells and 
synergistically induces sprout formation with Vegf (Koblizek et al. 1998). The regulatory 
mechanism of angiopoietin-1 induced  neovascularization involves pro-survival effects on 
the endothelial cells by activation of PI3K/Akt signaling and stabilization of nascent blood 
vessels to become leak resistant (Thurston et al. 2000).  
Both Vegf and angiopoietin-1 have been extensively used for angiogenic protein or gene 
therapy to exploit complementarities between their functional relationship (Zhu et al. 2002; 
Cheng et al. 2007). Given a coordinated role of angiopoietin-1 and Vegf during both 
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physiologic and pathologic development of blood vessels, simultaneous use of the two 
growth factors have been reported for the treatment of tissue ischemia (Gale et al. 2002; Ye et 
al. 2007). The application of this combinatorial growth factor therapy approach is not only 
for induction of angiogenesis; it is also intended to involve circulating endothelial 
progenitor cells. These progenitors then home into the ischemic tissues in response to the 
concentration gradient for participation in the ongoing repair process of vasculogenesis 
(Kalka et al. 2000; Wang et al. 2006). We have already reported the feasibility of combining 
stem cell mobilization from bone marrow in combination with Vegf gene delivery to the 
infarcted heart to show that the mobilized stem cells homed into the heart and participated 
in myocardial angiogenesis (Wang et al. 2006). Although the use of recombinant growth 
factors has given encouraging results with both Vegf and angiopoietin-1, the very short 
biological half-life of these growth factors warrants alternative treatment strategies. A more 
recent study has reported covalent immobilization of Vegf and angiopoietin-1 onto three-
dimensional porous collagen scaffolds using 1-ethyl-3-[3-dimethylaminopropyl] 
carbodiimide hydrochloride (EDC) chemistry to enhance the duration of the growth factors 
availability  and effectiveness (Chiu & Radisic, 2011). 
As an alternative to recombinant protein administration, transgenic expression of 
angiopoietin-1 and Vegf gene therapy is being assessed to achieve arteriogenesis and 
angiogenesis for the treatment of myocardial ischemia (Samuel et al. 2010; Siddiqui et al. 
2003; Ye et al. 2007). The efficacy of Vegf and angiopoietin-1 gene delivery to the heart has 
been extensively studied to promote angiogenesis and improve regional blood flow  et al. 
2007; Haider, Ye et al. 2004). The authors reported the first bi-cistronic adenoviral vector 
encoding for Vegf and angiopoietin-1 for co-expression of the two angiogenic growth 
factors. The vector was used to genetically modify stem cells for overexpression of 
angiopoietin-1 and Vegf. Transplantation of genetically modified skeletal myoblasts 
demonstrated development of functionally mature blood vessels in the infarcted heart and 
in the hind limb ischemia model in rabbits (Niagara et al. 2004; Ye et al. 2007). These 
observations were in harmony with the previously published data suggesting enhanced 
perfusion accompanied by the development of stable and mature blood vessels with 
combined Vegf and angiopoietin-1 administration (Arsic et al. 2004; Gurunluoglu et al. 2002; 
Shyu et al. 2003). In a recently reported study, Tao et al. co-expressed Vegf/angiopoietin-1 
using adeno-associated viral vectors (AAVs) expressing cardiac-specific and hypoxia-
inducible Vegf  and Ang1 into the porcine infarcted heart immediately after ligation of the 
left descending coronary artery (Tao et al. 2010). Vegf and Ang1 were predominantly 
expressed in the heart in the infarct and border of the infarct. Gated single-photon emission 
computed tomography showed improved cardiac function and myocardial perfusion at 8 
weeks after vector injection which corresponded well with higher vascular density. They 
also observed higher level activation of Akt and Bcl-xL, less Caspase-3 and Bad, and 
reduced TUNEL positivity in angiopoietin-1/ Vegf treated animal hearts. These results 
showed that simultaneous expression of angiopoietin-1/ Vegf in the infarcted heart 
stimulated pro-survival pathways besides improved regional blood flow. Although the 
authors claimed to have observed significant change in the number of cycling 
cardiomyocytes subsequent to angiopoietin-1/ Vegf overexpression, this may be insufficient 
to replace the massive loss of the functioning cardiomyocytes in the infarcted heart. 
Although direct injection of angiopoietin-1 and Vegf growth factors has been shown to 
significantly improve the regional blood flow in the ischemic heart, this strategy if combined 
with stem cell therapy would be more effective in addressing the core issue of myocardial 
regeneration which requires neomyogenesis for replacement of the scar tissue. 
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4. Combining stem cell transplantation and Angiopoietin-1 delivery 

Gene delivery strategy has developed over the years from direct plasmid injection to stem 
cell based ex-vivo delivery strategy. Stem cells are excellent carriers of therapeutic genes for 
delivery to the various body tissues and organs including the heart (Suzuki et al. 2001; Yau 
et al. 2007; Ye et al. 2007; Haider et al. 2008). Despite all the progress made, it remains to be 
defined whether cell based gene therapy can overcome several potential impediments such 
as poor transfection efficiency, unregulated transgene expression, low survival rate of 
transplanted cells into ischemic zones etc. On the same note, there are a number of 
parameters which require optimization including cell type, number of transfected cells to be 
transplanted, time of cell transplantation after infarction, and route of cell transplantation.  
Angiopoietin-1 is one of the many angiogenic growth factors which have been extensively 
studied for pro-angiogenic activity in the ischemic tissues. We performed a comparative 
assessment of the methods to deliver angiopoietin-1 gene delivery for angiogenic repair of 
the infarcted heart using an experimental porcine heart model of chronic infarction (Ye et al. 
2007). Our results showed that skeletal myoblast based delivery of angiopoietin-1 transgene 
was more effective as compared to the approach of direct injection of adenoviral vector 
encoding for angiopoietin-1. The genetically modified skeletal myoblasts carrying 
angiopoietin-1 transgene served as a reservoir of the transgene product and ensured 
localized release of angiopoietin-1 at the site of the cell graft without safety concerns 
associated with the use of direct injection of adenoviral vector (Ye et al. 2007). Besides we 
observed extensive survival of the transplanted skeletal myoblasts which underwent 
myogenic differentiation to repopulate the infarcted myocardium.  
Given that the development of stable and functional blood vessels is regulated by a critical 
balance between several pro- and anti-angiogenic factors which also co-ordinate with 
various vasculogenic cells, we hypothesized that a single angiogenic factor may be 
insufficient to achieve the desired outcome. We therefore opted to combine angiopoietin-1 
and Vegf for co-expression to achieve angiogenic synergism between the two growth factors 
(Ye et al. 2007). We developed a bicistronic adenoviral vector which encoded for human 
Vegf165 and angiopoietin-1 driven by the same promoter. The vector was used to genetically 
modify human skeletal myoblasts which were later transplanted in a porcine heart model of 
coronary artery ligation. We observed excellent survival of the transplanted skeletal 
myoblasts for up to 12 weeks using transient immunosuppression. Immunohistological 
studies showed myogenic differentiation of the skeletal myoblasts and increased blood 
vessel density in the infarct as well as peri-infarct regions with highest maturation index in 
the animal heart treated with skeletal myoblasts co-expressing Vegf and angiopoietin-1. 
Regional blood flow, measured with fluorescent microspheres, was significantly improved 
which revealed the functional competence of the newly formed blood vessels. These 
findings signified the feasibility of multimodal therapeutic approach based on simultaneous 
delivery of angiopoietin-1 and Vegf combined with cell transplantation.   
Although skeletal myoblasts showed excellent ability as transgene carriers, one of the major 

drawbacks is their failure to develop gap junctions with the host cardiomyocytes and 

arrhythmogenicity (Fouts et al. 2006). We therefore hypothesized that the use of bone 

marrow derived mesenchymal stem cells might be a better option. Mesenchymal stem cells 

have been extensively studied for their cardiac reparability and regenerative potential (Chen 

et al. 2010; Kim et al 2010.; Labovsky et al. 2010; Haider et al. 2009) besides having superior 

transgene carrying capability (Chen et al. 2010; Huang et al. 2010; Tang et al. 2010; Haider et 
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al. 2008). Besides, we also opted to replace Vegf with survival signaling molecule Akt to 

support survival of the genetically modified mesenchymal stem cells (Jiang et al. 2006). Our 

choice of transgene combination of angiopoietin-1 and Akt achieved maximum beneficial 

effects in terms of donor stem cell survival and angiomyogenic repair of the infarcted heart. 

More importantly, the therapeutic benefits in terms of cell graft survival, stability of newly 

formed blood vessels and global cardiac function were stable for up to 3 months (Shujia et 

al. 2008). A more recent study has used sendai viral vector for transduction of mesenchymal 

stem cells, however, it remains difficult to see the advantages of mesenchymal stem cells 

modified with sendai vector harboring human angiopoietin-1 gene (Piao, Wang et al.) 

5. Conclusions  

Genetic modification increases the therapeutic efficacy of stem cells by improving their 
survival, enhancement of paracrine activity and by supporting their angiomyogenic 
differentiation (Tang et al. 2004). A combined cell and gene therapy approach reverses the 
deteriorating function of the infarcted heart (Mangi et al. 2003; Matsumoto et al. 2005) and 
offers an extended and localized expression of the transgene product. From the clinical 
standpoint, the strength of stem cell therapy and gene therapy approaches lies in their 
combined application to achieve stable therapeutic benefits. The viability and persistence of 
the genetically modified stem cells and their derivative graft in the heart can be significantly 
enhanced by restoration of regional blood flow via biological bypass surgery which is 
achieved by neovascularization of the infarcted heart. The new emerging pro-angiogenic 
role of angiopoietin-1 independent of VEGF, in addition to its well recognized participation 
in the angiogenic cascade as a maturation factor, makes angiopoietin-1 as a growth factor of 
choice for ex-vivo stem cell based gene therapy which can be used independently or in 
combination with VEGF to support angiomyogenic recovery of the infarcted heart.   
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