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Probing Solution Thermodynamics  
by Microcalorimetry 

Gregory M. K. Poon 
Department of Pharmaceutical Sciences, Washington State University 

U.S.A. 

1. Introduction 

Solution microcalorimetry has entrenched itself as a major technique in laboratories 
concerned with studying the thermodynamics of chemical systems. Recent developments in 
the calorimeter marketplace will undoubtedly continue to popularize microcalorimeters as 
mainstream instruments. The technology of microcalorimetry has in turn benefited from this 
trend in terms of enhanced sensitivity, signal stability, physical footprint and user-
friendliness. As the popularity of solution microcalorimeters has grown, so has an 
impressive body of literature on various aspects of microcalorimetry, particularly with 
respect to biophysical characterizations. The focus of this chapter is on experimental and 
analytical aspects of solution microcalorimetry that are novel or represent potential pitfalls. 
It is hoped that this information will aid bench scientists in the formulation and numerical 
analysis of models that describe their particular experimental systems. This is a valuable 
skill, since frustrations often arise from uninformed reliance on turnkey software that 
accompany contemporary instruments. This chapter will cover both differential scanning 
calorimetry (DSC) and isothermal titration calorimetry (ITC). It targets physical chemists, 
biochemists, and chemical engineers who have some experience in calorimetric techniques 
as well as nonlinear regression (least-square analysis), and are interested in quantitative 
thermodynamic characterizations of noncovalent interactions in solution. 

2. Differential scanning calorimetry 

DSC measures the heat capacity (Cp) of a sample as the instrument “scans” up or down in 
temperature. For reversible systems, direct interpretation of the data in terms of 
thermodynamic parameters requires that chemical equilibrium be re-established much more 
rapidly than the scan rate. This can be verified by comparing data obtained at different scan 
rates. For transitions involving a change in molecularity (e.g., self-association/dissociation, 
ligand binding/unbinding), reversibility can also be confirmed by the lack of hysteresis 
between heating and cooling experiments. The optimal scan rate is ultimately a compromise 
between the requirement for reversibility and the desire for reasonable throughput; 
typically this falls between 0.5 to 1.0 °C/min for most systems in dilute aqueous solutions. 

2.1 Experimental conditions for DSC 

The observed or apparent thermodynamics of solution systems generally include linked 
contributions from other solutes in addition to the species of interest. They include buffers, 
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salts, neutral cosolutes, and cosolvents. Of these, the choice of buffer, or any ionizable 
species in general, must take into account the change in pKa with respect to temperature i.e., 

the enthalpy of ionization (Hion). Unless a buffer’s Hion is negligibly small, its pKa will 
exhibit a temperature dependence, leading to a change in pH of the solution upon heating or 
cooling. Failure to take this fact into account may introduce significant artifacts into the 
observed melting behavior. Such changes in pH represent a different issue from any 
coupled ionization enthalpy arising from the release or uptake of protons associated with 
the transition of interest. 
The direction and extent of the temperature of pH for a buffered solution depends on the 
sign and magnitude of Hion as well as the concentration of the buffering species. Consider 
the ionization of a buffer AZ in the direction of deprotonation to produce its conjugate base 
BZ-1: 

 1A  B Hz z   (1) 

According to the van’t Hoff equation, 

 ion ion
10

(1 / ) (1 / )

pKadK d dH

d T d T R



   , (2) 

where R is the gas constant, T is absolute temperature, and 

 
+ -1

ion

[H ][B ]

[A ]

z

z
K  . (3) 

Thus, for a buffer with a positive (endothermic) Hion, its ionization equilibrium shifts 
towards deprotonation as temperature increases, leading to a drop in pH. Conversely, the 
pH of a solution buffered by an exothermic buffer rises with increasing pH. 
Table 1 lists several common buffers for aqueous solutions (King 1969; Disteche 1972; Lo 
Surdo et al. 1979; Kitamura and Itoh 1987; Goldberg et al. 2002). As a group, substituted 
ammonium compounds exhibit substantial positive values of Hion, making them poor 
choices for DSC experiments. These compounds include the so-called “Good buffers” (Good 
et al. 1966) that are prevalent in biochemistry. Among these, Tris, is a particular offender: 
the pH of a 25 mM solution initially buffered at pH 9.0 drops by more than one pH unit 
from 0 to 37°C (Poon et al. 2002). In contrast, the ionization of carboxylic acids and their 
analogues is far less sensitive to temperature. Generally, buffers based on acetate, 
cacodylate, and phosphate, for example, are preferred choices for DSC experiments. 
Another important note relates to polyprotic species such as phosphates, citrates, and 
borates, whose pKa also depends markedly on ionic strength. This relationship is 
quantitatively given by the volume changes of ionization (V°) and interpreted in terms of 
electrostriction of solvent water molecules. Thus, the addition of salts such as NaCl or 
guanidinium salts (the latter commonly used to denature proteins) will systematically 
reduce the pH of a solution buffered by polyprotic acids. The pH of a 0.1 M phosphate 
buffer at pH 7.2, for example, can fall by 0.5 pH unit upon addition of 0.5 M of NaCl. Molar 
concentrations of guanidinium hydrochloride will produce an even greater drop. On the 
other hand, inorganic cosolvents have the opposite effect by affecting the solution dielectric. 
Of course, once the pH of these buffers is adjusted to a value that is compatible with the 
apparent pKa, it will be stable with respect to temperature. As seen in Table 1, it is generally 
the case that a buffer is either sensitive to temperature or ionic strength in aqueous solution. 
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Buffer pKa H°, kJ mol-1 Cp°, J K-1 mol-1 V°, mL mol-1 a 

     

     
Acetate 4.756 -0.41 -142 -10.6 
Bicine 8.334 26.34 0 -2.0 
Bis-tris 6.484 28.4 27 3.1 

Cacodylate 6.28 -3 -86 -13.3 

Citrate 
3.128 
4.761 
6.396 

4.07 
2.23 
-3.38 

-131 
-178 
-254 

-10.7 
-12.3 
-22.3 

Glycine 
2.351 
9.780 

4 
44.2 

-139 
-57 

-6.8 

HEPES 7.564 20.4 47 4.8 
Imidazole 6.993 36.64 -9 1.8 

MES 6.27 14.8 5 3.9 
MOPS 7.184 21.1 25 4.7 

Phosphate 
2.148 
7.198 
12.35 

-8 
3.6 
16 

-141 
-230 
-242 

-16.3 
-25.9 
-36.0 

Succinate 
4.207 
5.636 

3.0 
-0.5 

-121 
-217 

 

Tris 8.072 47.45 -142 4.3 
     

a Ionization volume at atmospheric pressure at infinite dilution. 

Table 1. Thermodynamic properties of ionization by common aqueous buffers 

2.2 Analysis of DSC data 

A complete DSC experiment consists of matched scans of a sample and a sample-free 
reference solution. Blank-subtracted data can be empirically analyzed to obtain model-
independent thermodynamic parameters. The difference between pre- and post-transition 
baselines gives the change in heat capacity, Cp. After subtracting a suitable baseline across 
the transition range, the arithmetic integration of the Cp vs. T trace yields the so-called 
calorimetric enthalpy: 

 
cal p

T

T

f

i
H C dT   . (4) 

Hcal is the value of the transition enthalpy at the transition temperature, Tm. The entropy at 
Tm is 

 cal( )
m

m

H
S T

T


  . (5) 

Thus, a single DSC experiment yields the complete thermodynamics of a transition. Model-

free determination of thermodynamics, including the direct measurement of Cp, is a 
unique feature of DSC not possible with optical techniques (such as absorption and 

fluorescence spectroscopy) which access H via the van't Hoff equation. However, model 
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fitting by least-square analysis can extract considerably more useful information and 
facilitate quantitative hypothesis testing. 
In general, the reference-subtracted DSC data represent the heat capacity of the initial state 0 

(Cp,0) as well as the excess heat capacity function, <Cp(T)>: 

 
p p,0 p
( ) ( )C T C C T   . (6) 

Consider a general model in which the sample undergoes a transition from initial state 0 
through intermediates 1, 2, ... , i to the final state n. (One can readily envisage extensions of 
this model in which a heterotypic complex dissociates into subunits which then go on to 
further, independent transitions.) The excess heat capacity function is (Privalov and 
Potekhin 1986) 

 

p
1

p,
1 1

tr int

p , p ,
1 1

( )
( ) ( ) ( )

( )
( )

( ) ( )

n

i i
i

n n
i

i i i
i i

n n

i i
i i

d H T d
C T H T T

dT dT

d T
H T C

dT

C T C T



 

 



 

 

       

   

 



 

 

, (7) 

where Hi and Cp,i are the enthalpy and heat capacity change, respectively, from state 0 to 

state i, and i(T) is the fractional conversion at state i. tr

p ,
( )

i
C T and int

p ,
( )

i
C T are called 

"transition" and "intrinsic" heat capacities, respectively. The intrinsic heat capacity, which 
represents the summed heat capacities of the various species present at T, is the baseline 
function of the observed DSC trace (Figure 1). Some analytical protocols invite the user to 
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Fig. 1. An excess heat capacity function and its constituent transition and intrinsic heat 

capacities. Integration of the transition heat capacity, tr

p ,
( )

i
C T , gives Hcal at the transition 

temperature (50°C here). 
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perform manual baseline subtraction before fitting a excess heat capacity function. This is 

intended to eliminate int

p ,
( )

i
C T  from the fitting function. In the transition region, manual 

baseline subtraction requires either heuristic or semi-empirical criteria to connect the pre- 

and post-transitional states. This is both unnecessary and questionable practice, since 

manual editing may (and probably do) bias the data. The most appropriate approach is to fit 

both the excess and intrinsic heat capacities directly according to Eq (7). Since both terms are 

functions of i(T), the fitted baseline will objectively track the progress of each transition. 

Note that Cp,0 and Cp,i are taken to be constants in Eqs (6) and (7) since their temperature 

dependence is generally weak over the experimental range. They can be formulated, if 

desired, as polynomials to define nonlinear baselines. Care must be taken, however, to 

ensure that such curvature is not masking some low-enthalpy transition such as 

conformation changes of proteins in the native state (Privalov and Dragan 2007). 

2.2.1 Formulation of DSC models 

The principal task in formulating DSC models is deriving expressions for i(T) from the 
relevant equilibrium expressions and equations of state. Implicit in this task is the 
computation of Ki from its corresponding thermodynamic parameters. This in turn requires 
the choice of a reference temperature, the most convenient of which is the characteristic 

temperature T° at which G(T°) = 0: 

 
p

( ) ( ) 1 ln
T T

G T H T C T T T
T T

                  
. (4) 

Again Cp is taken to be independent of temperature in the experimental range. The 
simplest DSC model involves the isomeric conversion of a species in a strictly two-state 
manner (i.e., no intermediate state is populated at equilibrium). The denaturation of many 
single-domain proteins exemplifies this model. This excess heat capacity function is 

 
2

p p2 2
( )

( 1) 1

K H K
C T C

K RT K


   

 
. (5) 

The two terms on the right side represent tr

p ,
( )

i
C T and int

p ,
( )

i
C T , respectively. The DSC 

traces in Figure 1 are simulated using Eq (5) with H = 50 kcal/mol, Cp = 500 cal mol-1 K-1, 

and T° = 50°C (1 cal  4.184 J). In this model, T° is the midpoint of the transition (i.e., K = 1 

and 0.5
1

K

K
  


) and marks the maximum of the int

p ,
( )

i
C T  function. 

For transitions involving changes in molecularity, i(T) includes total sample concentration, 
ct in addition to equilibrium constants. While the mechanics of formulating such models is 
not different, a potential source of inconsistency arises from the choice of unit in 
thermodynamic parameters. Specifically, every intensive thermodynamic parameter can be 
defined either per unit of monomer or oligomer. Either choice is correct, of course, but the 
resultant differences may lead to some confusion. Take for example a two-state homo-
oligomeric transition (Privalov and Potekhin 1986; Freire 1989): 

 
n

K
X nX , (6) 
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where K is the equilibrium dissociation constant. Table 2 shows the subtle differences in 
accounting arising out of the two definitions. 
 

Variable/parameter Per unit monomer Per unit oligomer 
   

ct [X] + n[Xn] [X]/n + [Xn] 

 
t

[X]

c
 

t

[X]

nc
 

d

dT


 

2

2

(1 )

( 1)

n H

n n RT

 


 
 

 
2

2

(1 )

( 1)

H

n n RT

 

 

 
 

K 1

1

n

n

t
nc







 1

1

n

n n

t
n c







 

G lnnRT K  lnRT K  

Table 2. Equivalent formulations of a two-state homo-oligomeric transition 

In the author's experience (Poon et al. 2007), the choice of per unit monomer is more 
convenient, particularly when oligomers of different molecularities are compared. In 

addition, it can be seen that K is a polynomial in  of order n. Even in cases where  can be 
solved explicitly in terms of K and ct (n ≤ 4), it is advisable to use numerical procedures such 
as Newton's method instead to minimize potential algebraic errors and avoid a loss of 
significance in the fitting procedure. 
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Fig. 2. Two-state dissociation of an homo-oligomer. The traces are simulated for a pentamer 

(n = 5) where H = 50 kcal mol-1, Cp = 250 cal mol-1 K-1 and T° = 100°C. All 
thermodynamics parameters are per unit monomer. Note the asymmetry in both heat 
capacity functions. 
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An additional consideration for transitions involving changes in molecularity concerns the 
choice and interpretation of the reference temperature. In contrast with isomeric transitions, 
T° is neither the midpoint of a transition (in the context of concentrations) nor does it mark 
the maximum of the transition heat capacity function. Both of the latter temperatures are 
lower than T°. In addition, the midpoint of the transition, T50, is below the temperature of 
the transition heat capacity maximum, Tm. These relationships are illustrated for the two-
state dissociation model in Figure 2. The non-equivalence of Tm and T50 also introduces a 

systematic difference between the calorimetric and van't Hoff enthalpies (HvH, reported at 
Tm) (Freire 1989; Freire 1995). Moreover, the actual values of T50 and Tm are concentration-
dependent, and this serves as a diagnostic for a change in molecularity in the transition. For 
data fitting purposes, T° remains the most efficient choice because it is independent of 
concentration. After data fitting, estimates of Tm and T50 can also be easily obtained from the 
fitted curve. 
Extension of the foregoing discussion applies readily to multi-state transitions. However, an 
explicit, statistical thermodynamic approach is generally used to derive the required 
equations for each state as a function of the partition function (Freire and Biltonen 1978). 
Details in deriving these models have been discussed extensively by Privalov's and Freire's 
groups (Privalov and Potekhin 1986; Freire 1994). From the standpoint of numerical 
analysis, it is worth noting that the excess enthalpy is the summed contributions from each 
state: 

 
p

1

( )
( ) ( )

n

i i
i

d H T d
C T H T

dT dT




       
  (7) 

Depending on the number of states considered, the expansion of the derivative on the right 

side of Eq (7) can be formidable. Commercial programs such as Mathematica (Wolfram 

Research, Champaign, IL, USA) are thus recommended for symbolic manipulation for all 

but the most trivial derivations. Less preferably, one can numerically integrate the raw Cp 

vs. T data and fit ( )H T  directly. There are generally enough data points (at 0.1°C 

resolution) in an experiment that any loss of resolution should be negligibly small.  

3. Isothermal titration calorimetry 

As its name indicates, ITC measures the heat change accompanying the injection of a titrant 
into titrate at constant temperature. In contemporary instruments, this is accomplished by 
compensating for any temperature difference between the sample and reference cells (the 
latter lacking titrate, usually just water). The raw ITC signal is therefore power P, a time-
dependent variable. Integration with respect to time therefore yields heat q which is the 
primary dependent variable that tracks the progress of the titration of interest: 

 
0

( )
t

q t Pdt


   . (8) 

Typically, ITC is operated in incremental mode in which the titrant is injected in preset 
aliquots after successive re-equilibration periods. A feature of ITC that distinguishes it from 
most titration techniques is that the measured heat does not accumulate from one injection 
to the next, but dissipates as the instrument measures the heat signal by returning the 
sample and reference cells to isothermal conditions. ITC is therefore a differential technique 
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with respect to the concentration of the titrant (X) i.e., the derivative of q with respect to the 
total titrant concentration, [X]t: 

 b

1t t

[X ]

[X] [X]

n
i

i
i

dq d
V H

d d

  . (9) 

where [Xi]b is the concentration of X in the i-th bound state. This contrasts with most other 
physical binding signals (e.g., absorbance, fluorescence intensity or anisotropy, pH) which 
are integrative in nature. 

3.1 Experimental conditions for ITC 

As a thermodynamic tool for studying molecular interactions, the singular strength of ITC is 
the direct measurement of binding enthalpies. Model-based analysis of ITC data, the subject 
of Section 3.2, allows the extraction of binding affinity and additional parameters in complex 
systems. As a label-free technique, ITC compares favorably with other titration techniques 
such as fluorescence and radioactivity. However, despite much-improved sensitivity 
(minimum detectable thermal energy <0.1 µJ), baseline stability, and titrant control found in 
contemporary instruments, sensitivity of ITC is relatively limited. The actual limit of 
detection depends primarily on the intrinsic enthalpy of the binding system at the 
temperature of interest, and to a lesser extent, the physical configuration of the instrument. 
Roughly speaking, a typical ITC experiment requires at least 10-6 M of titrate in a 1-mL 
volume and 10-4 M of titrant in a 100-µL syringe. (Recently, so-called "low volume" 
instruments equipped with 200-µL cells and 50-µL syringes have become available.) 
The sensitivity of ITC is helped considerably by the differential nature of its signal (which is 

proportional to 
t

[X]

dq

d
) with respect to titrant concentration (Figure 3). In practice, the 

requirement for sufficient concentration in the sample cell to produce sufficient heat signals 

poses a direct limit on the tightest binding that may be reliably determined. Specifically, 

depletion of titrant dominates at titrate concentrations that are high relative to the 

dissociation constant K. Under this condition, the titration approaches a discontinuity in the 

first derivative at the equivalence point (Poon 2010). In the case of simple 1:1 binding, an 

empirical relationship that the product 1 < ctitrate/K < 1000, where ctitrate is the titrate 

concentration, is optimal for reliable estimation of K (Wiseman et al. 1989). One way of 

getting around this problem for very tight binding is to lower the apparent value of K by 

including a suitable, fixed concentration of competitor in the cell. Another possibility is 

continuous ITC, which will be discussed in Section 3.1.2. It should be noted that even under 

conditions where K cannot be determined, H can still be determined by integration of the 

measured heat: 

 
0

titrate

( )1 V q v
H dv

c v
   , (10) 

where V is the volume of the (fixed) sample cell. (A volume correction is generally 

necessary; see Section 3.2.1.3.) A requirement for Eq (10) is, of course, that the titration is 

complete. Whichever the case, repeating the titration at different temperatures provides an 

estimate of the change in heat capacity by Kirchoff's relation: 
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p

( )d H T
C

dT


  . (11) 

If the interaction under investigation occurs in a buffered solution, the earlier discussion on 
the temperature dependence of pKa would again be relevant. More generally, binding that 
involves coupled uptake or release of protons will contain the buffer's enthalpy of ionization 
in the apparent binding enthalpy (Fisher and Singh 1995). 
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Fig. 3. The differential nature of ITC data. The volume and enthalpy are intentionally 
omitted to illustrate the differential nature of ITC data with respect to total titrant 
concentration. Simulated 1:1 binding to 10 µM titrate is shown in Panel A, with the 
corresponding integrated binding curves in Panel B. The values of K are as follows: a, 10-9 
M; b, 10-8 M; c, 10-7 M; d, 10-6 M; and e, 10-5 M. The values of ctitrate/K range from 104 to 1. 

Finally, ITC has been used as an “analog” of DSC for studying the stability of complexes. A 
concentrated solution of complex in the syringe is titrated into pure water or buffer in the 
cell. The resulting dilution drives complex dissociation and the attendant enthalpy is 
measured. This method has been used to characterize complexes through the spectrum of 
stoichiometries, from dimers (Burrows et al. 1994; Lovatt et al. 1996) to higher oligomers 
(Lassalle et al. 1998; Luke et al. 2005) to polymeric species (Stoesser and Gill 1967; Arnaud 
and Bouteiller 2004). Again, given the sensitivity of ITC, relatively high concentrations are 
required, so this technique is limited to the measurement of relatively weak complexes. It 
has been shown (Poon 2010) that the ITC data can be used to diagnose a dimeric or higher-
order complex based on the presence of an inflection point in the latter. 

3.1.1 Baseline signals 

Two types of baselines are operative in an ITC experiment. One is instrument noise. Drifts 

on the order of 0.02 µW/h are routinely achievable in contemporary instruments. Another 

source of baseline arises from the injection of titrant. At the very least, viscous mixing makes 

a measurable if small exothermic contribution to the observed heat. This effect can be 

observed in a blank-to-blank injection (Figure 4), and serves as a casual useful indicator of 

the cleanliness of the cell and syringe between sample runs. Moreover, any mismatch in the 

matrices of the titrant and titrate will be manifest as a dilution enthalpy with each injection. 
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For small molecules, solids or lyophilized samples are usually dissolved in water or buffer. 

To complicate matters, hydrophobic solutes often require a cosolvent such as DMSO or 

DMF to achieve initial solubility before addition of the aqueous solvent; dilution of the 

cosolvent will therefore contribute to the observed heat at each injection. In other cases, 

ionizable solutes can perturb solution pH due to their substantial (>10-3 M) concentration in 

the syringe. Unless the solvent is adequately buffered, the pH in the cell and syringe will 

differ significantly and neutralization heats will contribute to the observed signal. 
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Fig. 4. Typical water-water control "titration." Inset, integrated areas of the water peaks. 
Given the low signal-to-noise ratios, the values must be considered very crude. However, 
the scatter also attests to the cleanliness of the cell and syringe. 

In the case of macromolecular titrant and titrates, the solution matrices can be closely 
matched by extensive co-dialysis in the same solution. Care must be taken, however, with 
ionic polymers such as nucleic acids. These solutes can alter the distribution of ions in their 
compartment during dialysis due to the Donnan effect. Specifically, a non-diffusible 
polyionic solute excludes diffusible ions of the same charge from their compartment and 
therefore induces an asymmetric distribution of diffusible ions across the semipermeable 
membrane at equilibrium. To illustrate, for a simple system consisting only of the non-
diffusible polyion M and a monovalent salt AB, the ratio concentrations of A+ or B- across 
the membrane is (Cantor and Schimmel 1980): 

 

2

2

D

t t

[M] [M]
1 1

2[AB] 2[AB]

z z
r

 
        

 
, (12) 

where z is the charge on the polyion (shown simply as M for brevity). At the concentrations 
required for the syringe, z[M] can be substantial. For example, a duplex oligonucleotide 
consisting of 20 base-pairs represents at 100 µM contributes 4 mM in total anions 
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(phosphates). The so-called Donnan ratio, rD, is significantly above unity even at low 

polyion:salt ratios (). Eq (12) shows that a ten-fold excess of salt concentrations (=0.1) 
leads to a 10% exclusion of A or B from the compartment occupied by polyion. If AB is a 
buffer salt, the result is also a change of pH. Such asymmetry will modify the heat observed 
by ITC. As is well known, and illustrated by Eq (12), Donnan effects can be suppressed by 
ensuring a sufficient excess of diffusible salt in the dialysate. Unfortunately, the required salt 
concentrations may interfere with the investigation of interactions mediated substantially by 
electrostatic effects (as is usually the case for polyions). If possible, therefore, it is advisable 
to arrange for the polyionic species to be in the cell, where concentrations are lower. 
In practical terms, none of these baselines effects are significant if the heat generated by the 
interaction of interest is sufficiently strong. This is not always achievable, however, for 
several reasons. Availability or solubility of the sample, particularly biological samples, may 
be limiting. It may also be desirable, for example, to perform titrations at a range of cell 
concentrations for binding to oligomerizing systems. Characterization of binding to a 
polyion at low salt concentration may require a reduced concentration. Thus, strategies for 
handling relatively low signal-to-noise situations are helpful in many situations. The most 
basic of these involve inspection and, where necessary, manual editing of the power 
baseline to mitigate the occasion excursion due to instrumental noise. To this end, an 
increase in the time between injection may be indicated to unambiguously identify the 
restoration of baseline. In addition, the residual heats (which may be up to 10 µJ) after the 
equivalence point are unlikely to be negligible. Subtraction with data from a titrant-to-blank 
run would likely introduce more noise into the data and be no more helpful than taking a 
simple average of the final post-equivalence heats. If the data is to be fitted to models, a 
more appropriate solution is to add a constant parameter B to the fitting equation: 

 obsd b

1t t

[X ]

[X] [X]

n
i

i
i

dq d
V H B

d d

   . (13) 

3.1.2 Continuous ITC titrations 

While incremental titrations most commonly performed in ITC, an alternative mode of 
operation is a continuous titration (cITC) (Markova and Hallén 2004). In cITC, the titrant is 
continuously into injected the cell at a low rate (~0.1 µL/s). The primary advantage of cITC 
is throughput. An incremental ITC experiment typically requiring 20 injections of 5 µL at 
intervals of 300 s takes (neglecting time for baseline stabilization) 100 min; at 0.1 µL/s, cITC 
would require approximately 17 min. Another potential motivation for cITC is increased 
resolution in terms of model-dependent analysis. In incremental ITC, peak-by-peak 

integration of thermal power is performed to obtain 
t

[X]

dq

d
. This step reduces the number of 

collected data points (typically 1 s-1 over 103 s, or about one to two hours) for nonlinear 
regression to the number of injections (usually 10 to 30). By using the thermal power data 
directly for fitting, cITC can in principle discriminate the curvature required to define tight 
binding. 
Maintenance of quasi-equilibrium conditions throughout the titration is essential to correct 
interpretation of derived thermodynamic parameters and is a major concern for cITC. To 
this end, the stirring rate in cITC must be considerably increased (up to 700 rpm) relative to 
incremental ITC to facilitate mixing of titrant into the titrate solution. Additionally, the 
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instrument must be able to provide sufficient thermal compensation during the titration to 
maintain isothermal conditions. Finally, the kinetics of the interaction of interest must be 
fast relative to the injection rate. Generally speaking, these criteria are most likely met by 
relatively high-affinity interactions with moderate binding enthalpies. 

3.2 Analysis of ITC data 

The direct measurement of H is considered a significant advantage over non-calorimetric 
binding methods since the latter access the binding thermodynamics indirectly in terms of 
the equilibrium constant K via the van’t Hoff equation: 

 vH
ln

(1 / )

d K H

d T R


  . (14) 

Estimation of Cp by non-calorimetric methods, therefore, involves taking a second 
derivative of the measured data. Another potential source of difficulty is the interpretation 
of K, which is model-dependent. As in DSC, however, ITC becomes a considerably more 
useful analytical technique when model fitting is used for parameter estimation and 

hypothesis testing. Moreover, agreement between the directly-fitted, calorimetric H and 

the van't Hoff HvH obtained from Eq (14) is a strong indication of the physical correctness 
of the model at hand. 
The most fundamental concept in the analysis of ITC data is the differential nature of the 
heat signal with respect to titrant concentration (Figure 3). Recalling Eq (9), 

b

1t t

[X ]

[X] [X]

n
i

i
i

dq d
V H

d d

  . 

Integration of this fundamental equation gives the is the functional form of conventional 
binding models: 

 
b b t

1

([X ] ) [X ] ([X ] )
n

i i i i
i

q V H


   (15) 

The ideal approach to fitting ITC data is to directly fit Eq (9) (Poon 2010). For simple models, 

it is possible to write analytical expressions for b

t

[X ]

[X]
i

d

d
explicitly in terms of [X]t i.e., the 

functional form of Eq (15). Take, for example, simple 1:1 binding of X + Y   XY: 

 

2

t t t t b b

2

t t t t t t

b

[X] [Y] ([X] [Y] )[X] [X] 0

[X] [Y] ([X] [Y] ) 4[X] [Y]
[X]

2

K

K K

    

     


, (16) 

where 
b

[X][Y] [X][Y]

[XY] [X]
K    is the equilibrium dissociation constant. Its derivative is 

 b

2
t

[X] 1 1

[X] 2 2 ( 1 ) 4

d r

d r

 
 

    
, (17) 
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where r = K/[X]t and  = [X]t/[Y]t. Eq (17) is sometimes referred to as the Wiseman 
isotherm (Wiseman et al. 1989). As complexity of the model increases, however, the algebra 
involved rapidly becomes prohibitive. In any case, numerical methods provide the means 
for generating solutions for Eq (9). 

3.2.1 Numerical aspects of ITC data analysis 

Given the usual practice of formulating models in terms of total or unbound concentrations, 
rather than their derivatives, conventional ITC data analysis has handled the differential 
nature of calorimetric data by fitting to a finite-difference version of Eq (9). Thus, for the j-th 
injection: 

 
1j j j j

q q q q    , (18) 

where qj is a volume-correction factor. This approach has the apparent advantage that 
models which have been formulated in terms of [X]b vs. [X]t can be used directly. However, 

Eq (18) represents poor practice in nonlinear regression. Since each computation of qj 
requires evaluation of q corresponding to two consecutive injections, j and j-1, the data 
points (and their errors, albeit small) are not independent. Independence of observations 
constitutes a major assumption of nonlinear regression, one which the recursive form of Eq 

(18) clearly violates. Specifically, the residual in qj during fitting becomes increasing 
correlated with increasing j. In addition, the resultant propagation of error likely violates the 
assumption of homoscedasticity (uniform variance) as well. Unless specialized regression 
techniques are employed (such as correlated least-squares), violations of these assumptions 
potentially calls the errors of the parameters, and possibly the parameters themselves, into 
question. 
From the perspective of numerical analysis, Eq (18) is also entirely unnecessary. As stated 
previously, the most appropriate approach to handling ITC data is to fit Eq (9) directly. 

Posed in the form of Eq (9), ITC models (more specifically, the solution of b

t

[X]

[X]

d

d
) represent 

classic initial value problems (IVPs). IVPs are first-order ordinary differential equations 
(ODEs) with a specific initial condition ([X]b = 0 at [X]t = 0) for which numerical methods for 
their solution are well-established. In addition avoiding the statistical pitfalls of Eq (18), 
formulating ITC models as differential equations simplify the algebra considerably. This is 
because implicit differentiation offers a welcome shortcut that obviates the need for an 
explicit solution for [X]b. This is illustrated for X + Y   XY with Eq (16): 

 

b b

t t t b b

t t

b

b t t b t

t

b b t

t b t t

[X] [X]
[Y] ([Y] [X] ) [X] 2[X] 0

[X] [X]

[X]
(2[X] [Y] [X] ) [X] [Y]

[X]

[X] [X] [Y]

[X] 2[X] [Y] [X]

d d
K

d d

d
K

d

d

d K

     

    




  

. (19) 

Recognizing that [X]t, [Y]t are constants (and K being the parameter to be estimated), Eq (19) 
takes on a noticeable simpler (but equivalent) form compared to the Wiseman isotherm, Eq 
(17). More importantly, implicit differentiation always yields an explicit ODE even when no 
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analytical expression for [X]b exists e.g., polynomials of order >4. Direct substitution of Eq 
(19) into Eq (9) directly yields the ODE needed to generate values for nonlinear regression. 
This approach of formulating explicit titration models for ITC has been demonstrated for 
many empirical models in common use, including the multi-site model, homotropic 
cooperativity, and two-state self-association (Poon 2010). To further illustrate the this 
approach, a competitive binding model will be examined. This is a method of measuring 
tight binding by ITC by adding a competitive species in the cell to reduce the apparent 
affinity (Sigurskjold 2000). The mechanism is an example of the general multi-site model 
involving two ligands competing for a single site (Wells 1992). The equilibrium distribution 
of bound titrate is a function of the affinities of the titrant X1 and competitor X2 for the titrate 
Y as well as the total concentrations of all three species. For the titrant-titrate complex, X1Y: 

 2 3

0 1 1 2 1 3 1
[X Y] [X Y] [X Y] 0a a a a    , (20) 

where 

2

0 2 1 t t

1 1 t 1 2 2 t t 2 1 t t

2

2 1 2 1 t t 1 2 1 t 2 t t

3 2 1

[X ] [Y]

[X ] { ( [X ] [Y] ) ([X ] 2[Y] )}

(2[X ] [Y] ) ( [X ] [X ] [Y] )

a K

a K K K

a K K K K

a K K

 
    

      
 

 

and K1 and K2 are the equilibrium dissociation constants of X1 and X2 for the titrate, 
respectively. The corresponding expression for the competitor-titrate complex, X2Y, can be 
obtained from symmetry arguments: 

 2 3

0 1 2 2 2 3 2
[X Y] [X Y] [X Y] 0b b b b    , (21) 

where 

2

0 1 2 t t

1 2 t 2 1 t t 1 2 2 t t
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3 1 2
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b K K

 
    
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 

. 

It is possible to solve the cubic equation in Eqs (20) and (21) explicitly, followed by 

differentiation of the solutions to obtain 1

1 t

[X Y]

[X ]

d

d
 and 2

1 t

[X Y]

[X ]

d

d
 as was done with the Wiseman 

isotherm. All of this is avoided, however, by implicit differentiation with respect to [X1]t 
which directly yields the required derivatives: 
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. (22) 
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The observed heat is now the sum of the enthalpy of unbinding of X2 from Y and the 
binding of X1 to Y: 

 1 2

X Y X Y

t 1 t 1 t

1 2

[X Y] [X Y]

[X] [X ] [X ]

dq d d
V H H

d d d

 
    

 
. (23) 

As shown in Figure 5, a judicious choice of competitor reduces the apparent affinity of the 
titrant to a range more amenable for regression. In this case, the initial condition for [X2Y] is 
not zero because the titrate is essentially pre-equilibrated with competitor before any titrant 
has been injected. The initial value for numerical integration is supplied by Eq (16): 

2

2 t t 2 2 t t 2 2 t t

2

[X ] [Y] ([X ] [Y] ) 4[X ] [Y]
[X Y]

2

K K     
 . 

Thus, the competitive model requires prior knowledge of both the concentration and affinity 
of the competitor. Since the competitor would therefore require its own characterization, a 
weak competitor is preferred, which means it would need to be present at significant 

concentrations (i.e., [Y]t  K). Since binding of the titrate involves the unbinding of the 
competitor, the enthalpy of competitor unbinding may be substantially convoluted in the 
observed heat as indicated by Eq (23). 
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Fig. 5. Titrant-titrate binding in the presence of a competitor. A, simulated 1:1 titrant-titrate 

binding in the absence of competitor. The parameters are K1 = 10-10 M, H1 = -10 kcal mol-1, 
and [Y]t = 10 µM. Data representing this level of affinity would be unfit for model-fitting; 

K1/[Y]t = 104. B, in the presence a competitor, X2, at 10 µM (K2 = 10-8 M, H2 = -5 kcal mol-1). 
Inset, titration of the competitor. 

Explicit titration models are also amenable to formulating models for continuous ITC. In the 
case of cITC, thermal power P is directly used in model fitting, so Eq (15) needs to be 
differentiated with respect to time: 

 b

b
1 1

( ) [X ] ( )
[X ] ( )

n n
i

i i i
i i

dq t d d t
P V H t V H

dt dt dt 

            
  . (24) 
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Applying the chain rule and the relation 
syr inj

tot
[X ]

i

c v

V
 , where csyr is the concentration of 

titrant in the syringe and vinj is the injection volume, 

 
syr injb b tot b

tot tot

[X ] [X ] [X ] [X ]

[X ] [X ]
i i i i

i i

c dvd d d d

dt d dt d V dt

 
   

 
. (25) 

(The subscript "tot" has been used to denote total concentration to avoid ambiguity with the 

variable t for time.) Note that 
inj

dv

dt
 is the (constant) injection rate. Substituting into Eq (24) 

gives 

 
inj b

syr
1 tot

[X ]

[X ]

n
i

i
i i

dv d
P c H

dt d

 
  

 
 . (26) 

Thus explicit expressions of b

tot

[X ]

[X ]
i

i

d

d
 can be directly used as in incremental ITC. At a 

sufficiently low injection rate, Eq (26) has the potential of "flattening out" the titration by 
transforming it in the time domain. This feature, in addition to the higher density of data 
points available for regression, may allow cITC to characterize much tighter binding than is 
practicable with incremental ITC (Markova and Hallén 2004). 
In the foregoing discussion, the need to correct for various displacement and dilution effects 
due to the injection process has not been considered. In the author's experience, this is best 
handled during preliminary data reduction, before nonlinear regression. This aspect will be 
discussed in Section 3.2.1.3.  

3.2.1.1 Choice of dependent variable 

Another benefit of formulating ITC models as explicit ODEs is the flexibility in the choice of 
dependent variable for implicit differentiation, as long as it is a function in [X]t. For the 1:1 
binding model, formulation in terms of the unbound titrant X gives the (and simple) 
functional form of the familiar Langmuir isotherm: 

 t

b

[X][Y]
[X]

[X] K



. (27) 

Applying the chain rule of calculus, 

 b b
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At the same time, using the equation of state [X] = [X]t - [X], 

 t b b

t t t
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Substituting the results from Eq (19) into Eq (29), 
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 b t

t b t t t t

[X] [X] [X] [X]
1

[X] 2[X] [X] [Y] 2[X] [X] [Y]

d K

d K K

 
  

     
 (30) 

The simultaneous equations (28) and (30) represent another formulation of the same model, 
except now [X] is the explicit dependent variable instead of [X]b. (The initial condition is [X] 
= 0 at [X]t = 0.) Of course, we have previously derived Eq (19) directly, so this approach is 
regressive for this simple model. However, The flexibility to use any dependent variable of 
[X]t is useful, for example, for models that are formulated in terms of the binding 
polynomial which is based on [L] (Schellman 1975; Freire et al. 2009). 

3.2.1.2 Practical considerations in implementing explicit ITC models 

Successful implementation of Eq (9) requires numerical procedures for solving IVPs. The 
explicit, closed-form ODEs encountered in most models are typically ratios of polynomials. 
These functions are generally amenable any of the standard Runge-Kutta methods, which 
are widely available. A fast CPU is helpful, but not required. To this end, the tolerance for 
iteration should not be unnecessarily stringent in relation to the concentrations used and the 
value of K expected. Generally, a value of 10-6 will suffice. Even average single-core CPUs 
will handle ODEs of practical complexity with reasonable dispatch. Any significant delay is 
almost always related to input/output issues and can be alleviated by suppressing 
intermediate output. Numerical failures, if they occur, usually does so when there are two 
or more very different scales of the independent variable on which the dependent variable is 
changing e.g., extremely tight binding to one site in the multi-site model. One such example 
is competitive binding in the presence of a very strong competitor in Eq (23). These 
pathological scenarios are associated with “stiff” differential equations that require more 
specialized algorithms for numerical solution. Fortunately, these situations are unlikely to 
be encountered as they are usually incompatible with experimental data in the first place. 
Several technical software suites, such as Mathematica (Wolfram Research, Champaign, IL, 
USA), MATLAB (the MathWorks, Natick, MA USA), Maple (Maplesoft, Waterloo, Ontario, 
Canada), and IgorPro (WaveMetrics, OR, USA) which have built-in numerical ODE and 
least-square minimization capabilities, represent full-featured, integrated solutions. 
Alternatively, pre-compiled libraries containing optimized algorithms for numerical ODEs 
and least-square minimization are available commercially (the Numerical Algorithm Group 
Library; Numerical Algorithms Group [NAG], Oxford, UK) or free (GNU Scientific Library 
[GSL]) for most computing platforms. Functions from these libraries can be called under 
standard programming environments (e.g., C/C++, FORTRAN) to perform the required 
procedures. Some commercial data analysis software such as Origin (Northampton, MA, 
USA) can interface with external libraries such as the NAG Library or GSL to perform 
numerical ODEs within their least-squares routines. If access to external libraries is not 
available, an adequate alternative is to code a numerical ODE algorithm (such as Runge-
Kutta-Fehlberg) as part of the target function within the data fitting routines of the analysis 
program. “Cookbook” recipes for a variety of ODE solvers are straightforward and can be 
found in most texts of numerical analysis (Press 2007).  

3.2.1.3 Volume correction 

The sample and reference cells are typically overfilled for both DSC and ITC. Overfilling 
maximizes heat transfer between the solution and the wall of the cell as air is a poor thermal 
conductor. In the case of ITC, overfilling also minimizes stray signal arising from 
mechanical agitation of the solution-air-cell interface caused by the stirring paddle. 
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However, the introduction of titrant into an overfilled ITC sample cell leads to displacement 
effects that need to be taken into account. Specifically, each injected volume of titrant 
simultaneously displaces an equal volume of titrate and any previously injected titrant out 
of the sample cell (into the access tube). The accounting for these displaced volumes and 
their effect on titrant and titrate concentration is made on the assumption that the displaced 
material is immediately and completely excluded from the titration. This implies that no 
mixing occurs between the injected and displaced materials at the time injection. The 
concentrations of the titrant X after the i-th injection in the cell is therefore 

 
inj syr t, -1 inj

t, t,0

[X] ( )
[X] , [X] 0

i

i

v c V v

V

 
  , (4) 

where V is the cell volume and vinj is the injection volume. The corresponding 
concentrations of the titrate Y is 

 
t, -1 inj

t,

[Y] ( )
[Y]

i

i

V v

V


 . (5) 

There are two ways to handle volume corrections. One is to incorporate Eqs (4) and (5) as 
additional terms in the fitting equation. In the author’s experience (Poon 2010), it is more 
efficient instead to perform the volume corrections on the dataset at the outset, and simply 
treat [Y]t,i as an additional dependent variable in the least-square procedure. 

3.2.1.4 Error analysis in ITC 

Compared to other titrations, particularly in the biochemical laboratory, that requires 
extensive manual manipulation e.g., electrophoretic mobility shift, filter binding, ITC 
instrumentation offers a greatly reduced level of statistical error in the measured data. 
Nonetheless, detailed theoretical and experimental studies of the nature and magnitude of 
statistical errors in ITC have offered insight into how instrumental errors can be minimized 
in fitted parameters. Although such studies have so far only focused on 1:1 binding, it has 
become clear that at least two régimes of instrumental errors exist (Tellinghuisen 2003; 
2005b). Specifically, for titrations associated with relatively large heats (>300 µcal or “high-
q”), proportional errors in the injected volumes dominate, and the inclusion of statistical 
weights is indicated to optimize fitted parameters. For “low-q” titrations, which typify low-
concentration titrations needed for tight binding interactions, constant errors in thermal 
detection and compensation dominate, and unweighted fitting does not adversely affect 
parameter optimization. In either case, the optimal number of injections is considerably 
lower than the norm of 20 to 25 injections, especially if variable volume procedures are 
employed (Tellinghuisen 2005a). This approach could substantially reduce titration time and 
increase experimental throughput. It may be pointed out, however, that in some 
applications, sample-to-sample variation may be greater than any statistical error inherent 
in the analytical technique. In these cases, standard errors in parameters estimated from 
replicate experiments will be higher but more representative indicators of experimental 
uncertainty than the fitting error extracted from the variance-covariance matrix. 

4. Conclusion 

Commercial development of microcalorimetry has greatly increased the accessibility of this 
technique for the thermodynamic characterization of chemical systems in solution. 
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Unfortunately, the "black-box" nature of commercial software has engendered unwarranted 
reliance by many users on the turnkey software accompanying their instruments, and an 
attendant tendency to fit data to models of questionable relevance to the actual chemistry. 
This chapter discusses several novel aspects and potential pitfalls in the experimental 
practice and analysis of both DSC and ITC. This information should enable users to tailor 
their experiments and model-dependent analysis to the particular requirements. 
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