We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

185,000

200M

Our authors are among the

TOP 1% most cited scientists

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com

Thermodynamics of Reactions Among Al₂O₃, CaO, SiO₂ and Fe₂O₃ During Roasting Processes

Zhongping Zhu, Tao Jiang, Guanghui Li, Yufeng Guo and Yongbin Yang School of Minerals Processing & Bioengineering, Central South University, Changsha, Hunan 410083, China

1. Introduction

The thermodynamic of the chemical reactions among Al₂O₃, CaO, SiO₂ and Fe₂O₃ in the roasting processes was investigated in this chapter. The chemical reactions are classified into SiO₂-Al₂O₃ system, Fe₂O₃-Al₂O₃ system, SiO₂-Fe₂O₃ system, CaO-Al₂O₃ system, SiO₂-CaO system, SiO₂-calcium aluminates system, CaO-Fe₂O₃ system, Al₂O₃-calcium ferrites system and Al₂O₃-CaO-SiO₂-Fe₂O₃ system. When the roasting temperature is over 1100K, $3Al_2O_3 \cdot 2SiO_2$ is preferentially formed in SiO₂-Al₂O₃ system; FeO \cdot Al₂O₃ can be formed in Fe₂O₃-Al₂O₃ system; ferric oxide and SiO₂ could not generate iron silicate; 12CaO \cdot 7Al₂O₃ is preferentially formed in SiO₂-CaO system; except for CaO \cdot 2Al₂O₃ and CaO \cdot Al₂O₃, the other calcium aluminates can transform into calcium silicate by reacting with SiO₂ in SiO₂-calcium aluminates system; 2CaO \cdot Fe₂O₃ with calcium ferrites(2CaO \cdot Fe₂O₃ and CaO \cdot Fe₂O₃), but able to form $12CaO \cdot Al_2O_3$ with 2CaO \cdot Fe₂O₃; when CaO, Fe₂O₃, Al₂O₃, SiO₂ coexist, they are more likely to form ternary compound $2CaO \cdot Al_2O_3 \cdot SiO_2$ and $4CaO \cdot Al_2O_3 \cdot Fe_2O_3$.

2. Binary compounds

2.1 Fe₂O₃-Al₂O₃-CaCO₃ system

 Fe_2O_3 and Al_2O_3 can all react with limestone during roasting to generate corresponding aluminates and ferrites. In Fe_2O_3 - Al_2O_3 -CaO system, the reaction Fe_2O_3 and Al_2O_3 with CaCO₃ coexist, and the reactions equations are as followed:

Reactions	A, J/mol	B, J/K.mol	Temperature, K
$CaCO_3+Al_2O_3=CaO\cdot Al_2O_3+CO_2$	161088.3	-244.1	298~1200
$CaCO_3+Fe_2O_3=CaO\cdot Fe_2O_3+CO_2$	151677.8	-220.9	298~1200

Table 1. The ΔG_T^{θ} of Fe₂O₃-Al₂O₃-CaCO₃ system ($\Delta G_T^{\theta} = A + BT$, J/mol; P_{CO_2} =30Pa, i.e., the partial pressure of CO₂ in the air)

acti

30

The relationships between Gibbs free energy (ΔG_T^{θ}) and temperature (T) are as shown in figure 1.

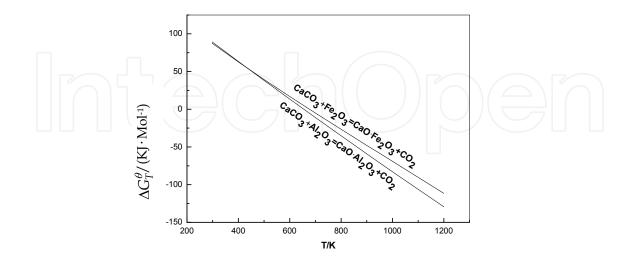


Fig. 1. Relationships between ΔG_T^{θ} and temperature in Fe₂O₃-Al₂O₃-CaCO₃ system

Figure 1 shows that, the Gibbs free energy of reactions on Fe₂O₃ and Al₂O₃ with CaCO₃ decreased with the rise of temperature in normal roasting process (due to decomposition of CaCO₃ over 1200K, so the curve has no drawing above 1200K), and the reactions all can automatically react to generate the corresponding calcium aluminate and calcium ferrite. The ΔG_T^{θ} of reaction with Al₂O₃ is more negative than the ΔG_T^{θ} of reaction with Fe₂O₃ at the same temperature. CaCO₃ has actually decomposed at 1473~1673K industrial roasting temperature, therefore, only CaO is taken into account on the following analysis.

2.2 SiO₂-Al₂O₃ system

SiO₂ mainly comes from the ore and coke ash in the roasting process. SiO₂ reacts with Al₂O₃ to form aluminium silicates. The aluminium silicates mainly include Al₂O₃·2SiO₂(AS₂), Al₂O₃·SiO₂(AS,andalusite), AS(kyanite), AS(fibrolite), $3Al_2O_3 \cdot 2SiO_2(A_3S_2)$. Thermodynamic calculation indicates that, AS₂ can not be formed from the reaction of Al₂O₃ and SiO₂ under the roasting condition. The others equations are shown in table 2.

Reactions	A, J/mol	B, J/K.mol	Temperature, K
$Al_2O_3+SiO_2=Al_2O_3SiO_2$ (kyanite)	-8469.3	9.0	298~1696
$Al_2O_3+SiO_2=Al_2O_3SiO_2$ (fibrolite)	-4463.8	-0.9	298~1696
$Al_2O_3+SiO_2=Al_2O_3 SiO_2$ (and a lusite)	-6786.1	0.6	298~1696
$\frac{3}{2}$ Al ₂ O ₃ + SiO ₂ = $(\frac{1}{2})$ 3Al ₂ O ₃ · 2SiO ₂	12764.7	-16.7	298~1696

Table 2. The ΔG_T^{θ} of Al₂O₃-SiO₂ system ($\Delta G_T^{\theta} = A + BT$, J/mol)

The relationships of ΔG_T^{θ} and temperature in Al₂O₃-SiO₂ system is shown in figure 2.

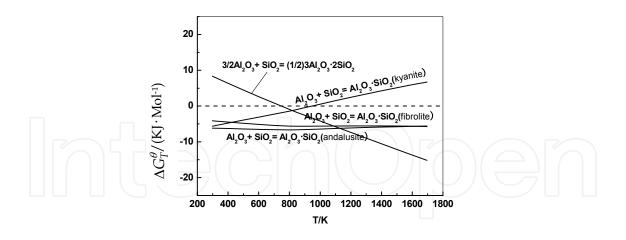


Fig. 2. Relationships of ΔG_T^{θ} and temperature in Al₂O₃-SiO₂ system

Figure 2 shows that, the ΔG_T^{θ} of kyanite is greater than zero at 1000~1700K, so the reaction cannot happen; the ΔG_T^{θ} of andalusite and fibrolite alter little with temperature changes; the ΔG_T^{θ} of A₃S₂ decreases with the rise of temperature. The thermodynamic order of forming aluminium silicates is A₃S₂, AS(andalusite), AS(fibrolite) at 1100~1700K.

2.3 Fe₂O₃-Al₂O₃ system

Al₂O₃ does not directly react with Fe₂O₃, but Al₂O₃ may react with wustite (FeO) produced during roasting process to form FeO·Al₂O₃. No pure ferrous oxide (FeO) exists in the actual process. The ratio of oxygen atoms to iron atoms is more than one in wustite, which is generally expressed as Fe_xO(x=0.83~0.95), whose crystal structure is absence type crystallology. For convenience, FeO is expressed as wustite in this thesis. Al₂O₃ may react with wustite(FeO) to form FeO·Al₂O₃ in the roasting process. The relationship of ΔG_T^{θ} and temperature is shown in figure 2, and the chemical reaction of the equation is as followed:

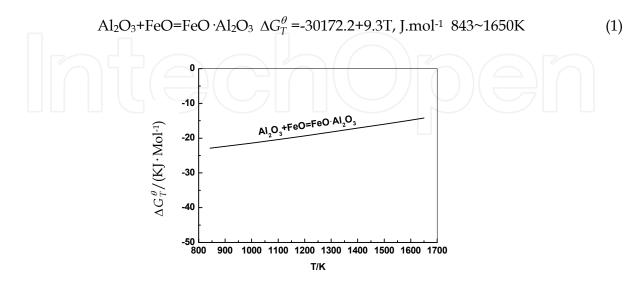


Fig. 3. Relationship of ΔG_T^{θ} and temperature in Fe₂O₃-Al₂O₃ system

Figure 3 shows that, the ΔG_T^{θ} is negative at 843~1650K, reaction can happen and generate FeO·Al₂O₃; the ΔG_T^{θ} rises with the temperature, the higher temperature is, the lower thermodynamic reaction trends.

2.4 SiO₂-Fe₂O₃ system

SiO₂ also does not directly react with Fe₂O₃, but Al₂O₃ may react with wustite (FeO) to form FeO SiO₂ (FS) and 2FeO SiO₂(F₂S). The relationships of ΔG_T^{θ} and temperature is shown in figure 4, and the chemical reactions of the equations are shown in table 3.

Reactions	A, J/mol	B, J/K.mol	Temperature, K
FeO+SiO ₂ =FeO SiO ₂	26524.6	18.8	847~1413
$2FeO+SiO_2 = 2FeO SiO_2$	-13457.3	30.3	847~1493

Table 3. The ΔG_T^{θ} of SiO₂- Al₂O₃ system ($\Delta G_T^{\theta} = A + BT$, J/mol)

Figure 4 shows that, the ΔG_T^{θ} of SiO₂- Al₂O₃ system are above zero at 847~1500K, so all of the reactions can not happen to form ferrous silicates (FS and F₂S).

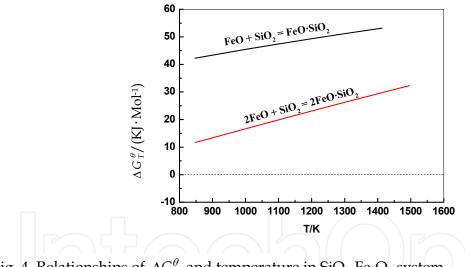


Fig. 4. Relationships of ΔG_T^{θ} and temperature in SiO₂-Fe₂O₃ system

2.5 CaO-Al₂O₃ system

 Al_2O_3 can react with CaO to form calcium aluminates such as $3CaO \cdot Al_2O_3(C_3A)$, $12CaO \cdot 7Al_2O_3(C_{12}A_7)$, $CaO \cdot Al_2O_3(CA)$ and $CaO \cdot 2Al_2O_3$ (CA₂). As regard as the calcium aluminates only $C_{12}A_7$ can be totally soluble in soda solution, C_3A and CA dissolve with a slow speed, and the other calcium aluminates such as CA₂ are completely insoluble. Equations that Al_2O_3 reacted with CaO to form C_3A , $C_{12}A_7$, CA and CA₂ are presented in table 4.

Figure 5 shows that, the ΔG_T^{θ} of reactions of Al₂O₃ with CaO decreases with the rise of temperature; all reactions automatically proceed to generate the corresponding calcium aluminates at normal roasting temperature (1473~1673K, same as follows); At the same

roasting temperature, the thermodynamic order that one mole Al_2O_3 reacts with CaO to generate calcium aluminates such as $C_{12}A_7$, C_3A , CA, CA₂.

Reactions	A, J/mol	B, J/K.mol	Temperature, K
$3CaO + Al_2O_3 = 3CaO \cdot Al_2O_3$	-9.9	-28.4	298~1808
$\frac{12}{7}$ CaO+Al ₂ O ₃ = $(\frac{1}{7})$ 12CaO·7Al ₂ O ₃	318.3	-44.5	298~1800
CaO+ Al_2O_3 =CaO · Al_2O_3	-15871.5	-18.1	298~1878
$\frac{1}{2}\text{CaO+Al}_2\text{O}_3 = (\frac{1}{2})\text{CaO} \cdot 2\text{Al}_2\text{O}_3$	-6667.2	-13.8	298~2023

Table 4. The ΔG_T^{θ} of Al₂O₃-CaO system ($\Delta G_T^{\theta} = A + BT$, J/mol)

The relationships between ΔG_T^{θ} and temperature (T) are shown in figure 5.

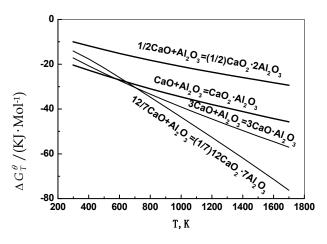


Fig. 5. Relationships between ΔG_T^{θ} and temperature in Al₂O₃-CaO system

Reactions	А,	В,	Temperature,
	J/mol	J/K.mol	K
$(\frac{4}{3})3CaO \cdot Al_2O_3 + Al_2O_3 = (\frac{1}{3})12CaO \cdot 7Al_2O_3$	13939.7	-65.8	298~1800
$(\frac{1}{2})3CaO \cdot Al_2O_3 + Al_2O_3 = (\frac{3}{2})CaO \cdot Al_2O_3$	-18843.8	-13.0	298~1878
$(\frac{1}{5})3$ CaO·Al ₂ O ₃ +Al ₂ O ₃ = $(\frac{3}{5})$ CaO·2Al ₂ O ₃	-6011.2	-10.9	298~2023
$(\frac{1}{5})12CaO \cdot 7Al_2O_3 + Al_2O_3 = (\frac{12}{5})CaO \cdot Al_2O_3$	-38544.8	18.8	298~1878
$(\frac{1}{17})12CaO \cdot 7Al_2O_3 + Al_2O_3 = (\frac{12}{17})CaO \cdot 2Al_2O_3$	-9541.1	-1.2	298~2023
$CaO \cdot Al_2O_3 + Al_2O_3 = CaO \cdot 2Al_2O_3$	2543.8	-9.5	298~2023

Table 5. The ΔG_T^{θ} of Al₂O₃-calcium aluminates system ($\Delta G_T^{\theta} = A + BT$, J/mol)

When CaO is insufficient, redundant Al_2O_3 may promote the newly generated high calciumto-aluminum ratio (CaO to Al_2O_3 mole ratio) calcium aluminates to transform into lower calcium-to-aluminum ratio calcium aluminates. The reactions of the equations are presented in table 5:

The relationships between ΔG_T^{θ} of reactions of Al₂O₃-calcium aluminates system and temperature (T) are shown in figure 6.

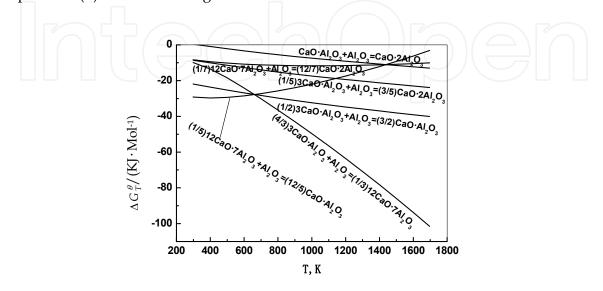


Fig. 6. Relationships between ΔG_T^{θ} of reactions Al₂O₃-calcium aluminates system and temperature

Figure 6 shows that, Gibbs free energy of the reaction of Al₂O₃-calcium aluminates system are negative at 400~1700K, and all the reactions automatically proceed to generate the corresponding low calcium-to-aluminum ratio calcium aluminates; Except for the reaction of Al₂O₃-C₁₂A₇, the ΔG_T^{θ} of the rest reactions decreases with the rise of temperature and becomes more negative. Comparing figure 4 with figure 5, it can be found that Al₂O₃ reacts with CaO easily to generate C₁₂A₇.

2.6 SiO₂- CaO system

SiO₂ can react with CaO to form CaO SiO₂ (CS), 3CaO 2SiO₂ (C₃S₂), 2CaO SiO₂ (C₂S) and 3CaO SiO₂(C₃S) in roasting process. The reactions are shown in table 6, and the relationships between $\triangle G^0$ of the reactions of SiO₂ with CaO and temperature are shown in figure 7.

Reactions	A, J/mol	B, J/K.mol	Temperature, K
$CaO+SiO_2 = CaO SiO_2$ (pseud-wollastonite)	-83453.0	-3.4	298~1817
$CaO+SiO_2 = CaO SiO_2(wollastonite)$	-89822.9	-0.3	298~1817
$\frac{3}{2}\text{CaO+SiO}_2 = (\frac{1}{2})3\text{CaO} \cdot 2\text{SiO}_2$	-108146.6	-3.1	298~1700
$3CaO+SiO_2 = 3CaO SiO_2$	-111011.9	-11.3	298~1800
$2CaO+SiO_2 = 2CaO SiO_2(\beta)$	-125875.1	-6.7	298~2403
$2CaO+SiO_2 = 2CaO SiO_2(\gamma)$	-137890.1	3.7	298~1100

Table 6. The ΔG_T^{θ} of SiO₂-CaO system($\Delta G_T^{\theta} = A + BT$, J/mol)

830

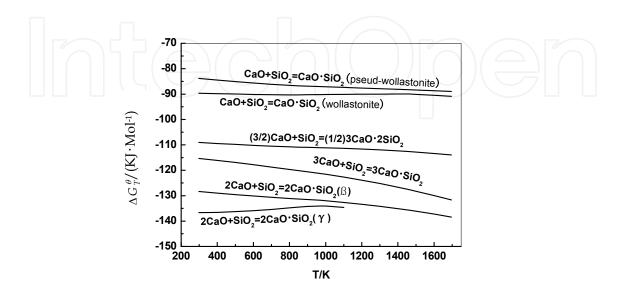


Fig. 7. Relationships between ΔG_T^{θ} and temperature

Figure7 shows that, SiO₂ reacts with CaO to form γ -C₂S when temperature below 1100K, but β -C₂S comes into being when the temperature above 1100K. At normal roasting temperature, the thermodynamic order of forming calcium silicate is C₂S, C₃S, C₃S₂, CS.

Figure 5 ~ figure 7 show that, CaO reacts with SiO₂ and Al₂O₃ firstly to form C₂S, and then C₁₂A₇. Therefore, it is less likely to form aluminium silicates in roasting process.

2.7 SiO₂- calcium aluminates system

In the CaO-Al₂O₃ system, if there exists some SiO₂, the newly formed calcium aluminates are likely to react with SiO₂ to transform to calcium silicates and Al₂O₃ because SiO₂ is more acidity than that of Al₂O₃. The reaction equations are presented in table 7, the relationships between ΔG_T^{θ} and temperature are shown in figure 8.

Figure 8 shows that, the ΔG_T^{θ} of all the reactions increases with the temperature increases; the reaction (3CA₂+SiO₂=C₃S+6Al₂O₃) can not happen when the roasting temperature is above 900K , i.e., the lowest calcium-to-aluminum ratio calcium aluminates cannot transform to the highest calcium-to-silicon ratio (CaO to SiO₂ molecular ratio) calcium silicate; when the temperature is above 1500K, the ΔG_T^{θ} of reaction(3CA+SiO₂=C₃S+3Al₂O₃) is also more than zero; but the other calcium aluminates all can react with SiO₂ to generate calcium silicates at 800~1700K. The thermodynamic sequence of calcium aluminates reaction with SiO₂ is firstly C₃A, and then C₁₂A₇, CA, CA₂.

Reactions	A, J/mol	B, J/K.mol	Temperature, K
$(3)CaO \cdot 2Al_2O_3 + SiO_2 = 3CaO \cdot SiO_2 + 6Al_2O_3$	-69807.8	70.8	298~1800
$(3)CaO \cdot Al_2O_3 + SiO_2 = 3CaO \cdot SiO_2 + 3Al_2O_3$	-62678.8	42.6	298~1800
$(\frac{1}{4})12CaO \cdot 7Al_2O_3 + SiO_2 = 3CaO \cdot SiO_2 + \frac{7}{4}Al_2O_3$	-111820.6	66.7	298~1800
$(2)CaO \cdot 2Al_2O_3 + SiO_2 = 2CaO \cdot SiO_2 + 4Al_2O_3$	-98418.8	48.1	298~1710
$(\frac{3}{2})$ CaO · 2Al ₂ O ₃ + SiO ₂ = $(\frac{1}{2})$ 3CaO · 2SiO ₂ + 3Al ₂ O ₃	-87585.9	38.0	298~1700
$CaO \cdot 2Al_2O_3 + SiO_2 = CaO \cdot SiO_2 + 2Al_2O_3$	-76146.6	27.1	298~1817
$CaO \cdot Al_2O_3 + SiO_2 = CaO \cdot SiO_2 + Al_2O_3$	-73770.2	17.7	298~1817
$(\frac{3}{2})CaO \cdot Al_2O_3 + SiO_2 = (\frac{1}{2})3CaO \cdot 2SiO_2 + \frac{3}{2}Al_2O_3$	-84021.4	23.8	298~1700
$(2)CaO \cdot Al_2O_3 + SiO_2 = 2CaO \cdot SiO_2 + 2Al_2O_3$	-93666.1	29.2	298~1710
$(\frac{1}{12})12CaO \cdot 7Al_2O_3 + SiO_2 = CaO \cdot SiO_2 + \frac{7}{12}Al_2O_3$	-90150.8	25.7	298~1800
$(\frac{1}{8})12CaO \cdot 7Al_2O_3 + SiO_2 = (\frac{1}{2})3CaO \cdot 2SiO_2 + \frac{7}{8}Al_2O_3$	-108592.3	35.9	298~1700
$(\frac{1}{6})12$ CaO·7Al ₂ O ₃ + SiO ₂ = 2CaO·SiO ₂ + $\frac{7}{6}$ Al ₂ O ₃	-126427.4	45.3	298~1710
$(\frac{1}{3})3$ CaO·Al ₂ O ₃ + SiO ₂ = CaO·SiO ₂ + $\frac{1}{3}$ Al ₂ O ₃	-86654.2	9.4	298~1808
$3CaO \cdot Al_2O_3 + SiO_2 = 3CaO \cdot SiO_2 + Al_2O_3$	-100774.6	16.9	298~1808
$(\frac{1}{2})3CaO \cdot Al_2O_3 + SiO_2 = (\frac{1}{2})3CaO \cdot 2SiO_2 + \frac{1}{2}Al_2O_3$	-103069.3	11.0	298~1700
$(\frac{2}{3})3CaO \cdot Al_2O_3 + SiO_2 = 2CaO \cdot SiO_2 + \frac{2}{3}Al_2O_3$	-119063.3	12.1	298~1710

Table 7. The ΔG_T^{θ} of the reactions SiO₂ with calcium aluminates($\Delta G_T^{\theta} = A + BT$, J/mol)

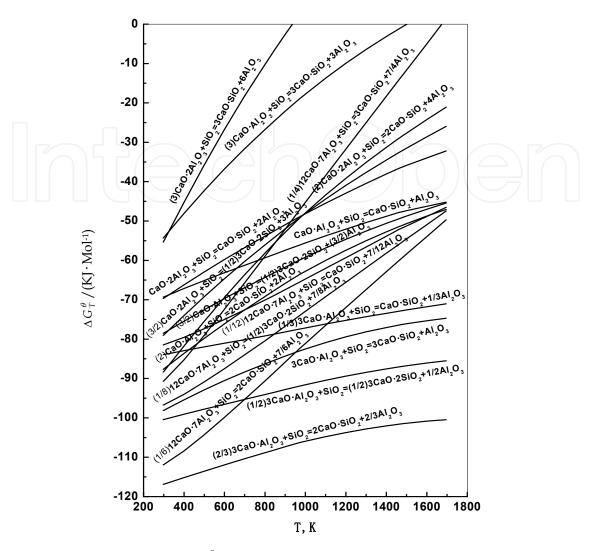


Fig. 8. Relationships between ΔG_T^{θ} and temperature in SiO₂-calcium aluminates system

2.8 CaO- Fe₂O₃ system

Fe₂O₃ can react with CaO to form CaO·Fe₂O₃(CF) and 2CaO·Fe₂O₃(C₂F). When Fe₂O₃ is used up, the newly formed C₂F can react with Fe₂O₃ to form CF. The reaction equations are shown in table 8, and the relationships between $\triangle G^0$ and temperature are shown in figure 9.

Figure 9 shows that, Fe_2O_3 reacts with CaO much easily to form C₂F; CF is not from the reaction of C₂F and Fe₂O₃, but from the directly reaction of Fe₂O₃ with CaO. When Fe₂O₃ is excess, C₂F can react with Fe₂O₃ to form CF.

Reactions	A, J/mol	B, J/K.mol	Temperature, K
$CaO+Fe_2O_3=CaO\cdot Fe_2O_3$	-19179.9	-11.1	298~1489
$2CaO+Fe_2O_3=2CaO\cdot Fe_2O_3$	-40866.7	-9.3	298~1723
$2CaO Fe_2O_3 + Fe_2O_3 = (2)CaO Fe_2O_3$	2340.8	-12.6	298~1489

Table 8. The ΔG_T^{θ} of Fe₂O₃-CaO system($\Delta G_T^{\theta} = A + BT$, J/mol)

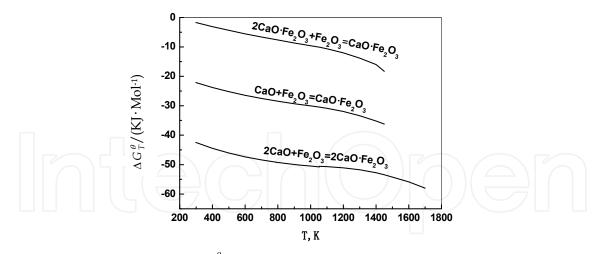


Fig. 9. Relationships between ΔG_T^{θ} and temperature in Fe₂O₃-CaO system

2.9 Al₂O₃- calcium ferrites system

Figure 1 shows that, the ΔG_T^{θ} of the reaction of Al₂O₃ with CaCO₃ is more negative than that of Fe₂O₃ with CaCO₃, therefore, the reaction of Fe₂O₃ with CaCO₃ occurs after the reaction of Al₂O₃ with CaCO₃ under the conditions of excess CaCO₃. The new generated calcium ferrites are likely to transform into calcium aluminates when CaCO₃ is insufficient, the reactions are as followed:

Reactions	А,	B, J/K.mol	Temperature,
	J/mol		K
$(3)CaO \bullet Fe_2O_3 + Al_2O_3 = 3CaO \bullet Al_2O_3 + 3Fe_2O_3$	47922.7	4.5	298~1489
$(\frac{3}{2})2CaO \cdot Fe_2O_3 + Al_2O_3 = 3CaO \cdot Al_2O_3 + \frac{3}{2}Fe_2O_3$	49.6	-1.2×10-2	298~1723
$(\frac{12}{7})CaO \cdot Fe_2O_3 + Al_2O_3 = (\frac{1}{7})12CaO \cdot 7Al_2O_3 + \frac{12}{7}Fe_2O_3$	32685.1	-24.5	298~1489
$(\frac{6}{7})2\text{CaO}\cdot\text{Fe}_2\text{O}_3 + \text{Al}_2\text{O}_3 = (\frac{1}{7})12\text{CaO}\cdot7\text{Al}_2\text{O}_3 + \frac{6}{7}\text{Fe}_2\text{O}_3$	34514.4	-35.0	298~1723
$CaO \bullet Fe_2O_3 + Al_2O_3 = CaO \bullet Al_2O_3 + Fe_2O_3$	3626.6	-7.5	298~1489
$(\frac{1}{2})CaO \cdot Fe_2O_3 + Al_2O_3 = (\frac{1}{2})CaO \cdot 2Al_2O_3 + \frac{1}{2}Fe_2O_3$	3215.1	-8.8	298~1489
$(\frac{1}{4})2\text{CaO} \cdot \text{Fe}_2\text{O}_3 + \text{Al}_2\text{O}_3 = (\frac{1}{2})\text{CaO} \cdot 2\text{Al}_2\text{O}_3 + \frac{1}{4}\text{Fe}_2\text{O}_3$	3168.6	-11.0	298~1723
$(\frac{1}{2})2\text{CaO} \cdot \text{Fe}_2\text{O}_3 + \text{Al}_2\text{O}_3 = \text{CaO} \cdot \text{Al}_2\text{O}_3 + \frac{1}{2}\text{Fe}_2\text{O}_3$	4009.5	-12.8	298~1723

Table 9. The ΔG_T^{θ} of the reaction Al₂O₃ with calcium ferrites ($\Delta G_T^{\theta} = A + BT$, J/mol)

The relationships between ΔG_T^{θ} and temperature (T) are shown in figure 10. Figure 10 shows that, Al₂O₃ cannot replace the Fe₂O₃ in calcium ferrites to generate C₃A, and also cannot replace the Fe₂O₃ in CaO•Fe₂O₃(CF) to generate C₁₂A₇, but it can replace the Fe₂O₃ in 2CaO•Fe₂O₃(C₂F) to generate C₁₂A₇ when the temperature is above 1000K, the higher temperature is, the more negative Gibbs free energy is; Al₂O₃ can react with CF and C₂F to

form CA or CA₂, the higher temperature, more negative ΔG_T^{θ} . Because Fe₂O₃ reacts with CaO more easily to generate C₂F (Fig.9), therefore, C₁₂A₇ is the reaction product at normal roasting temperature(1073~1673K) under the conditions that CaO is sufficient in batching and the ternary compounds are not considered.

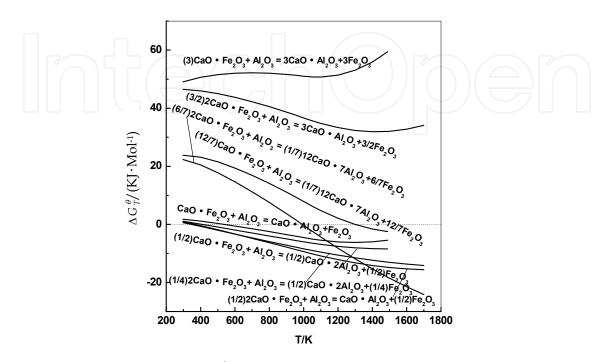


Fig. 10. Relationship between ΔG_T^{θ} and temperature in Al₂O₃- calcium ferrites system

3. Ternary compounds in Al₂O₃-CaO-SiO₂-Fe₂O₃ system

The ternary compounds formed by CaO, Al_2O_3 and SiO_2 in roasting process are mainly $2CaO \cdot Al_2O_3 \cdot SiO_2(C_2AS)$, $CaO \cdot Al_2O_3 \cdot 2SiO_2(CAS_2)$, $CaO \cdot Al_2O_3 \cdot SiO_2(CAS)$ and $3CaO \cdot Al_2O_3 \cdot 3SiO_2(C_3AS_3)$. In addition, ternary compound $4CaO \cdot Al_2O_3 \cdot Fe_2O_3(C_4AF)$ is formed form CaO, Al_2O_3 and Fe_2O_3 . The equations are shown in table 10:

Reactions	A, J/mol	B, J/K.mol	Temperature, K
$CaO \cdot SiO_2 + CaO \cdot Al_2O_3 = 2CaO \cdot Al_2O_3 \cdot SiO_2$	-30809.41	0.60	7 298~1600
$\frac{1}{2}\text{Al}_2\text{O}_3 + \frac{1}{2}\text{CaO} + \text{SiO}_2 = (\frac{1}{2})\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2$	-47997.55	-7.34	298~1826
$Al_2O_3 + 2CaO + SiO_2 = 2CaO \cdot Al_2O_3 \cdot SiO_2$	-50305.83	-9.33	298~1600
$Al_2O_3 + CaO + SiO_2 = CaO \cdot Al_2O_3 \cdot SiO_2$	-72975.54	-9.49	298~1700
$\frac{1}{3}\text{Al}_2\text{O}_3 + \text{CaO} + \text{SiO}_2 = (\frac{1}{3})3\text{CaO} \cdot \text{Al}_2\text{O}_3 \cdot 3\text{SiO}_2$	-112354.51	20.86	298~1700
$4CaO + Al_2O_3 + Fe_2O_3 = 4CaO \cdot Al_2O_3 \cdot Fe_2O_3$	-66826.92	-62.5	298~2000
$Al_2O_3 + 2CaO + SiO_2 = 2CaO \cdot Al_2O_3 \cdot SiO_2$ (cacoclasite)	-136733.59	-17.59	298~1863

Table 10. The ΔG_T^{θ} of forming ternary compounds ($\Delta G_T^{\theta} = A + BT$, J/mol)

The relationships between ΔG_T^{θ} and temperature (T) are shown in figure 11. Figure 11 shows that, except for C₃AS₃(Hessonite), all the ΔG_T^{θ} of the reactions get more negative with the temperature increasing; the thermodynamic order of generating ternary compounds at sintering temperature of 1473K is: C₂AS(cacoclasite), C₄AF, CAS, C₃AS₃, C₂AS, CAS₂. C₂AS may also be formed by the reaction of CA and CS, the curve is presented in figure 11. Figure 11 shows that, the ΔG_T^{θ} of reaction (Al₂O₃+CaO+SiO₂) is lower than that of reaction of CA and CS to generate C₂AS. So C₂AS does not form from the binary compounds CA and CS, but from the direct combination among Al₂O₃, CaO, SiO₂. Qiusheng Zhou thinks that, C₄AF is not formed by mutual reaction of calcium ferrites and sodium aluminates, but from the direct reactions of Al₂O₃, Fe₂O₃, SiO₂ and CaO are much easier to form C₂AS and C₄AF, as shown in figure 12.

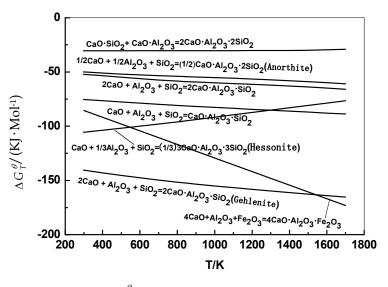


Fig. 11. Relationships between ΔG_T^{θ} of ternary compounds and temperature

Figure 12 shows that, in thermodynamics, C_2AS and C_4AF are firstly formed when Al_2O_3 , Fe_2O_3 , SiO_2 and CaO coexist, and then calcium silicates, calcium aluminates and calcium ferrites are generated.

4. Summary

1) When Al_2O_3 and Fe_2O_3 simultaneously react with CaO, calcium silicates are firstly formed, and then calcium ferrites. In thermodynamics, when one mole Al_2O_3 reacts with CaO, the sequence of generating calcium aluminates are $12CaO \cdot 7Al_2O_3$, $3CaO \cdot Al_2O_3$, $CaO \cdot Al_2O_3$, CaO $2Al_2O_3$. When CaO is insufficient, redundant Al_2O_3 may promote the newly generated high calcium-to-aluminum ratio calcium aluminates to transform to lower calcium-toaluminum ratio calcium aluminates. Fe₂O₃ reacts with CaO easily to form2CaO Fe_2O_3 , and CaO Fe_2O_3 is not from the reaction of $2CaO \cdot Fe_2O_3$ and Fe_2O_3 but form the directly combination of Fe_2O_3 with CaO. Al_2O_3 cannot replace the Fe_2O_3 in calcium ferrites to generate $3CaO \cdot Al_2O_3$, and also cannot replace the Fe_2O_3 in CaO $\cdot Fe_2O_3$ to generate $12CaO \cdot 7Al_2O_3$, but can replace the Fe_2O_3 in $2CaO \cdot Fe_2O_3$ to generate $12CaO \cdot 7Al_2O_3$, but can replace the Fe_2O_3 in 2CaO $\cdot Fe_2O_3$ to generate $12CaO \cdot 7Al_2O_3$.

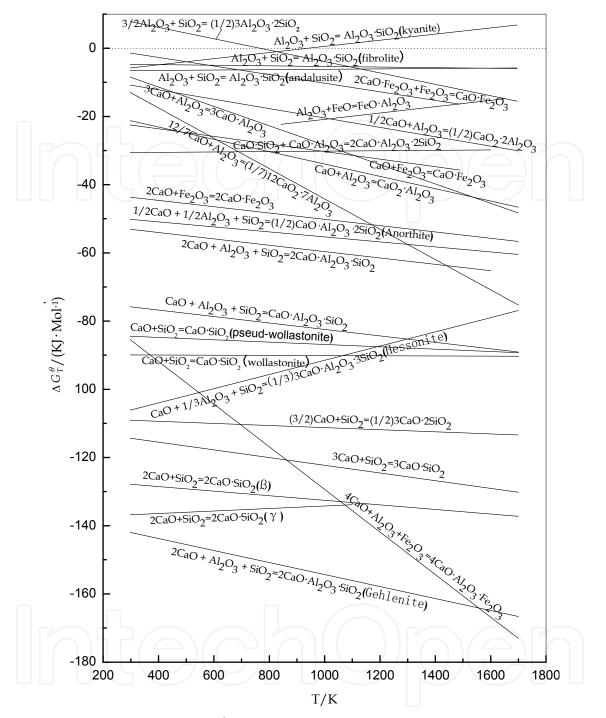
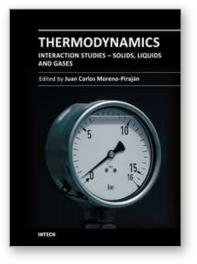


Fig. 12. Relationships between ΔG_T^{θ} and temperature in Al₂O₃-CaO-SiO₂-Fe₂O₃ system

2) One mole SiO₂ reacts with Al₂O₃ much easily to generate $3Al_2O_3 \cdot 2SiO_2$, Fe₂O₃ can not react with SiO₂ in the roasting process in the air. Al₂O₃ can not directly react with Fe₂O₃, but can react with wustite (FeO) to form FeO \cdot Al₂O₃.

3) In thermodynamics, the sequence of one mole SiO₂ reacts with CaO to form calcium silicates is 2CaO SiO₂, 3CaO SiO₂, 3CaO 2SiO₂ and CaO SiO₂. Calcium aluminates can react with SiO₂ to transform to calcium silicates and Al₂O₃. CaO 2Al₂O₃ can not transform to 3CaO SiO₂ when the roasting temperature is above 900K; when the temperature is above

1500K, $3CaO \cdot Al_2O_3$ can not transform to $3CaO \cdot SiO_2$; but the other calcium aluminates all can all react with SiO₂ to generate calcium silicates at 800~1700K.


4) Reactions among Al₂O₃, Fe₂O₃, SiO₂ and CaO easily form 2CaO·Al₂O₃ SiO₂ and 4CaO·Al₂O₃·Fe₂O₃. 2CaO·Al₂O₃ SiO₂ does not form from the reaction of CaO·Al₂O₃ and CaO SiO₂, but from the direct reaction among Al₂O₃, CaO, SiO₂. And 4CaO·Al₂O₃·Fe₂O₃ is also not formed via mutual reaction of calcium ferrites and sodium aluminates, but from the direct reaction of CaO, Al₂O₃ and Fe₂O₃. In thermodynamics, when Al₂O₃, Fe₂O₃, SiO₂ and CaO coexist, 2CaO·Al₂O₃·SiO₂ and 4CaO·Al₂O₃·Fe₂O₃ are firstly formed, and then calcium silicates, calcium aluminates and calcium ferrites.

5. Symbols used

Thermodynamic temperature: T, K Thermal unit: J Amount of substance: mole Standard Gibbs free energy: ΔG_T^{θ} , J

6. References

- Li, B.; Xu, Y. & Choi, J. (1996). Applying Machine Learning Techniques, Proceedings of ASME 2010 4th International Conference on Energy Sustainability, pp.14-17, ISBN 842-6508-23-3, Phoenix, Arizona, USA, May 17-22, 2010
- Rayi H. S.; Kundu N.(1986). Thermal analysis studies on the initial stages of iron oxide reduction, *Thermochimi, Acta*. 101:107~118,1986
- Coats A.W.; Redferm J.P.(1964). Kinetic parameters from thermogravimetric data, *Nature*, 201:68,1964
- LIU Gui-hua, LI Xiao-bin, PENG Zhi-hong, ZHOU Qiu-sheng(2003). Behavior of calcium silicate in leaching process. *Trans Nonferrous Met Soc China*, January 213–216,2003
- Paul S.; Mukherjee S.(1992). Nonisothermal and isothermal reduction kinetics of iron ore agglomerates, *Ironmaking and steelmaking*, March 190~193, 1992
- ZHU Zhongping, JIANG Tao, LI Guanghui, HUANG Zhucheng(2009). Thermodynamics of reaction of alumina during sintering process of high-iron gibbsite-type bauxite, *The Chinese Journal of Nonferrous Metals*, Dec 2243~2250, 2009
- ZHOU Qiusheng, QI Tiangui, PENG Zhihong, LIU Guihua, LI Xiaobin(2007). Thermodynamics of reaction behavior of ferric oxide during sinter-preparing process, *The Chinese Journal of Nonferrous Metals*, Jun 974~978, 2007
- Barin I., Knacke O.(1997). *Thermochemical properties of inorganic substances*, Berlin:Supplement, 1997
- Barin I., Knacke O.(1973). Thermochemical properties of inorganic substances, Berlin: Springer, 1973

 $\label{eq:constraint} \begin{array}{l} \mbox{Thermodynamics - Interaction Studies - Solids, Liquids and Gases} \\ \mbox{Edited by Dr. Juan Carlos Moreno Piraj} \tilde{A}_i n \end{array}$

ISBN 978-953-307-563-1 Hard cover, 918 pages **Publisher** InTech **Published online** 02, November, 2011 **Published in print edition** November, 2011

Thermodynamics is one of the most exciting branches of physical chemistry which has greatly contributed to the modern science. Being concentrated on a wide range of applications of thermodynamics, this book gathers a series of contributions by the finest scientists in the world, gathered in an orderly manner. It can be used in post-graduate courses for students and as a reference book, as it is written in a language pleasing to the reader. It can also serve as a reference material for researchers to whom the thermodynamics is one of the area of interest.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Zhongping Zhu, Tao Jiang, Guanghui Li, Yufeng Guo and Yongbin Yang (2011). Thermodynamics of Reactions Among Al2O3, CaO, SiO2 and Fe2O3 During Roasting Processes, Thermodynamics - Interaction Studies - Solids, Liquids and Gases, Dr. Juan Carlos Moreno PirajÃ₁n (Ed.), ISBN: 978-953-307-563-1, InTech, Available from: http://www.intechopen.com/books/thermodynamics-interaction-studies-solids-liquids-and-gases/thermodynamics-of-reactions-among-al2o3-cao-sio2-and-fe2o3-during-roasting-processes

INTECH

open science | open minds

InTech Europe

University Campus STeP Ri Slavka Krautzeka 83/A 51000 Rijeka, Croatia Phone: +385 (51) 770 447 Fax: +385 (51) 686 166 www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai No.65, Yan An Road (West), Shanghai, 200040, China 中国上海市延安西路65号上海国际贵都大饭店办公楼405单元 Phone: +86-21-62489820 Fax: +86-21-62489821 © 2011 The Author(s). Licensee IntechOpen. This is an open access article distributed under the terms of the <u>Creative Commons Attribution 3.0</u> <u>License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

IntechOpen

IntechOpen