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Brno University of Technology 

Czech Republic 

1. Introduction  

Thermodynamics has established in chemistry principally as a science determining 
possibility and direction of chemical transformations and giving conditions for their final, 
equilibrium state. Thermodynamics is usually thought to tell nothing about rates of these 
processes, their velocity of approaching equilibrium. Rates of chemical reactions belong to 
the domain of chemical kinetics. However, as thermodynamics gives some restriction on the 
course of chemical reactions, similar restrictions on their rates are continuously looked for. 
Similarly, because thermodynamic potentials are often formulated as driving forces for 
various processes, a thermodynamic driving force for reactions rates is searched for. 
Two such approaches will be discussed in this article. The first one are restrictions put by 
thermodynamics on values of rate constants in mass action rate equations. The second one is 
the use of the chemical potential as a general driving force for chemical reactions and also 
“directly” in rate equations. These two problems are in fact connected and are related to 
expressing reaction rate as a function of pertinent independent variables. 
Relationships between chemical thermodynamics and kinetics traditionally emerge from the 
ways that both disciplines use to describe equilibrium state of chemical reactions 
(chemically reacting systems or mixtures in general). Equilibrium is the main domain of 
classical, equilibrium, thermodynamics that has elaborated elegant criteria (or, perhaps, 
definitions) of equilibria and has shown how they naturally lead to the well known 
equilibrium constant. On the other hand, kinetics describes the way to equilibrium, i.e. the 
nonequilibrium state of chemical reactions, but also gives a clear idea on reaction 
equilibrium. Combining these two views various results on compatibility between 
thermodynamics and kinetics, on thermodynamic restrictions to kinetics etc. were 
published. The main idea can be illustrated on the trivial example of decomposition reaction 
AB = A + B with rate (kinetic) equation AB A Br kc kc c 

 
 where r is the reaction rate, ,k k

 
are 

the forward and reverse rate constants, and c are the concentrations. In equilibrium, the 
reaction rate is zero, consequently  A B AB eq/ /k k c c c

 
. Because the right hand side 

corresponds to the thermodynamic equilibrium constant (K) it is concluded that /K k k
 

. 
However, this is simplified approach not taking into account conceptual differences 
between the true thermodynamic equilibrium constant and the ratio of rate constants that is 
called here the kinetic equilibrium constant. This discrepancy is sometimes to be removed 
by restricting this approach to ideal systems of elementary reactions but even then some 
questions remain. 
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Chemical potential () is introduced into chemical kinetics by similar straightforward way 

(Qian & Beard, 2005). If it is expressed by lnRT c     , multiplied by stoichiometric 

coefficients, summed  and compared with rate equation it is obtained for the given example 
that: 

  A B
AB A B

AB

ln ln /
c c

RT RT r r
Kc

         
 

 (1) 

(note that the equivalence of thermodynamic and kinetic equilibrium constants is supposed 
again; ,r r

 
are the forward and reverse rates). Equation (1) used to be interpreted as 

determining the (stoichiometric) sum of chemical potentials () to be some 
(thermodynamic) “driving force” for reaction rates. In fact, there is “no kinetics”, no kinetic 
variables in the final expression  ln /RT r r 

 
 and reaction rates are directly determined 

by chemical potentials what is questionable and calls for experimental verification.  

2. Restrictions put by thermodynamics on values of rate constants 

2.1 Basic thermodynamic restrictions on rate constants coming from equilibrium 

Perhaps the only one work which clearly distinguishes kinetic and thermodynamic 
equilibrium constant is the kinetic textbook by Eckert and coworkers (Eckert et al., 1986); the 
former is in it called the empirical equilibrium constant. This book stresses different 
approaches of thermodynamics and kinetics to equilibrium. In thermodynamics, 
equilibrium is defined as a state of minimum free energy (Gibbs energy) and its description 
is based on stoichiometric equation and thermodynamic equilibrium constant containing 
activities. Different stoichiometric equations of the same chemical equation can give 
different values of thermodynamic equilibrium constant, however, equilibrium composition 
is independent on selected stoichiometric equation. Kinetic description of equilibrium is 
based on zero overall reaction rate, on supposed reaction mechanism or network (reaction 
scheme) and corresponding kinetic (rate) equation. Kinetic equilibrium constant usually 
contains concentrations. According to that book, thermodynamic equilibrium data should 
be introduced into kinetic equations indirectly as shown in the Scheme 1. 
Simple example reveals basic problems. Decomposition of carbon monoxide occurs (at the 
pressure p) according to the following stoichiometric equation: 

 2 CO  =  CO2 + C (R1) 

Standard state of gaseous components is selected as the ideal gas at 101 kPa and for solid 
component as the pure component at the actual pressure (due to negligible effects of 
pressure on behavior of solid components, the dependence of the standard state on pressure 
can be neglected here). Ideal behavior is supposed. Then a = p/p° = prel n/n  for  = CO, 
CO2, where prel = p/p°, and aC = 1; a is the activity, p is the partial pressure, p° the standard 
pressure, n is the number of moles, and n the total number of moles. Thermodynamic 
equilibrium constant is then given by 

 2 2 2CO CO CO CO
2 2

rel CO rel COeq eq

( )n n c c c
K

p n p c

    
          

 (2) 
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Scheme 1. Connecting thermodynamics and kinetics correctly (Eckert et al., 1986) 

On contrary, the ratio of rate constants is given by 

  2CO C
2
COeq eq

c ck

k c

  
         


  (3) 

It is clear that thermodynamic and kinetic equilibrium constants need not be equivalent 
even in ideal systems. For example, the former does not contain concentration of carbon and 
though this could be remedied by stating that carbon amount does not affect reaction rate 
and its concentration is included in the reverse rate constant, even then the kinetic 
equilibrium constant could depend on carbon amount in contrast to the thermodynamic 
equilibrium constant. Some discrepancies could not be remedied by restricting on 
elementary reactions only – in this example the presence of prel and of the total molar 
amount, generally, the presence of quantities transforming composition variables into 
standard state-related (activity-related) variables, and, of course, discrepancy in 
dimensionalities of the two equilibrium constants. 
Let us use the same example to illustrate the procedure suggested by Eckert et al. (1986). 
At 1300 K and 202 kPa the molar standard Gibbs energies are (Novák et al., 1999): 

(CO) 395 3 kJ/molmG .    ,  2(CO ) 712 .7 kJ/molmG   , (C) 20 97 kJ/molmG .   and from 
them the value of thermodynamic equilibrium constant is calculated: K = 0.00515. 
Equilibrium molar balance gives 

2CO eq C eq( ) ( )n n x  , CO eq( ) 1 2n x  , 1n x   . Then 
from (2) follows x = 0.0107 (Novák et al., 1999). Equilibrium composition is substituted 
into (3): 

Thermodynamic data 
(e.g. ΔGf

) 

Equilibrium composition 
(aeq, ceq) 

Substitution into kinetic equation 
r(ceq) = 0 

Kinetic equilibrium constant 

Kinetic data 
(rate coefficients/constants) 
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  2
eq

0.0107 0.0107
0.012

0.09786

k

k

  
   

 


  (4) 

and this is real and true result of thermodynamic restriction on values of rate constants valid 
at given temperature. More precisely, this is a restriction put on the ratio of rate constants, 
values of which are supposed to be independent on equilibrium, in other words, dependent 
on temperature (and perhaps on pressure) only and therefore this restriction is valid also 
out of equilibrium at given temperature. The numerical value of this restriction is dependent 
on temperature and should be recalculated at every temperature using the value of 
equilibrium constant at that temperature. 
Thus, simple and safe way how to relate thermodynamics and kinetics, thermodynamic and 
kinetic equilibrium constants, and rate constants is that shown in Scheme 1. However, it 
gives no general equations and should be applied specifically for each specific reaction 
(reacting system) and reaction conditions (temperature, at least). There are also works that 
try to resolve relationship between the two types of equilibrium constant more generally 
and, in the same time, correctly and consistently. They were reviewed previously and only 
main results are presented here, in the next section. But before doing so, let us note that 
kinetic equilibrium constant can be used as a useful indicator of the distance of actual state 
of reacting mixture from equilibrium and to follow its approach to equilibrium. In the 
previous example, actual value of the fraction 

2

2
CO C CO/c c c  can be compared with the value 

of the ratio /k k
 

 and relative distance from equilibrium calculated, for more details and 
other examples see our previous work (Pekař & Koubek, 1997, 1999, 2000). 

2.2 General thermodynamic restrictions on rate constants 

As noted in the preceding section there are several works that do not rely on simple 
identification of thermodynamic and kinetic equilibrium constants. Hollingsworth (1952a, 
1952b) generalized restriction on the ratio of forward and reverse reaction rates (f) defined 
by 

   ( , ) ( , ) / ( , ) /f c T f c T f c T r r   
   

 (5) 

Hollingsworth showed that sufficient condition for consistent kinetic and thermodynamic 
description of equilibrium is  

 F(Qr, T) = (Qr/K) and (1) = 1  (6) 

where F is the function f with transformed variables, ( , ) ( , )rF Q T f c T , and Qr is the well 

known reaction quotient. The first equality in (6) says that function F should be expressible 
as a function  of Qr/K. This is too general condition saying explicitly nothing about rate 
constants. Identifying kinetic equilibrium constant with thermodynamic one, condition (6) is 
specialized to 

 (Qr/K) = (Qr/K)–z  (7) 

where z is a positive constant. Equation (7) is a generalization of simple identity /K k k
 

 
from introduction. Hollingsworth also derived the necessary consistency condition: 
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 f – 1 = (Qr/K – 1) (c, T, uj)  (8) 

in the neighbourhood of Qr/K = 1 (i.e., of equilibrium); uj stands for a set of non-
thermodynamic variables. Example of practical application of Hollingsworth’s approach in 
an ideal system is given by Boyd (Boyd, 1977). 
Blum (Blum & Luus, 1964) considered a general mass action rate law formulated as follows: 

  
1 1

m m

r k a k a  
 

 
  

 

  
 

 (9) 

where  is some function of activities, a, of reacting species,  and  are coefficients 

which may differ from the stoichiometric coefficients (), in fact, reaction orders. Supposing 
that both the equilibrium constant and the ratio of the rate constants are dependent only on 
temperature, they proved that 

 / zk k K
 

 (10) 

where 

 ( ) / ; 1, ,z n          (11) 

General law (9) is rarely used in chemical kinetics, in reactions of ions it probably does not 
work (Laidler, 1965; Boudart, 1968). It can be transformed, particularly simply in ideal 
systems, to concentrations. Samohýl (personal communication) pointed out that criteria (11) 
may be problematic, especially for practically irreversible reactions. For example, reaction 
orders for reaction 4 NH3 + 6 NO = 5 N2 + 6 H2O were determined as follows: 

3NH 1  , 

NO 0.5  , 
2 2N H O 0   . Orders for reversed direction are unknown, probably because 

of practically irreversible nature of the reaction. Natural selection could be, e.g., NO 0   
(reaction is not inhibited by reactant), then z = 1/12 and from this follows 

3NH 2 / 3   
which seems to be improbable (rather strong inhibition by reactant). 

2.3 Independence of reactions, Wegscheider conditions 

Wegscheider conditions belong also among “thermodynamic restrictions” on rate constants 
and have been introduced more than one hundred years ago (Wegscheider, 1902). In fact, 
they are also based on equivalence between thermodynamic and kinetic equilibrium 
constants disputed in previous sections. Recently, matrix algebra approaches to find these 
conditions were described (Vlad & Ross, 2009). Essential part of them is to find 
(in)dependent chemical reactions. Problem of independent and dependent reactions is an 
interesting issue sometimes found also in studies on kinetics and thermodynamics of 
reacting mixtures. As a rule, a reaction scheme, i.e. a set of stoichiometric equations 
(whether elementary or nonelementary), is proposed, stoichiometric coefficients are 
arranged into stoichiometric matrix and linear (matrix) algebra is applied to find its rank 
which determines the number of linearly (stoichiometrically) independent reactions; all 
other reactions can be obtained as linear combinations of independent ones. This procedure 
can be viewed as an a posteriori analysis of the proposed reaction mechanism or network. 
Bowen has shown (Bowen, 1968) that using not only matrix but also vector algebra 
interesting results can be obtained on the basis of knowing only components of reacting 
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mixture, i.e. with no reaction scheme. This is a priori type of analysis and is used in 
continuum nonequilibrium (rational) thermodynamics. Because Bowen’s results are 
important for this article they are briefly reviewed now for reader’s convenience.  
Let a reacting mixture be composed from n components (compounds) which are formed by 
z different atoms. Atomic composition of each component is described by numbers T that 
indicate the number of atoms  (= 1, 2,..., z) in component  (= 1, 2,..., n). Atomic masses 

aM  in combination with these numbers determine the molar masses M: 

 
z

a
1

M M T 
 

     (12) 

Although compounds are destroyed or created in chemical reactions the atoms are 
preserved. If J denotes the number of moles of the component  formed or reacted per unit 
time in unit volume, i.e. the reaction rate for the component  (component rate in short), 
then the persistence of atoms can be formulated in the form 

 
1

0; 1,2, ,
n

T J z






     (13) 

This result expresses, in other words, the mass conservation. 
Atomic numbers can be arranged in matrix ║T║ of dimension z  n. Chemical reactions 
are possible if its rank (h) is smaller than the number of components (n), otherwise the 
system (13) has only trivial solution, i.e. is valid only for zero component rates. If h < z then 
a new h  n matrix ║S║ with rank h can be constructed from the original matrix ║T║ 
and used instead of it: 

 
1

0; 1,2, ,
n

S J h






     (14) 

In this way only linearly independent relations from (13) are retained and from the chemical 

point of view it means that instead of (some) atoms with masses aM  only some their linear 

combinations with masses eM  should be considered as elementary building units of 

components: 

  e
1

h

M M S 
 

   (15) 

Example. Mixture of NO2 and N2O4 has the matrix ║T║ of dimension 2  2 and rank 1; the 
matrix ║S║ is of dimension 1  2 and can be selected as  1 2  which means that the 
elementary building unit is NO2 and 1 1 2 N O

e a a a a2 2M M M M M    . 

Multiplying each of the z relations (13) by corresponding aM  and summing the results for 

all  it follows that  
1

0
n

M J
 

 . This fact can be much more effectively formulated in 

vector form because further important implications than follow. The last equality indicates 
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that component molar masses and rates should form two perpendicular vectors, i.e. vectors 
with vanishing scalar product. Let us introduce n-dimensional vector space, called the 
component space and denoted by U, with base vectors e and reciprocal base vectors e ( = 
1, 2,..., n). Then the vector of molar masses M and the vector of reaction rates J are defined in 
this space as follows: 

 
1 1

,
n n

M J 
 

  
  M e J e   (16) 

To proceed further we use relations (14) and (15) because in contrast to relations (12) and 
(13) the matrix ║S║ is of “full rank” (does not contain linearly dependent rows). The 
product of the two vectors can be then expressed in the following form: 

 e e
1 1 1 1 1 1

. . . 0
n h n h n n

α αM S J M S J   
   

          

       
         
       
     M J e e e e   (17) 

where the latter equality follows using (14). Because the matrix ║S║ has rank h, the 
vectors 

 
1

; 1,2, ,
n

αS h 





 f e   (18) 

that appear in (17) are linearly independent and thus form a basis of a h-dimensional 
subspace W of the space U (remember that h < n). This subspace unambiguously determines  
complementary orthogonal subspace V (of dimension n–h), i.e. U = V  W, V  W. From (17) 
follows: 

 
e

1

h

M


 
 M f   (19) 

which shows that M can be expressed in the basis of the subspace W or M  W. From (14) 
and (16)2 follows: 

 0; 1,2, ,h  J.f     (20) 

which means that J is perpendicular to all basis vectors of the subspace W, consequently, J 
lies in the complementary orthogonal subspace V, J  V. 
Let us now select basis vectors in the subspace V and denote them dp, p = 1, 2,..., n–h. Of 
course, these vectors lie also in the (original) space U and can be expressed using its basis 
vectors analogically to (16): 

 
1

n
p pP 


 

 d e   (21) 

Because of orthogonality of subspaces V and W, their bases conform to equation 

 
1

0
n

p pS P 
 

 
 f .d    (22) 

www.intechopen.com



 
Thermodynamics – Interaction Studies – Solids, Liquids and Gases 

 

680 

which can be alternatively written in matrix form as 

 ║Pp║║S║T = ║0║   (23) 

Meaning of the matrix ║Pp║ can be deduced from two consequences. First, because the 
reaction vector J lies in the subspace V, it can be expressed also using its basis vectors, 

1

n h
p

p
p

J



 J d . Substituting for J from (16)2 and for dp from (21), it follows: 

 
1

; 1, 2, ,
n h

p
p

p

J J P n 



    (24) 

Second, because the vector of molar masses M is in the subspace W, it is perpendicular to all 
vectors dp and thus 

 
1

0 ; 1, 2, ,
n

p pP M p n h


 
   d .M   (25) 

as follows after substitution from (19), (21), (220. Eq. (25) shows that matrix ║Pp║ enables to 
express component rates in n–h quantities Jp which are, in fact, rates of n–h independent 
reactions shown by (25) if instead of molar masses M the corresponding chemical symbols 
are used. In other words ║Pp║ is the matrix of stoichiometric coefficients of component  in 
(independent) reaction p. 
Vector algebra thus shows that chemical transformations fulfilling persistence of atoms 
(mass conservation) can be equivalently described either by component reaction rates or by 
rates of independent reactions. The number of the former is equal to the number of 
components (n) whereas the number of the latter is lower (n–h) which could decrease the 
dimensionality of the problem of description of reaction rates. In kinetic practice, however, 
changes in component concentrations (amounts) are measured, i.e. data on component rates 
and not on rates of individual reactions are collected. Reactions, in the form of reaction 
schemes, are suggested a posteriori on the basis of detected components, their 
concentrations changing in time and chemical insight. Then dependencies between reactions 
can be searched. Vector analysis offers rather different procedure outlined in Scheme 2. 
Dependencies are revealed at the beginning and then only independent reactions are 
included in the (kinetic) analysis. Vector analysis also shows how to transform (measured) 
component rates into (suggested, selected) rates of independent reactions. This 
transformation is made by standard procedure for interchange between vector bases or 
between vector coordinates in different bases. First, the contravariant metric tensor with 
components drp = dr.dp is constructed and then its inversion (covariant metric tensor) with 

components drp is found. From 
1

n h
p

p
p

J



 J d  it follows that 

1

n h
p

r p r r
p

J J



 J.d d .d . Using in 

the latter equation the well known relationship between metric tensors and corresponding 
base vectors and the definition of base vectors (21) it finally follows: 

 
1 1

; 1, 2, ,
n n h

r
p rp

r

J J P d p n h 





 

 
   

 
    (26) 
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Of course, so far we have seen only relationships between reaction rates and no explicit 
equations for them like, e.g., the kinetic mass action law. Analysis based only on 
permanence of atoms cannot give such equations – they belong to the domain of chemical 
kinetics although they can also be devised by thermodynamics, see Section 4. 
Simple example on Wegscheider conditions was presented by Vlad and Ross (Vlad & Ross, 
2009) – isomerization taking place in two ways: 

 A = B,  2A = A + B (R2) 

 

 
Scheme 2. Alternative procedure to find reaction rates 

Vlad and Ross note that if the (thermodynamic) equilibrium constant is  B A eq/K c c  and 

if kinetic equations are expressed e.g. 1 1 A 1 Br k c k c 
 

 then the consistency between 

Find out components of 
reacting mixture 

Construct the matrix ║T║  
and determine its rank 

Construct the matrix ║S║ 

Select the stoichiometric matrix ║Ppα║ 
fulfilling (23) 

n–h independent reactions and  
their rates to describe chemical 

transformations 

Find component rates 
from (24) 

Use the method of Section 4 
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thermodynamic and kinetic description of equilibrium is achieved only if the following 
(Wegscheider) condition holds: 

 1 1 2 2/ /k k k k K 
   

 (27) 

It can be easily checked that in this mixture of one kind of atom and two components the 
rank of the matrix ║T║ (dimension 1  2) is 1 and there is only one independent reaction. 
The matrix ║S║ can be selected as equal to the matrix ║T║ and then the stoichiometric 
matrix can be selected as  1 1  which corresponds to the first reaction (A = B) selected as 

the independent reaction. There is one base vector 1
1 2  d e e  giving one component 

contravariant tensor d11 = 2 and corresponding component of covariant tensor d11 = 1/2. 
Consequently, the rate of the independent reaction is related to component reaction rates by: 

 JA = J1P11 = –J1,    JB = J1P12 = J1 (28) 

and JA = –JB which follows also from (14). Kinetics of transformations in a mixture of two 
isomers can be thus fully described by one reaction rate only – either from the two 
component rates can be measured and used for this purpose, the other component rate is 
then determined by it, can be calculated from it. At this stage of analysis there is no 
indication that two reactions should be considered and this should be viewed as some kind 
of “external” information coming perhaps from experiments. At the same time this analysis 
does not provide any explicit expression for reaction rate and its dependence on 
concentration – this is another type of external information coming usually from kinetics. 
Let us therefore suppose the two isomerization processes given above and their rates 
formulated in the form of kinetic mass action law: 

 2
1 1 A 1 B 2 2 A 2 A B,r k c k c r k c k c c   

   
 (29) 

Then the only one independent reaction rate is in the form J1 = r1 + r2. Note, that although 
the first reaction has been selected as the independent reaction, the rate of independent 
reaction is not equal to (its mass action rate) r1. This interesting finding has probably no 
specific practical implication. However, individual traditional rates (ri) should not be 
independent. Let us suppose that r2 is dependent on r1, i.e. can be expressed through it: r2 = 
br1; then 

    1 2 A A 1 2 A B 0bk k c c bk k c c   
   

 (30) 

should be valid for any concentrations. Sufficient conditions for this are 

2 A 1 2 A 1/ /b k c k k c k 
   

 and from them follows: 

 1 2 1 2k k k k
   

 (31) 

i.e. “kinetic part” of Wegscheider condition (27). Substituting derived expressions for b into 
br1 it can be easily checked that r2 really results. Although the derivation is rather 
straightforward and is not based on linear dependency with constant coefficients it points to 
assumption that Wegscheider conditions are not conditions for consistency of kinetics with 
thermodynamics but results of dependencies among reaction rates. Moreover, this 
derivation need not suppose equality of thermodynamic and kinetic equilibrium constant. 
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There is a thermodynamic method giving kinetic description in terms of independent 
reactions as noted in Scheme 2, see Section 4. 
More complex reaction mixture and scheme was discussed by Ederer and Gilles (Ederer & 
Gilles, 2007). Their mixture was composed from six formal components (A, B, C, AB, BC, 
ABC) formed by three atoms (A, B, C). Three independent reactions are possible in this 
mixture while four reactions were considered by Ederer and Gilles (Ederer & Gilles, 2007) 
r4 = b1r1 + b2r2 + b3r3 with following mass action rate equations: 

 1 1 A B 1 AB 2 2 AB C 2 ABC 3 3 B C 3 BC 4 4 A BC 4 ABC, , ,r k c c k c r k c c k c r k c c k c r k c c k c       
       

(32) 

Let us suppose that the fourth reaction rate can be expressed through the other three rates: 
b1r1 + b2r2 + b3r3. By similar procedure as in the preceding example we arrive at conditions 

2 4 2/b k k
 

, 3 4 A 3/b k c k 
 

, and 1 2 2 C 1 3 3 C 1 A/ /b b k c k b k c k c  
   

 from which it follows that 

 1 2 3 4

1 2 3 4

1
k k k k

k k k k


   
     (33) 

i.e., Wegscheider condition derived in (Ederer & Gilles, 2007) from equilibrium 
considerations. Thus also here Wegscheider condition seems to be a result of mutual 
dependence of reaction rates and not a necessary consistency condition between 
thermodynamics and kinetics. 
If reactions A + B = AB, AB + C = ABC, and B + C = BC are selected as independent ones 
then (24) gives 

 JA = –J1,  JB = –J1 – J3,  JC = –J2 – J3,  JAB = J1 – J2,  JBC = J3,  JABC = J2   (34) 

Remember that, e.g., J1  r1 but that the relationships between rates of independent reactions 
and mass action rates (32) follow from (34): 

 J1 = r1 + r4,  J2 = r2 + r4,  J3 = r3 – r4 (35) 

Eq. (26)  gives more complex expressions for independent rates, e.g. J1 = – JA/2 – JB/4 + 
JAB/4 – JBC/4 + JABC/4, whereas from (24), i.e. (34), simply follow: J1 = –JA,  J2 = JABC, J3 = JBC. 
This is because the rates are considered as vector components – components J of six 
dimensional space are transformed to components Ji in three dimensional subspace. 
Consequently, in practical applications (24) should be preferred in favor of (26) also to 
express Ji in terms of J. 
Message from the analysis of independence of reactions in this example is that it is sufficient 
to measure three component rates only (JA,  JABC, JBC); the remaining three component rates 
are determined by them. Although concentrations, i.e. component rates, are measured in 
kinetic experiments, results are finally expressed in reaction rates, rates of reactions 
occurring in suggested reaction scheme. Component rates are simply not sufficient in kinetic 
analysis and they are (perhaps always) translated into rates of reaction steps. However, 
from the three independent rates there cannot be unambiguously determined rates of four 
reactions in suggested reaction schemes as (35) demonstrates (three equations for four 
unknown ri). One equation more is needed and this is the above equation relating r4 to the 
remaining three rates. Equations containing ri are too general and in practice are replaced by 
mass action expressions shown in (32) – eight parameters (rate constants) are thus 
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introduced in this example. They can be in principle determined from three equations (35) 
with the three measured independent reactions, four equations relating equilibrium 
composition (or thermodynamic equilibrium constant) and kinetic equilibrium constant and 
one Wegscheider condition (33), i.e. eight equations in total. Alternative thermodynamic 
method is described in Section 4. 
Algebraically more rigorous is this analysis in the case of first order reactions as was 
illustrated on a mixture of three isomers and their triangular reaction scheme which is 
traditional example used to discuss consistency between thermodynamics and kinetics. 
Here, Wegscheider relations are consequences of linear dependence of traditional mass 
action reaction rates (Pekař, 2007). 

2.4 Note on standard states 

Preceding sections demonstrated that one of the main problems to be solved when relating 
thermodynamics and kinetics is the transformation between activities and concentration 
variables. This is closely related to the selection of standard state (important and often 
overlooked aspect of relating thermodynamic and kinetic equilibrium constants) and to 
chemical potential. Standard states are therefore briefly reviewed in this section and 
chemical potential is subject of the following section. 
Rates of chemical reactions are mostly expressed in terms of concentrations. Among 
standard states introduced and commonly used in thermodynamics there is only one based 
on concentration – the standard state of nonelectrolyte solute on concentration basis. Only 
this standard state can be directly used in kinetic equations. Standard state in gaseous phase 
or mixture is defined through (partial) pressure or fugacity. As shown above even in  
mixture of ideal gases it is impossible to simply use this standard state in concentration 
based kinetic equations. Although kinetic equations could be reformulated into partial 
pressures there still remains problem with the fact that standard pressure is fixed (at 1 atm 
or, nowadays, at 105 Pa) and its recalculation to actual pressure in reacting mixture may 
cause incompatibility of thermodynamic and kinetic equilibrium constants (see the factor prel 
in the example above in Section 2.1). This opens another problem – the very selection of 
standard state, particularly in relation to activity discussed in subsequent section. In 
principle, it can be selected arbitrarily, as dependent only on temperature or on temperature 
and pressure. Standard states strictly based on the (fixed) standard pressure are of the 
former type and only such will be considered in this article. All other states, including states 
dependent also on pressure, will be called the reference state; the same approach is used, 
e.g. by de Voe (de Voe, 2001).  
The value of thermodynamic equilibrium constant and its dependence or independence on 
pressure is thus dependent on the selected standard (or reference) state. This is quite 
uncommon in chemical kinetics where the dependence of rate constants is not a matter of 
selection of standard states but result of experimental evidence or some theory of reaction 
rates. As a rule, rate constant is always function of temperature. Sometimes also the 
dependence on pressure is considered but this is usually the case of nonelementary 
reactions. Consequently, attempts to relate thermodynamic and kinetic equilibrium 
constants should select standard state consistently with functional dependence of rate 
constants. On the other hand, the method of Scheme 1 is self-consistent in this aspect 
because equilibrium composition is independent of the selection of standard state.  
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3. Chemical potential and activity revise 

Chemical potential is used in discussions on thermodynamic implications on reaction rates, 
particularly in the form of (stoichiometric) difference between chemical potentials of 
reaction products and reactants and through its explicit relationship to concentrations 
(activities, in general). Before going into this type of analysis basic information is 
recapitulated. 
Chemical potential is in classical, equilibrium thermodynamics defined as a partial 
derivative of Gibbs energy (G): 

   , ,
/

jT p n
G n


 


    (36) 

Although another definitions through another thermodynamic quantities are possible (and 
equivalent with this one), the definition using the Gibbs energy is the most useful for 
chemical thermodynamics. Chemical potential expresses the effect of composition and this 
effect is also essential in chemical kinetics. To make the mathematical definition of the 
chemical potential applicable in practice its relationship to composition (concentration) 
should be stated explicitly. Practical chemical thermodynamics suggests that this is an easy 
task but we must be very careful and bear all (tacit) presumptions in mind to arrive at 
proper conclusions. Generally the explicit relationship between chemical composition and 
chemical potential is stated defining the activity of a component : 

 expa
RT

 


  
   

 



 (37) 

which can be transformed to 

 lnRT a      (38) 

but this still lacks direct interconnection/linkage to measurable concentrations. Just this is 
the main problem of applying chemical potential (and activities) in rate equations which 
systematically use molar concentrations. Even when reaction rates would be expressed 
using activities in place of concentrations the activities should be properly calculated from 
the measured concentrations, in other words, the concentrations should be correctly 
transformed to the activities. Activity is very easily related to measurable composition 
variable in the case of mixture of ideal gases. Providing that Gibbs energy is a function of 
temperature, pressure and molar amounts, following relation is well known from 
thermodynamics for the partial molar volume:   ,

/
jT n

V p


 


   . In a mixture of ideal 
gases partial molar volumes are equal to the molar volume of the mixture, Vm (Silbey et al., 
2005). Because Vm = RT/p we can write: 

     ,g ,g/ / / /RT p p p p x p               (39) 

and 

  ,g/ /RT p p      (40) 
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Integration from the standard state to some actual state then yields 

   ,g ,g ln /RT p p       (41) 

Comparing with the definition of activity it follows 

  /a p p    (mixture of ideal gases) (42) 

Application of this relationship was illustrated in the example given above. Note that (42)  
was not derived from the definition of activity but comparing the properties of chemical 
potential in the ideal gas mixture (41) with the definition of activity. Note also that the 
partial derivative in the original definition of chemical potential is in general a function of 
molar amounts (contents) of all components but eq. (42) states that the chemical potential of 
a component  is a function only of the content of that component.  
In a real gas mixture, non-idealities should be taken into account, usually by substituting 
fugacity (f) for the partial pressure: 

  ,g ,g ln /RT f p       (43) 

The fugacity can be eliminated in favor of directly measurable quantities using the fugacity 
coefficient  

 f p    (44) 

and its relationship to the partial molar volume and the total pressure (de Voe, 2001): 

    ,g ,g 0
ln / / d

p
RT p p V RT p p          (45) 

It should be stressed that in derivation of the expression for the fugacity coefficient it was 
assumed that the Gibbs energy is a function of (only) temperature, pressure, and molar 
amounts of all components. Comparing with the definition of activity we have 

 /a f p     (mixture of gases) (46) 

If kinetic equations for mixture of real gases are written in partial pressures then 
thermodynamic and kinetic equilibrium constants are incompatible due to the presence of 
fugacity coefficient or the integral in eq. (45). Kinetic equations for mixture of real gases 
could be formulated in terms of fugacities instead of concentrations (or partial pressures) to 
achieve compatibility between thermodynamic and kinetic equilibrium constants but even 
than the same problem remains with the presence of the standard pressure in 
thermodynamic relations. Kinetic equations formulated in fugacities  are really rare – some 
success in this way was demonstrated by Eckert and Boudart (Eckert & Boudart, 1963) while 
Mason (Mason, 1965) showed, using the same data, that fugacities need not remedy the 
whole situation.  
Similar derivation for liquid state (solutions) has different basis. It stems from the 
equilibrium between liquid and gaseous phase in which the following identity holds: ,g = 
,l. Introducing expression (41) or (43) and using either Raoult’s or Henry’s law for the 
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relationship between compositions of equilibrated liquid and gaseous phases final form of 
,l dependence on the composition of liquid is obtained. For example, with Raoult’s law p 
= xp*  and ideal gas phase we have this equation 

   ref
,l ,g ln / lnRT x p p RT x             (47) 

which has, in fact, inspired the definition of an ideal (liquid, solid, or gas) mixture as a 

mixture with the chemical potential defined, at a given T and p, as ref lnRT x      

where ref is a function of both T and p. This definition, as well as the identity in (47), can be 
simply related to the definition of activity only if the standard state is selected consistently 
with the reference state, i.e. if the former is a function of both T and p. If the standard state is 
selected as dependent on temperature, as it should be, than the pressure factor () should 
be introduced (see, e.g., de Voe, 2001) 

 
ref

exp
RT

 


  
    

 


 (48) 

Then the activity of a (non-electrolyte) component in real solution is written as a x      

where  is the activity coefficient introduced by the equation  ref lnRT x       . 

Introducing activities in place of concentrations means in this case to know the pressure 
factor and to transform molar fractions into molar concentrations to be consistent with 
thermodynamics.   
The main problems with using activities defined for liquid systems can be summarized as 
follows. Activity is based on molar fractions whereas kinetic uses concentrations. Although 
there are formulas for the conversion of these variables they do not allow direct substitution, 
they introduce other variables (e.g., solution density) and lead to rather complex expression 
of thermodynamic equilibrium constant in concentrations. Whereas concentrations of all 
species are independent (variables) this is not true for molar fractions – value of one from 
them is unambiguously determined by values of remaining ones. Chemical potential in 
liquid and activity based on it are introduced on the basis of (liquid-gas) equilibrium while 
kinetics essentially works with reactions out of equilibrium. Applicability of equilibrium-
based formulated in fugacities are really rare in nonequilibrium states deserves further 
study. The problem with molar fractions can be resolved by the use of molar concentration 
based Henry’s law giving for ideal-dilute solution ref

,l , ln /c RT c c      , however, rate 
equations should be formulated with the standard concentration. Sometimes following 
relationship is used: ref

,l , ln /c RT c c       (Ederer & Gilles, 2007) where c is the sum of 
all concentrations. In this case, the invertibility for c is problematic because it is included in 
c; reaction rates should be then formulated in c/c instead of concentrations that is quite 
unusual. Of course, the value of activity is dependent on the selected standard state, 
anyway. All attempts to relate thermodynamic and kinetic equilibrium constants should pay 
great attention to the selection of standard state and its consequences to be really rigorous 
and correct.  
It is clear from this basic overview that chemical potential, activity and their interrelation 
are in principle equilibrium quantities which, in kinetic applications, are to be used for 
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non-equilibrium situations. Let us now trace one relatively simple non-equilibrium 
approach to description of chemically reacting systems and its results regarding the 
chemical potential. Samohýl has developed rational thermodynamic approach for 
chemically reacting fluids with linear transport properties (henceforth called briefly linear 
fluids) and these fluids seem to include many (non-electrolyte) systems encountered in 
chemistry (Samohýl & Malijevský, 1976; Samohýl, 1982, 1987). This is a continuum 
mechanics based approach working with densities of quantities and specific quantities 
(considered locally, in other words, as fields but this is not crucial for the present text) 
therefore it primarily uses densities of components (more precisely, the density of 
component mass) instead of their molar concentrations or fractions that are common in 
chemistry. This density, in fact, is known in chemistry as a mass concentration with 
dimension of mass per (unit) volume and can be thus easily recalculated to concentration 
quantities more common in chemistry. Chemical potential of a reacting component  is 
defined in this theory as follows: 

  /g f      (49) 

Here  is the density of mixture, i.e. the sum of all component densities , and f  is the 
specific free energy of (reacting) mixture as a function of relevant independent variables (the 
value of this function is denoted by f). Inspiration for this definition came from the entropic 
inequality (the “second law” of thermodynamics) as formulated in rational thermodynamics 
generally for mixtures and from the fact that this definition enabled to derive classical 
(equilibrium) thermodynamic relations in the special case that is covered by classical theory. 
The chemical potential g thus has the dimensions of energy per mass. The product f  
essentially transforms the specific quantity to its density and the definition (49) can be 
viewed as a generalization of the classical definition (36) – partial derivative of mixture free 
energy (as a function) with respect to an independent variable expressing the amount of a 
component.  

The specific free energy f  is function of various (mostly kinematic and thermal) variables 

but here it is sufficient to note that component densities are among them, of course. 
In the case of linear fluids it can be proved that free energy is function of densities and 
temperature only,  1 2, , , ,nf f T    . The same result is proved also for chemical 
potentials g and also for reaction rates expressed as component mass created or destroyed 
by chemical reactions at a given place and time in unit volume,  1 2, , , ,nr r T      . 
These rates can be easily transformed to molar basis much more common in chemistry using 
the molar mass M: J = r/M. Component densities are directly related to molar 
concentration by a similar equation: c = /M. In this way, the well known kinetic 
empirical law – the law of mass action – is derived theoretically in the form: 

 1 2, , , ,nJ J c c c T   . Apparently, activities could be introduced into this function as 
independent variables controlling reaction rates by means of relations as /a c c       
but this is not rigorous because these relations are consequences of chemical potential and 
its explicit dependence on mixture composition and not definitions per se. Therefore, 
chemical potentials should be introduced as independent variables at first. This could be 
done providing that component densities can be expressed as functions of chemical 
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potential, i.e. providing that functions  1 2, , , ,ng g T       are invertible (with respect 
to densities). This invertibility is not self-evident and the best way would be to prove it. 
Samohýl has proved (Samohýl, 1982, 1987) that if mixture of linear fluids fulfils Gibbs’ 
stability conditions then the matrix with elements /g    (,  = 1,..., n) is regular which 
ensures the invertibility. This stability is a standard requirement for reasonable behavior of 
many reacting systems of chemist’s interest, consequently the invertibility can be considered 
to be guaranteed and we can transform the rate functions as follows: 

      1 2 1 2 1 2, , , , , , , , , , , ,n n nJ J T J g g g T J T          
 

    (50) 

where the last transformation was made using the following transformation of (specific) 
chemical potential into the traditional chemical potential (which will be called the molar 
chemical potential henceforth):  = g M. Using the definition of activity (37) another 
transformation, to activities, can be made providing that the standard state is a function of 
temperature only: 

    1 2 1 2, , , , , , , ,n nJ T J a a a T    
    (51) 

It should be stressed that chemical potential of component  as defined by (49) is a function 
of densities of all components, i.e. of ,  = 1,..., n, therefore also the molar chemical 
potential is following function of composition:  1 2, , , ,nc c c T    . Note that generally 
any rate of formation or destruction (J) is a function of densities, or chemical potentials, or 
activities, etc. of all components. 
Although the functions (dependencies) given above were derived for specific case of linear 
fluids they are still too general. Yet simpler fluid model is the simple mixture of fluids which 
is defined as mixture of linear fluids constitutive (state) equations of which are independent 
on density gradients. Then it can be shown (Samohýl, 1982, 1987) that 

 / 0 for ; , 1, ,f n            (52) 

and, consequently, also that  ,g g T   , i.e. the chemical potential of any component is 
a function of density of this component only (and of temperature). Mixture of ideal gases is 
defined as a simple mixture with additional requirement that partial internal energy and 
enthalpy are dependent on temperature only. Then it can be proved (Samohýl, 1982, 1987) 
that chemical potential is given by 

  ( ) ln /g g T R T p p       (53) 

that is slightly more general than the common model of ideal gas for which R = R/M. 
Thus the expression (41) is proved also at nonequilibrium conditions and this is probably 
only one mixture model for which explicit expression for the dependence of chemical 
potential on composition out of equilibrium is derived. There is no indication for other cases 
while the function  ,g g T    should be just of the logarithmic form like (47). Let us 
check conformity of the traditional ideal mixture model with the definition of simple 
mixture. For solute in an ideal-dilute solution following concentration-based expression is 
used: 
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  ref ln /RT c c       (54) 

where ref
  includes (among other) the gas standard state and concentration-based Henry’s 

constant. Changing to specific quantities and densities we obtain: 

    ref / / ln /g M RT M M c          (54) 

which looks like a function of  and T only, i.e. the simple mixture function 
 ,g g T   . However, the referential state is a function of pressure so this is not such 

function rigorously. Except ideal gases there is probably no proof of applicability of classical 
expressions for dependence of chemical potential on composition out of equilibrium and no 
proof of its logarithmic point. There are probably also no experimental data that could help 
in resolving this problem. 

4. Solution offered by rational thermodynamics 

Rational thermodynamics offers certain solution to problems presented so far. It should be 
stressed that this is by no means totally general theory resolving all possible cases. But it 
clearly states assumptions and models, i. e. scope of its potential application. 
The first assumption, besides standard balances and entropic inequality (see, e.g., Samohýl, 
1982, 1987), or model is the mixture of linear fluids in which the functional form of reaction 
rates was proved:  1 2, , , ,nJ J c c c T    (Samohýl & Malijevský, 1976; Samohýl, 1982, 
1987). Only independent reaction rates are sufficient that can be easily obtained from 
component rates, cf. (26) from which further follows that they are function of the same 
variables. This function,  1 2, , , ,i i nJ J c c c T  , is approximated by a polynomial of suitable 
degree (Samohýl & Malijevský, 1976; Samohýl, 1982, 1987). Equilibrium constant is defined 
for each independent reaction as follows: 

 
1

ln ; 1, 2, ,
n

p
pRT K P p n h







       (55) 

Activity (37) is supposed to be equal to molar concentrations (divided by unit standard 
concentration), which is possible for ideal gases, at least (Samohýl, 1982, 1987). Combining 

this definition of activity with the proved fact that in equilibrium eq
1

( ) 0
n

pP 






  

(Samohýl, 1982, 1987) it follows 

 eq
1

( )
pn P

pK c



 

     (56) 

Some equilibrium concentrations can be thus expressed using the others and (56) and 
substituted in the approximating polynomial that equals zero in equilibrium. Equilibrium 
polynomial should vanish for any concentrations what leads to vanishing of some of its 
coefficients. Because the coefficients are independent of equilibrium these results are valid 
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also out of it and the final simplified approximating polynomial, called thermodynamic 
polynomial, follows and represents rate equation of mass action type. More details on this 
method can be found elsewhere (Samohýl & Malijevský, 1976; Pekař, 2009, 2010). Here it is 
illustrated on two examples relevant for this article. 
First example is the mixture of two isomers discussed in Section 2. 3. Rate of the only one 
independent reaction, selected as A = B, is approximated by a polynomial of the second 
degree: 

 2 2
1 00 10 A 01 B 20 A 02 B 11 A BJ k k c k c k c k c k c c       (57) 

The concentration of B is expressed from the equilibrium constant, (cB)eq = K(cA)eq and 
substituted into (57) with J1 = 0. Following form of the polynomial in equilibrium is 
obtained: 

    2 2
00 10 01 A eq 20 02 11 A eq0 ( ) ( )k k K k c k K k K k c       (58) 

Eq. (58) should be valid for any values of equilibrium concentrations, consequently 

 2
00 10 01 20 02 110; ;k k K k k K k K k       (59) 

Substituting (59) into (57) the final thermodynamic polynomial (of the second degree) 
results: 

      2 2 2 2
1 10 A B 02 A B 11 A A BJ k Kc c k K c c k Kc c c          (60) 

Note, that coefficients kij are functions of temperature only and can be interpreted as mass 
action rate constants (there is no condition on their sign, if some kij is negative then 
traditional rate constant is kij with opposite sign). Although only the reaction A = B has been 
selected as the independent reaction, its rate as given by (60) contains more than just 
traditional mass action term for this reaction. Remember that component rates are given by 
(28). Selecting k02 = 0 two terms remain in (60) and they correspond to the traditional mass 
action terms just for the two reactions supposed in (R2). Although only one reaction has 
been selected to describe kinetics, eq. (60) shows that thermodynamic polynomial does not 
exclude other (dependent) reactions from kinetic effects and relationship very close to J1 = r1 
+ r2, see also (29), naturally follows. No Wegscheider conditions are necessary because there 
are no reverse rate constants. On contrary, thermodynamic equilibrium constant is directly 
involved in rate equation; it should be stressed that because no reverse constant are 
considered this is not achieved by simple substitution of K for jk


 from (27). Eq. (60) also 

extends the scheme (R2) and includes also bimolecular isomerization path: 2A = 2B. 
This example illustrated how thermodynamics can be consistently connected to kinetics 
considering only independent reactions and results of nonequilibrium thermodynamics 
with no need of additional consistency conditions. 
Example of simple combination reaction A + B = AB will illustrate the use of molar chemical 
potential in rate equations. In this mixture of three components composed from two atoms 
only one independent reaction is possible. Just the given reaction can be selected with 
equilibrium constant defined by (55):  A B ABln /( )K RT          and equal to  
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 AB A B eq
/K c c c , cf. (56). The second degree thermodynamic polynomial results in this 

case in following rate equation: 

 1
1 110 A B AB( )J k c c K c   (61) 

that represents the function 1 1 A B AB( , , , )J J T c c c . Its transformation to the function  

1 1 A B AB( , , , )J J T   


 gives: 

 A B A B AB
1 110 exp exp expJ k

RT RT RT

                    

 
 (62) 

This is thermodynamically correct expression (for the supposed thermodynamic model) of 

the function J


 discussed in Section 3 and in contrast to (1). It is clear that proper 
“thermodynamic driving force” for reaction rate is not simple (stoichiometric) difference in 
molar chemical potentials of products and reactants. The expression in square brackets can 
be considered as this driving force. Equation (62) also lucidly shows that high molar 
chemical potential of reactants in combination with low molar chemical potential of 
products can naturally lead to high reaction rate as could be expected. On the other hand, 
this is achieved in other approaches, based on i i  , due to arbitrary selection of signs of 

stoichiometric coefficients. In contrast to this straightforward approach illustrated in 
introduction, also kinetic variable (k110) is still present in eq. (62), explaining why some 
“thermodynamically highly forced” reactions may not practically occur due to very low 
reaction rate. Equation (62) includes also explicit dependence of reaction rate on standard 
state selection (cf. the presence of standard chemical potentials). This is inevitable 
consequence of using thermodynamic variables in kinetic equations. Because also the molar 
chemical potential is dependent on standard state selection, it can be perhaps assumed that 
these dependences are cancelled in the final value of reaction rate. 
Rational thermodynamics thus provides efficient connection to reaction kinetics. However, 
even this is not totally universal theory; on the other hand, presumptions are clearly stated. 
First, the procedure applies to linear fluids only. Second, as presented here it is restricted to 
mixtures of ideal gases. This restriction can be easily removed, if activities are used instead 
of concentrations, i.e. if functions J  are used in place of functions J  – all equations remain 
unchanged except the symbol a replacing the symbol c. But then still remains the problem 
how to find explicit relationship between activities and concentrations valid at non 
equilibrium conditions.  Nevertheless, this method seems to be the most carefully elaborated 
thermodynamic approach to chemical kinetics.  

5. Conclusion 

Two approaches relating thermodynamics and chemical kinetics were discussed in this 
article. The first one were restrictions put by thermodynamics on the values of rate constants 
in mass action rate equations. This can be also formulated as a problem of relation, or even 
equivalence, between the true thermodynamic equilibrium constant and the ratio of forward 
and reversed rate constants. The second discussed approach was the use of chemical 
potential as a general driving force for chemical reaction and “directly” in rate equations. 
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Both approaches are closely connected through the question of using activities, that are 
common in thermodynamics, in place of concentrations in kinetic equations and the 
problem of expressing activities as function of concentrations. 
Thermodynamic equilibrium constant and the ratio of forward and reversed rate constants 
are conceptually different and cannot be identified. Restrictions following from the former 
on values of rate constants should be found indirectly as shown in Scheme 1. 
Direct introduction of chemical potential into traditional mass action rate equations is 
incorrect due to incompatibility of concentrations and activities and is problematic even in 
ideal systems. 
Rational thermodynamic treatment of chemically reacting mixtures of fluids with linear 
transport properties offers some solution to these problems whenever its clearly stated 
assumptions are met in real reacting systems of interest.  No compatibility conditions, no 
Wegscheider relations (that have been shown to be results of dependence among reactions) 
are then necessary, thermodynamic equilibrium constants appear in rate equations, 
thermodynamics and kinetics are connected quite naturally. The role of 
(“thermodynamically”) independent reactions in formulating rate equations and in kinetics 
in general is clarified. 
Future research should focus attention on the applicability of dependences of chemical 
potential on concentrations known from equilibrium thermodynamics in nonequilibrium 
states, or on the related problem of consistent use of activities and corresponding standard 
states in rate equations. 
Though practical chemical kinetics has been successfully surviving without special 
incorporation of thermodynamic requirements, except perhaps equilibrium results, tighter 
connection of kinetics with thermodynamics is desirable not only from the theoretical point 
of view but may be of practical importance considering increasing interest in analyzing of 
complex biochemical network or increasing computational capabilities for correct modeling 
of complex reaction systems. The latter when combined with proper thermodynamic 
requirements might contribute to more effective practical, industrial exploitation of chemical 
processes. 
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