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Thermodynamics of Surface Growth with 
Application to Bone Remodeling 

Jean-François Ganghoffer 
LEMTA – ENSEM, 2, Avenue de la Forêt de Haye,  

France 

1. Introduction 

In physics, surface growth classically refers to processes where material reorganize on the 
substrate onto which it is deposited (like epitaxial growth), but principally to phenomena 
associated to phase transition, whereby the evolution of the interface separating the phases 
produces a crystal (Kessler, 1990; Langer, 1980). From a biological perspective, surface growth 
refers to mechanisms tied to accretion and deposition occurring mostly in hard tissues, and 
is active in the formation of teeth, seashells, horns, nails, or bones (Thompson, 1992). A 
landmark in this field is Skalak (Skalak et al., 1982, 1997) who describe the growth or 
atrophy of part of a biological body by the accretion or resorption of biological tissue lying 
on the surface of the body. Surface growth of biological tissues is a widespread situation, 
with may be classified as either fixed growth surface (e.g. nails and horns) or moving 
growing surface (e.g. seashells, antlers). Models for the kinematics of surface growth have 
been developed in (Skalak et al., 1997), with a clear distinction between cases of fixed and 
moving growth surfaces, see (Ganghoffer et al., 2010a,b; Garikipati, 2009) for a recent 
exhaustive literature review.  
Following the pioneering mechanical treatments of elastic material surfaces and surface 
tension by (Gurtin and Murdoch, 1975; Mindlin, 1965), and considering that the boundary of 
a continuum displays a specific behavior (distinct from the bulk behavior), subsequent 
contributions in this direction have been developed in the literature (Gurtin and Struthers, 
1990; Gurtin, 1995, Leo and Sekerka, 1989) for a thermodynamical approach of the surface 
stresses in crystals; configurational forces acting on interfaces have been considered e.g. in 
(Maugin, 1993; Maugin and Trimarco, 1995) – however not considering surface stress -, and 
(Gurtin, 1995; 2000) considering specific balance laws of configurational forces localized at 
interfaces.   
Biological evolution has entered into the realm of continuum mechanics in the 1990’s, with 
attempts to incorporate into a continuum description time-dependent phenomena, basically 
consisting of a variation of material properties, mass and shape of the solid body. One 
outstanding problem in developmental biology is indeed the understanding of the factors 
that may promote the generation of biological form, involving the processes of growth 
(change of mass), remodeling (change of properties), and morphogenesis (shape changes), a 
classification suggested by Taber (Taber, 1995).  
The main focus in this chapter is the setting up of a modeling platform relying on the 
thermodynamics of surfaces (Linford, 1973) and configurational mechanics (Maugin, 1993) 
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for the treatment of surface growth phenomena in a biomechanical context. A typical 
situation is the external remodeling in long bones, which is induced by genetic and 
epigenetic factors, such as mechanical and chemical stimulations. The content of the chapter 
is the following: the thermodynamics of coupled irreversible phenomena is briefly 
reviewed, and balance laws accounting for the mass flux and the mass source associated to 
growth are expressed (section 2). Evolution laws for a growth tensor (the kinematic 
multiplicative decomposition of the transformation gradient into a growth tensor and an 
accommodation tensor is adopted) in the context of volumetric growth are formulated, 
considering the interactions between the transport of nutrients and the mechanical forces 
responsible for growth. As growth deals with a modification of the internal structure of the 
body in a changing referential configuration, the language and technique of Eshelbian 
mechanics (Eshelby, 1951) are adopted and the driving forces for growth are identified in 
terms of suitable Eshelby stresses (Ganghoffer and Haussy, 2005; Ganghoffer, 2010a). 
Considering next surface growth, the thermodynamics of surfaces is first exposed as a basis 
for a consistent treatment of phenomena occurring at a growing surface (section 3), 
corresponding to the set of generating cells in a physiological context. Material forces for 
surface growth are identified (section 4), in relation to a surface Eshelby stress and to the 
curvature of the growing surface. Considering with special emphasis bone remodeling 
(Cowin, 2001), a system of coupled field equations is written for the superficial density of 
minerals, their concentration and the surface velocity, which is expressed versus a surface 
material driving force in the referential configuration. The model is able to describe both 
bone growth and resorption, according to the respective magnitude of the chemical and 
mechanical contributions to the surface driving force for growth (Ganghoffer, 2010a). 
Simulations show the shape evolution of the diaphysis of the human femur. Finally, some 
perspectives in the field of growth of biological tissues are mentioned.   

As to notations, vectors and tensors are denoted by boldface symbols. The inner product of 

two second order tensors is denoted  . ik kjij
A BA B . The material derivative of any function 

is denoted by a superposed dot.  

2. Thermodynamics of irreversible coupled phenomena: a survey 

We consider multicomponent systems, mutually interacting by chemical reactions. Two 

alternative viewpoints shall be considered: in the first viewpoint, the system is closed, which 

in consideration of growth phenomena means that the nutrients are included into the 

overall system. The second point of view is based on the analysis of a solid body as an open 

system exchanging nutrients with its surrounding; hence growth shall be accounted for by 

additional source terms and convective fluxes.     

2.1 Multiconstituents irreversible thermodynamics 

We adopt the thermodynamic framework of open systems irreversible thermodynamics, 

which shall first be exposed in a general setting, and particularized thereafter for growing 

continuum solid bodies. Recall first that any extensive quantity A  with volumetric density 

( , )a a t x  satisfies a prototype balance law of the form    

 
( , )

. ( , ) ( , )a a

a t
t t

t


  

x

J x x  (1) 
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with ( , )a tJ x  the flux density of ( , )a tx and ( , )a t x  the local production (or destruction) of 

( , )a tx . The particular form of the flux and source depend on the nature of the considered 

extensive quantity, as shall appear in the forthcoming balance laws. We consider a system 

including n constituents undergoing r chemical reactions; the local variations of the partial 

density of a given constituent k, quantity k , obey the local balance law (Vidal et al., 1994) 

  
1..

.k
k k k k

r

M J
t

 


  



   

 u J  (2) 

with 
1

1
:

n

k k
k


 

 u u  the local barycentric velocity, kM  the molar mass, and k  the 

stoechiometric coefficients in the reaction  , such that the variation of the mass kdm  of the 

species k due to chemical reactions expresses as 

 
1..

,   k=1..nk k k
r

dm M  


 


   (3) 

wherein   denotes the degree of advancement of reaction  . The molar masses kM  

satisfy the global conservation law (due to Lavoisier) 

 
1

0,   1..
n

k k
k

M r 


   (4) 

Observe that the total flux of mass is the sum of a convective flux k u  and a diffusive flux 

kJ  ; the mass production is identified as the contribution 
1..

k k
r

M J 




 . In this viewpoint, 

the system is in fact closed, since the balance law satisfied by the global density 
1

n

k
k

 


  

writes (Vidal et al., 1994) accounting for the relation 
1 1

n n

k k k
j j


 

  J u 0 , as 

    
1 1..

. .
n

k k
k r

M J
t

 


   
 


    

  u u  (5) 

This balance law does not involve any source term for the total density. Instead of using the 

partial densities of the system constituents, one can write balance equations for the number 

of moles of constituent k,  /k k kn m M , with km  the mass of the same constituent. The 

molar concentration is defined as /k kc n V , its inverse being called the partial molar 

volume. The partial mole number kn  satisfies the balance equation 

 k i k
k

n n
div

t t

 
  

 
J  (6) 

with kJ  the flux of species k and i kn

t




 its production term, given by De Donder definition 

of the rate of progress of the jth chemical reaction 
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1

r
i k

kj j
j

n

t
 






    (7) 

The two previous equalities enter into Gibbs relation as 

 :e i k k k kj j
k k j

u s s div
M M

             ǔ ε J     (8) 

with   the temperature and k  the chemical potential of constituent k. The chemical 

affinity in the sense of De Donder is defined as the force conjugated to the rate j  

  /j k kj k kj
k k

A V
M

        
 

   (9) 

Hence, Gibbs relation can be rewritten in order to highlight the variation of entropy 

 
1 1 1 1 1

: k k j j
k j

s u div A
V

   
   

     
 

 ǔ ε J    (10) 

The local balance of internal energy traduces the first principle of thermodynamics as 

. qu w   J   

with qJ  the heat flux, and the term w  is relative to all forms of work. One shall isolate the 

flux-like contributions in the entropy variation, which after a few transformations writes 

 1 1 1 1 1
. . . :k k

e i q k k j j
k k j

s s s w A
V V

     
    

                
   

  J J J ǔ ε      

The contribution : /ǔ ε  (involving the virtual power of internal forces) is further 

decomposed into 

1 1 1 1
: : . : . .

   
           
   

ǔ ε ǔ u ǔ u u ǔ  

Hence, the rate of the entropy density decomposes into 

 

 

1 1
. .

1 1 1
. :

k
e i q k q

k

k
k j j

k j

s s s
V

w A
V

  
 

  
  

             
  

     
 



 

J J J

J ǔ ε

  


 (11) 

This writing allows the identification of the divergential contribution to the exchange 
entropy, hence to the entropy flux 

 
1k

s q k
k V




 J J J  (12) 
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and of the internal entropy production 

  1 1 1 1
. . :k

i q k j j
k j

s w A
V

  
   

           
   

 J J ǔ ε    (13) 

which is due to the gradient of intensive variables (temperature, chemical potential), to the 
irreversible mechanical power spent and to chemical reactions.  
An alternative to the previous writing of the internal entropy production bearing the name 
of Clausius-Duhem inequality is frequently used; as a starting point, the first principle is 
written as 

  . : /q k k
k

u V n    J ǔ ε   (14) 

One has assumed in this alternative that the mechanical power :eqw  ǔ u  does not 

include a flux contribution, hence only the heat diffusion contributes to the flux of internal 

energy. The contribution  : /k k
k

V nǔ ε   is identified to the term w  . Previous 

equality combined with the second principle, equality .
q

is s 


 
    

 

J
   (the entropy flux 

resumes to the sole heat flux), delivers after a few manipulations the variation of the internal 
energy as 

  : /q i k k
k

u s T s V n
   

      

 
J ǔ ε     (15) 

Hence, the internal entropy production is identified as  

    : /i q k k
k

s u Ts V n
  



     J ǔ ε     (16) 

which is conveniently rewritten in terms of Helmholtz free energy density : u Ts    as 

    . : /i q k k
k

s s V n
    



     J ǔ ε     (17) 

This is at variant with the point of view adopted next, which consists in insulating a 
growing solid body from the external nutrients, identified as one the chemical species, but 
accounted for in a global manner as a source term.  

2.2 General balance laws accounting for mass production due to growth 

In the case of mass being created / resorbed within a solid body considered as an open 

system from a general thermodynamic point of view, one has to account for a source term 

  being produced (by a set of generating cells) at each point within the time varying 

volume t ; a convective term is also added, corresponding to the transport of nutrients by 

the velocity field of the underlying continuum. For any quantity a, the convective flux is 

locally defined in terms of its surface density as ( )a aF v ; the overall convective flux of a 

across the closed surface t  expresses then as 
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  ( ) .

t

conv a a dA


   v w n  (18) 

(the minus accounts for the unit exterior normal n ). This diffusive flux corresponds to a 
macroscopic flux 

  ( ) .

t

diff a a dA


   J n  (19) 

The density of microscopic flux  aJ  is associated to an invisible motion of molecules 

within a continuum description, hence must be described by a specific constitutive law. It 

does not depend on the velocity of the points of t .  

The convective derivative along the vector field w of the field   ,a a t x  writes 

 .w

x

a a
a

t t




     
w  (20) 

In the case w coincides with the velocity of the material particles, previous relation delivers 
the definition of the material (or particular) derivative 

  .v wa ada
a

dt t t

 
 

    v w  (21) 

The derivative of the volume integral :

t

A adx


  is next calculated, according to Leibniz rule: 

  .

t t t

D a
adx dx a dA

Dt t  


 

   w n  (22) 

with w  the velocity field of the points on t , which is associated to a variation of the 

domain occupied by the material points of the growing solid body (Figure 1).  
 

 

Fig. 1. Domain variation due to the virtual velocity field w  

A global balance equation can next be written, according to the natural physical rule: the 
balance of any quantity is the sum of the production / destruction term and of the flux; this 
yields 
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     .

t t t

D
adx dx a a dA

Dt   

       v w J n  (23) 

The first term on the r.h.s. corresponds to mass production, the second contribution to 

convection of the produced mass through the boundary  t , and the third contribution to 

diffusion through  the boundary of the moving volume  t . One can see that only the 

relative velocity of particles w.r. to the surface velocity matters.  Combining this identity 

with (22) gives 

       . .

t t t t

a
dx a dA dx a a dA

t   


     

   w n v w J n  (24) 

The corresponding local balance law is obtained after elimination of the velocity w , hence 

      va a
adiv div a div a div a

t t





        


v J v J  (25) 

Mass balance: the mass balance equation is deduced from the identification a  , the 

actual density. Hence, (23) gives 

  .
t t t

D
dx dx dA

Dt
  

  

    J n  (26) 

The strong form of the balance law of mass writes finally 

   .v div
t

 
 


    J v  (27) 

The mass balance in Eulerian format is given in terms of the actual density  by the 

following reasoning: we first write the general form of the balance of mass in physical space as 

 .

t t t t t

D D
dx dx dx mds dx

Dt Dt

   
    

        
     v  (28) 

with  ,t x  the actual density,   the physical source of mass, and : .m  m n  the scalar 

physical mass flux across the boundary, projection of the flux (vector) m . The previous 

balance law is quite general, as we account for both the variation of the integration volume 

through the term . v , and for the source and flux of mass reflected by the right hand side 

of (28). Localization of previous integral equation gives 

 . .
D

Dt

     m v  (29) 

with  ( , ) :
X

t
t

    

x
v x  the Eulerian velocity, which proves identical to (27); the same balance 

law has been obtained in (Epstein and Maugin, 2000) starting form its Lagrangian 

counterpart. 
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In the sequel, we shall extensively use the following expression of the material derivative of 

integrals of specific quantities (defined per unit mass)  ,a a t x , obtained using the mass 

balance (28) 

  .

t t

D Da
adx a dx

Dt Dt
  

 

    
   m  (30) 

The comparison of (27) with (29) gives the identification of fluxes    J m ; the balance 

law is further consistent with (and equivalent to) the writing  (Ganghoffer and Haussy, 

2005) 

( )div       v  

with .   m  the total flux of conduction and    the volumetric source of mass. 

Observe the difference with the treatment of section 1 considering overall a closed system 

with no internal sources, reflected by equation (1.5): this first point of view considers the 

nutrients responsible for growth as part of the system, whereas they appear as external 

sources in the second viewpoint.  

Expressing the total mass of the domain t  as ( ) ( )

t

tm x dx


   , the mass variation due to 

the transport phenomena is written as the following integral accounting for source terms, 
allowing the identification of the production term 

:

t t
source

dm
dx dx

dt
  

 

       
     

The time variation of chemical concentration of nutrients is due to exchange through the 

boundary accounted for by a flux .

t

k ds

 j n , and to a source term due to growth 

 1.

t t

g gdx Tr dx 

 

   F F , hence (see (28)) 

    1 1. . . :

t t t t

g g k k k k g g

D
dx Tr dx n dx ds n div

Dt
      

   

          F F j N j F F I    (31)  

The last equality is nothing else than  . /    m  - a consequence of (28) - expressed in 

material format, with the identifications  : gTr  D , ;   i i kn  m j  . The global form 

R R

D D
dx JdX

Dt Dt
 

 

   also fits within the general balance law for an open system, relation 

(30) with 1a  . 

Balance of momentum: the Eulerian version of the balance of momentum writes (Epstein 
and Maugin, 2000) 
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  . .

t t t t t

t t

D
dx dx d dx d

Dt
   

    

        v f n ǔ v n m v  (32) 

with ǔ  Cauchy stress and f  body forces per unit physical volume. Localizing (32) gives 

using the mass balance (29) 

  .
D

div
Dt

    
v

f ǔ m v  (33) 

Balance of kinetic and internal energy: the first law of thermodynamics for an open system 
has to account for the contributions to kinetic and internal energies due to the incoming 
material. Denoting u  the specific internal energy density, one may write the energy balance 

in the actual configuration as 

 

 

 

2 2

2

1 1
.

2 2

1
. .

2

t t

t

D
u dx r u dx

Dt

u d

 



 



            
    

       
  

 



v f v v

n ǔ v m v q x

 (34) 

with r  the volumetric heat supply (generated by growth), and q  the heat flux across t . 

This writing of the energy balance can be simplified using the balance of kinetic energy with 

volumetric density k , obtained by multiplying (33) by the velocity and integrating over t , 

hence 

 
2 2

2 2

1
: . . . . . . .

2 2

1
. . .

2 2
t t

D
k div div

Dt

D
dx div dx

Dt




 

         

  
         

 

v v
f v v ǔ v m v f v v ǔ m

v v
f v v ǔ m

 

The left hand side of previous equality can be expressed versus the material derivative of 

the total kinetic energy of the growing body, using the general equality (30) with  21

2
a  v , 

hence (35) 

 

 

2

2 22

2 2

2
. . . .

2 2 2

. : . .
2 2

t t

t t

D
DK

dx div dx
Dt Dt

dx d

  

 

 

 

  
                          
 
 

                

 

 

v

v v v
m f v v ǔ m

v v
f v ǔ v n ǔ v m

 (35) 

Using again (30) delivers similarly the material derivative of the total energy (left-hand side 

in (34)) as (the total internal energy is denoted U ) 
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     

 

2 2 2

2

1 1 1
. .

2 2 2

1
. .

2

t t t

t

D D
U K u dx u dx r u dx

Dt Dt

u d x

  



  



                      
      

       
  

  



v v m f v v

n ǔ v m v q

  

Using the balance of kinetic energy (35) allows isolating the material derivative of the 
internal energy 

     : .

t t

DU
r u dx u d x

Dt
 

 

       ǔ v n m q  

Its strong form is given by localization using the general equality (30) with the identification 

a u  

 : . .
Du

r u
Dt

       ǔ v m q   (36) 

The Lagrangian counterpart of previous balance laws has been expressed in (Epstein and 

Maugin, 2000). 

Dissipation and second principle: the dissipation inequality writes in global form as 

       1 1. . .

t t t t t t

D Ds
sdx s r dx d s dx r dx d

Dt Dt
      

 
 

     

         
      

q q
n x m n x  

Hence, the local dissipation inequality localizes as Clausius-Duhem inequality  

 
1 .

Ds
r div s

Dt
 


      

 

q
m  (37) 

The previous balance laws are general balance laws in the framework of open systems 

irreversible thermodynamics; we shall in the next section make the fluxes and source terms 

involved in those balance laws more specific, in order to identify an evolution law for the 

volumetric growth of solid bodies.   

3. Volumetric growth  

The kinematics of growth is elaborated from the classical multiplicative decomposition 
(Rodriguez et al., 1994) of the transformation gradient 

 ( , ) : det( )X t J   F x X F  (3.1)  

with ,X x  the Lagrangian end Eulerian positions in the referential and actual configurations 

denoted ,R t   respectively, as the product of the growth deformation gradient gF  and the 

growth accommodation mapping aF  

 .a gF F F  (3.2) 
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The transformation gradients , ,a gF F F  define the mappings of the tangent spaces to the 

various configurations. The Jacobean of the growth mapping informs about the nature of 

growth: 

 : det( )g gJ  F  (3.3) 

Hence 1gJ   describes growth, whereas 1gJ   represents resorption. Growth essentially 

occurs between the referential and the actual configurations.  

Adopting the framework of hyperelasticity, the first Piola-Kirchhoff stress P expresses from 

the strain energy density per unit volume in the reference configuration  ;aW F X  with 

argument the reversible part of the transformation gradient (a possible explicit dependence 
upon the Lagrangian variable is included for heterogeneous media) as 

  : ;aW FP F X  (3.4) 

A more explicit (compared to (38)) expression of the dissipation accounting for heat and 
matter exchanges is obtained by considering the general form of the balance of energy and 
entropy: let denote u and s  the density of internal energy and entropy per unit mass 

respectively; the first and second principles of thermodynamics write (Munster, 1970) 

 . .q i k ku p    J J F  ; . s ss   J    (3.5) 

with qJ  the heat diffusion flux,  1
:s q i i


 J J J  the total entropy flux, kJ  the diffusion flux 

of the k-specie,  ,k tF x  an external force acting on the k-specie, and s  the entropy 

production, always positive (it is dissipated). Introducing the free energy density per unit 

mass : u s   , with  s  the entropy density, we then immediately obtain the rate of 

variation of the free energy density 

 . . .q s k k i ss p          J J J F  (3.6) 

The positivity of the entropy production s in previous inequality then expresses as 

  . .i k k q i ip     J F J J  (3.7) 

The principle of virtual power e i

dK
P P

dt
  ( K is the kinetic energy, ,e iP P  being the virtual 

power of external and internal forces respectively), leads to the global form of previous 
inequality in Eulerian format: 

 .e m qkk

dK
dx P J F

dt




        (3.8) 

with : .q q d


   J n  and : .m i i d 


    J n  respectively the flux of heat and mass through 

the boundary of  . Previous inequality traduces the fact that the flux of mechanical work 
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and mass increases the kinetic and internal free energy of the system, the difference being 
dissipated.  

The second principle may be rewritten after a few manipulations in terms of a dynamical 

Eshelby stress accounting for all sources of energies (mechanical, chemical, thermal): the free 

energy density is taken to depend on the elastic part of the transformation gradient aF , the 

concentration of chemical specie kn and the temperature  , so that Clausius-Duhem 

inequality (3.7) becomes in material format: 

 

   

 

1

: .

: .

: . .

q i i

g g a k
a k

a g a g q i i i i

D
J

Dt

J J J n
n

J Div Div Grad

  

    

   




   

 
 

 


     


T F J J

I F F F
F

T F F F F J J J



  

  

 (3.9) 

The balance of biochemical energy expresses that the time variation of chemical 
concentration of nutrients is due to exchange through the boundary accounted for by the 

term .

R

dA

 J N  and to a source term due to growth  1.

R R

g gJdX Tr JdX 

 

   F F , hence 

 

 

 

1

1

.

. . :

t R R

R

g g k

k k k g g

D
dx Tr JdX Jn dX

Dt

dA Jn Div J J

  

  



  





 

   

  



F F

J N J F F I

 


 (3.10) 

 

The last equality is nothing else than  . /    m  expressed in material format, 

identifying  : gTr  D , i iM J . Accordingly, (3.9) becomes  

 
1

0 .

. . : .

t
g a k k i i

a k

t t
a g g g

k

J Jn Grad
n

J J Js
n

    

    

    
       

    
 

    
 

T F F J
F

F T F I F F

 

 
 (3.11) 

Since previous equality must hold true for arbitrary variations ,a knF  , the following 

constitutive equations for the first Piola-Kirchhoff stress and the chemical potential are 
obtained 

 . ;   t
g k

a k

J
n

   
 

 
T F

F
 (3.12) 

Especially, (3.12)1 is an alternative to (3.4) using the specific free energy instead of a strain 

energy potential; observe that   is expressed per unit mass, in contrast to  ;aW F X  in (3.4), 

expressed per unit referential volume.  
The residual dissipation then writes from (3.11) 
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    0 . :t
i i a k g

a

Js Grad J
     

 
     

 
J F I L

F
  (3.13) 

The dissipation splits into the sum of the thermal and chemical dissipation and the intrinsic 
(mechanical) dissipation 

 0i iJs Grad   J ;  . : 0t
a k g

a

  
 

   
 

F I L
F

 (3.14) 

From (3.14), and as a generalization of the growth models initially written in a purely 
mechanical context, relations (3.3) and (3.4), one is entitled to write a general growth model 
according to 

  g afL Σ  (3.15)1 

with the Eshelby stress accounting for both mechanical and chemical energy contributions 

  : .t
a a k

a

   
  


Σ F I

F
  (3.15)2 

Thereby, the Eshelby stress accounts for the change of domain induced by growth; this is 
further reflected in the material driving force for growth, including the (material) 
divergence of Eshehlby stress (Ganghoffer, 2010a, b). The exchange of matter is accounted 
for by the number of moles (with corresponding driving forces the chemical potentials), 
which may obey specific kinetic equations, of evolution diffusion type in a general setting 
(Ganghoffer, 2010a, b).   
Simulations of volumetric growth based on this formalism have been done for academic 
situations in (Ganghoffer, 2010b). The objective of the present contribution is rather to unify 
volumetric and surface growth under a common umbrella, basing on the framework of 
Eshelby stress and material forces.   

4. Surface growth: A review of the thermodynamics  

Surface thermodynamics is clearly a pluridisciplinary topic, which has its origins in the study 
of liquids, and touches various disciplines, such as metallurgy (grain boundary energy), 
fracture mechanics (fracture energy, mechanics (surface stress), physics of fluids (surface 
tension) and of solids (surface stress). Surface thermodynamic data are important parameters 
for specialists in each of those fields, with however a different acceptance of the term.  
The thermodynamics of surfaces has a long history, tracing back to Gibbs; an interface exists 
when a thin inhomogeneous element of material forms a transition zone separating two 

phases of different materials (denoted ,   in the sequel), as pictured in figure 2. The 

transition zone between the bulk phases will be denoted by the Greek letter   in the sequel.  

The aim of this section is not to give a detailed account in each of those fields, but rather to 

provide the reader with a broad overview of the basic surface thermodynamics and to 

review the major underlying parameters and their possible source of variation. 

Different viewpoints have been considered in the literature as to the geometry of the surface 
(this coinage used in Linford refers to the surface, as opposed to the bulk phases): the 
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surface phase is considered as two-dimensional by Gibbs, and coined the mathematical 
dividing surface, as the neat separation between fluid and solid phases. Gibbs viewpoint 
may be called the surface excess approach (at fixed volume), in which the composite system 
(bulk phases and the interface) is the sum of the reference system without the interface and a 
correction; the difference of any quantity between the actual and the reference system leads 
to an interfacial excess quantity.  
 

 

Fig. 2. Formation of an interface from a fixed number of moles of ┙ and ┚. 

Important to this viewpoint is the fact that the reference and actual systems have the same 

volume.  

Guggenheim considered the surface phase as a three dimensional body of finite small 

thickness, and is commonly coined the surface phase approach. A third approach has been 

introduced by Goodrich, relying on Guggenheim vision, but with the interfaces between the 

surface phase and the two bulk phases identified to the walls of a confining vessel. A last 

vision at variant with Gibbs treatment advocates that both the actual and reference systems 

have the same mass, but possibly different volumes: it bears the name Surface excess approach 

(at fixed mass), and was hardly considered in the literature, although rapidly mentioned by 

Gibbs in 1878. One drawback of the Guggenheim model is that the volume of the interfacial 

region V  is arbitrary, and has nothing to do with the volume change that occurs during 

the formation of the interface; this difficulty is not apparent in Gibbs approach, for which 

the excess volume V  is always zero.       
For liquids, the situation is simple, as a single scalar parameter, the surface tension, is 

sufficient. Three parameters are required to characterize the thermodynamics of surfaces: 

the reversible work to produce unit area of new surface, sometimes called the specific surface 

work (the counterpart of the surface tension in liquids), the specific surface Helmholtz 

energy, as the change of energy of the surface region (as opposed to the bulk phases), and 

the surface stress tensor, defined as the reversible work required to produced a unit area of 

new surface by deformation. In order to avoid some existing confusion in the early literature 

(this is due to the oversimplified situation that prevails for liquids), those three parameters 

are next introduced in a distinct manner. 

The thermodynamics of surfaces is based on the setting up of excess quantities. The reader is 

referred to (Linford, 1973) and (Couchman and Linford, 1980) for more details on the topic. 

Hence, the excess (Helmholtz) free energy is defined through its differential  
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k kdF S dT gdA dN       

The quantity g  accounts for both the creation of new surface (with a fixed number of 

atoms) and the elastic deformation of the surface (also with a fixed number of atoms). The 

addition of atoms (particles) on the surface is accounted for by the last term. Considering 

two phases ,   with a separating interface   in-between, one can write the differential of 

the total number of particles as  

dN dN dN dN      

The superficial excess or molar superficial concentrations are then defined as : /n N A  , 

with A  the area of the interface. Any extensive quantity Z  can be decomposed as 

Z Z Z Z z V z V z A              

with : /z Z A   the superficial excess quantity. Regarding surface quantities, one makes a 

distinction between: 

 The superficial energy    2/J m  - a scalar - accounting for the creation of a new 

surface (irreversible phenomena), with a constant number of particles. 

 The purely elastic variation of the surface area, expressed by a superficial stress  ǔ , 

dual to an elastic surface strain ε . 

The excess total internal energy writes 

k kdU dS gdA dN       

For the whole system, using the previous decomposition  

Z Z Z Z      

one has 

k kdU dS pdV gdA dN      

The variation of the free energy is 

k kdF Sd pdV gdA dN       

 

Hence, g  is defined as the partial derivative 
, , iT V N

F
g

A

    
. Combining both relations 

k kdF S d gdA dN       ; k kF A N     

gives  

  0k kS dT N d g dA Ad          

This leads to the differential 
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  /k kd s d n d g dA A          

expressing the variation of the superficial energy. In the case of an isothermal surface stretch 
with a constant chemical potential, one gets the Couchmann-Everett formula 

, iT

g A
A 

      
 

In the case of a purely elastic stretch, previous formula specializes to the relation 

, i

el

T

g A
A 

      
. 

The reversible work needed to form a unit area of new surface is defined at constant 
temperature and pressure as the partial derivative of the Gibbs free energy of the entire 

system (bulk phases and surface), quantity  , , ,iG P T n A , with respect to the formed area 

A , at constant temperature T , pressure P , and number of moles of each component in , 

viz 

i idG VdP SdT dN dA       

whereby the multiplicative factors of the differential elements on the right-hand side of dG  

are the partial derivatives 

;  S ;  ;  i
i

G G G G
V

P T N A
    

     
   

 

The partial derivatives are evaluated with all three other variables being held fixed. The 
specific surface work   includes two contributions, the change of Gibbs free energy per unit 

area for the surface region, denoted g , and the change per unit area of surface created 

from the surrounding bulk phases, evaluated as the sum i in  over all components, 

i ig n     

with : /i in N A  , the surface excess of the ith species. In terms of the Helmholtz energy of 

the whole system F , one has the similar relation involving the Helmholtz free energy per 

unit area f  , viz 

i if Pe n      

with e  the thickness of the surface; in most cases, the parameter e  is small, and one may 

neglect the contribution Pe , hence one has the identification f g  . The last two formulas 

are expressions of Gibb’s adsorption equation, with the derivation due to Mullins, which is 

next reproduced. We consider a system with n components consisting of a solid phase   in 

contact with a fluid phase and a solid phase acting as a thermal bath at temperature T  and 

as a chemical reservoir for each component; accordingly, the components concentrations can 

www.intechopen.com



 
Thermodynamics of Surface Growth with Application to Bone Remodeling 

 

385 

be adjusted to maintain the chemical potentials at fixed specified values i . Imagine a 

modification of the temperature by dT , and of the ith chemical potential by id , at fixed 

surface area; idn  particles from the bulk will enter the solid phase   from the bulk, and 

ithechange of Helmholtz free energy F  will be 

  , ,i i i i idF S dT d dN S dT dN  
           

with S  the entropy of the phase  . Consider next a new system for which T  and i  are 

returned to their initial values, but with the surface area increased by dA , and modify 

thereafter the temperature by dT , and the ith chemical potential by id ; the variation of free 

energy of this system of larger area is 

,' ' 'i idF S dT dN 
    

Subtracting both variations of Helmholtz free energy by unit surface gives 

   , ,
' '' i i

i

S S d N NdF dF
dT

dA dA dA

  
 

  
 

    

Introducing therein the definitions of the specific surface Helmholtz energy 

 : ' /f dF dF dA     , the specific surface entropy  : ' /s S S dA     , and the surface 

excess  , ,: ' /i i in d N N dA 
   leads to  

i idf s dT d       

But one can also express the specific surface Helmholtz energy as i if      , hence  

i i i i i idf d d d s dT d              

and thus finally 

i id s dT d      

The same identity was derived by (Goodrich, 1969) for a one-component system using the 

method of Lagrange multipliers. The reversible work needed to generate a unit area of new 

surface by stretching at constant pressure and temperature represents the surface stress 

tensor, denoted ij . It is related to   by  

ij ij
ij

 



 





 

The second order tensor ij  is the strain (a small perturbation scheme is presently adopted) 

induced by the component ij  acting in the jth direction per unit length of the edge normal 
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to the ith direction, with both indices i, j lying in the plane of the surface. Previous equation 
is valid for an anisotropic solid, and reduces in the case of an isotropic surface to the 
previously written Couchmann-Everett formula, with  g  half the trace of the surface stress 

tensor. The proof of previous formula follows Mullins derivation: let imagine a unit cube 
with edges parallel to the axes , ,x y z , and perform two distinct operations on it: 

i. Stretch the cube reversibly along the x axis by an amount dx , with the y edge fixed, but 

allowing the edge z to vary its length. The surface in the xz plane may then change by 
an inflow (or outflow) of material from the bulk, increasing (or decreasing), the cube 

height; denote 0W  the work expanded in this transformation. Let next separate the 

stretched cube along the xy plane, requiring the work  2 2 (1 )W d dx    , with d  

the variation of the specific surface work   due to the stretch dx  (factor 2 arises since 

two surfaces are created, and the factor (1 )dx  since the specific surface work applies 

per unit surface area).  
ii. Separate the original unit cube into two parts along an xy plane, requiring the work 

3 2W  , and stretch each half by dx  in the x direction, at fixed y edge, but varying z 

edge. Let 1W  be the work expanded in this operation. The final configuration is the 

same as that obtained in the first process, hence the same total work has been expanded, 

hence 0 2 1 3W W W W   , viz 

 0 12 (1 ) 2W d dx W         

The difference 1 0W W  is the work due to the stretching operations of both processes, and 

can be equalized to the x-component xx of a force in the newly formed surface times the 

distance 2dx through which this force acts, hence 

1 02 xxdx W W    

The strain xx dx   (since the other side has unit length), hence  

2 2 2 2 2 2xx xx xx xx                   

Due to the equalities 

0xx    ; / /xx xxd d       

it finally results 

 xx
xx

d

d

 


   

Similar analogous processes with the stretching replaced by shear lead to the relation 

(Linford, 1973) 

 xy
xy

d

d




  
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Combining the stretch and shear processes then lead to the expression of the surface stress 
tensor  

ij ij
ij

d

d

 


   

represented by a 2 by 2 symmetrical matrix (3 independent components). For an isotropic 
material or a crystal with a threefold (or greater axis of symmetry), it follows as shown by 
Shuttleworth (using the principle of virtual work) the isotropic surface stress   

 
1 0

0 1ij g
 

  
 

  

Lastly, consider a square section in the xy plane of side  1/2
A  and imagine an extension 

of the x edge by   1/2

xx A ; the required work is    1/2 1/2

1 xx xxW A A    . Extend 

next the y edge by  1/2

yy A , with an expanded work given by 

     1/2 1/2

2 1yy xx yyW A A      

Assuming the deformation is reversible and isothermal, the total work spent is the variation 
of surface energy, which expresses for a high symmetry isotropic crystal as  

   1 2 1xx xx yy xx yyd A W W A A gdA                

due to the equality  xx yyA dA    . Therefore, one has 

d
gdA dA A d g

dA

  

        

Note that the last term vanishes for liquids; as a corollary,  liquid films can easily be 

stretched since atoms can more from the bulk to the surface without additional energy costs. 

The opposite situation prevails for solids, as they shear and their structure changes with an 

overall additional energy contribution.   

The Gibbs approach towards interfacial excess quantities is as previously mentioned valid 
only at fixed volume; a parallel approach that is valid at fixed mass instead has been 

developed in (Muller and Kern, 2001), which is next exposed. The bulk phases ,    are 

initially separated and interface-free, and are in a thought experiment imagined to be joined 

along a plane to generate the /   interface. Since mass is conserved, any change in the 

thermodynamic quantities of the whole system are due to the new /   interface, coined 

excess values of the corresponding quantities, denoted with a subscript   to distinguish 

them from Gibbs approach at fixed volume. The differential of the Gibbs energy of the 
system before and after formation of the interface successively writes (for a constant number 
of molecules) 
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   1dG V V dP S S dT        ;     *
2dG V V V dP S S S dT dA              

with *  the reorganization surface energy, although commonly referred to as the interfacial 

tension in the literature; it is a mechanical positive quantity, that may depend upon interface 
curvature. Note that the number of atoms is the same in the reference and final states, in 
contrast with Gibbs approach. Hence, the variation of the excess Gibbs free energy between 
states 1 and 2 for the fixed masses ,m m   is  

*
2 1dG dG dG V dP S dT dA         

which may be interpreted from an energetic point of view as follows: the term V dP  is the 

mechanical work done against the external force field, the contribution S dT  represents the 

heat of formation of the interface, and *dA  is the mechanical work done against the 

internal force field of both phases ,   by motion of the molecules from the bulk to 

generate a new interface. The excess free energy of formation of the interface, potential G , is 

the additional free energy required to form the interface from fixed masses of the pre-

existing bulk phases ,  . The above equations implicitly use the conservation of mass, 

equation 

totaln n n    

and the definition of the excess interfacial volume V  from the contributions to the total 

volume after interface formation (balance law for the volume) 

totalV V V V      

In contrast to this treatment, Gibbs assumes a conservation of the total volume as 

totalV V V   , but with addition of the new mass n  such that 

totaln n n n     

As a compensation for the volume change accompanying the formation of the interface; 

hence, n  is a supply of material from outside the system, with the sense that the Gibbs 
volume is an open thermodynamic volume.  
Due to its status as a state function, the previous differential OF G  allows writing relations 

between partial derivatives as the analogues of the bulk phase Maxwell relations 

,,

*
*

, ,, , P T nP A n

S
S

T A
  


             

 ; 

, ,

* *

, , , ,T A n P T n

V
V

P A
   


    

           
. 

,,
, ,, , A T nP A n

V S

T P
  

          
 

The introduced quantities * ,S V   are respectively the interfacial excess entropy and the specific 

interfacial excess volume; the compact notation 
,

n   stands for the two quantities  ,n n  .  
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The specific interfacial excess energy is obtained by simply integrating the differential 

 
,

* * *

n
dG V dP S dT dA G

 
          at constant pressure and temperature, introducing 

the specific interfacial excess energy * : /G G A  . Last relation implies that the temperature 

and pressure dependence of *  can be determined from those of *G . The specific interfacial 

excess energy is obtained from a Legendre transform to *dG V dP S dT dA       and 

substitution of the previous interfacial Maxwell relations, thus 

 
,

* * * *

n
U TS PV

 
      

It immediately results the specific interfacial excess enthalpy 

 
,

,

*
* * * *

, ,
n

P A n

H TS T
T 

 

 
 

 
       

 

with *H  identified as the surface energy, which is the sum of the interfacial tension and the 

heat supplied by the surrounding for an isothermal creation of new interface. The 
advantages of this last approach in comparison to Gibbs treatment is that it leads to non-nil 
interfacial volumes, analogues of the Maxwell relations for bulk phases can be derived, and 
the temperature and pressure dependence of the interfacial tension can be accessed from a 
comparison between simple formulae and experiments.   

 

Fig. 3. The broken bond model for surface energy 

The reversible work to form new surface area, parameter  , is for a solid generally 

orientation dependent, although not for a liquid. This surface energy parameter has been up 

to now considered under the thermodynamic continuum viewpoint; we next examine two 

other viewpoints, the atomistic approach and Wulff plot. The atomistic approach considers 

the interaction between atoms to calculate the surface energy; arrangement of atoms in 

crystals are such that one can order atoms according to the energy required to remove atoms 

from the bulk: first nearest neighbours requiring more energy compared to second and third 

nearest neighbours. For a crystal lattice presenting dislocations, the number of broken bonds 
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is direction dependent, and is given by the expressions cos / a and sin / a  in the x and y 

directions respectively (figure 3), with a  the distance to nearest neighbour (function of the 

type of atomic packing) and   the inclination of the overall crystal shape resulting from the 

total number of steps being created.   
The surface energy is given by the expression 

   2cos sin / 2surf bE a     

with b  the energy per bond. The broken bond model can be used to determine the shape of 

a small crystal from the minimization of the sum of surface energies i  over all crystal faces, 

a concept introduced in 1878 by J. W. Gibbs, considering constant pressure, volume, 

temperature and molar mass:  

i i
i

Min A   

at constant energy, hence adding the constraint 0 i i
i

dE dA  . The dependence of   on 

orientation of the crystal’s surface and its equilibrium shape are condensed into a Wulff plot; 

in 1901, George Wulff stated that the length of a vector normal to a crystal face is 

proportional to its surface energy in this orientation. This is known as the Gibbs-Wulff 

theorem, which was initially given without proof, and was proven in 1953 by Conyers 

Herring, who at the same time provided a two steps method to determine the equilibrium 

shape of a crystal: in a first step, a polar plot of the surface energy as a function of 

orientation is made, given as the so-called gamma plot denoted as   n , with n  the normal 

to the surface corresponding to a particular crystal face. The second step is Wulff 

construction, in which the gamma plot determines graphically which crystal faces will be 

present: Wulff construction of the equilibrium shape consists in drawing a plane through 

each point on the ┛-plot perpendicular to the line connecting that point to the origin. The 

inner envelope of all planes is geometrically similar to the equilibrium shape (figure 4).  
 

 

Fig. 4. Wulff’s construction to calculate the minimizing surface for a fixed volume  
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with anisotropic surface tension   n  

5. Model of surface growth with application to bone remodeling 

The present model aims at describing radial bone remodeling, accounting for chemical and 
mechanical influences from the surrounding. Our approach of bone growth typically 
follows the streamlines of continuum mechanical models of bone adaptation, including the 
time-dependent description of the external geometry of cortical bone surfaces in the spirit of 
free boundary value problems – a process sometimes called net ‘surface remodeling’ - and of 
the bone material properties, sometimes coined net ‘internal remodeling’ (Cowin, 2001). 

5.1 Material driving forces for surface growth 

In the sequel, the framework for surface growth elaborated in (Ganghoffer, 2010) will be 

applied to describe bone modeling and remodeling. As a prerequisite, we recall the 

identification of the driving forces for surface growth. We consider a tissue element under 

grow submitted to a surface force field Sf  (surface density) and to line densities ,p p   

defined as the projections onto the unit vectors ,g gǕ ν resp. along the contour of the open 

growing surface gS  (Figure 5); hence, those line densities are respectively tangential and 

normal to the surface gS  (forces acting in the tangent plane).  
 

 

Fig. 5. Tissue element under growth: elements of differential geometry.  

Focusing on the surface behavior, the potential energy of the growing tissue element is set as 
the expression 

 

   0 , ;

. . .

g g g

g g g

S
g S g k k g

S S

S g g g g g

S S S

V W dx d n d

d p dl p dl



 

   





 

  

  

  

  

F F N X

f x x Ǖ x ν



   
 (5.1) 

Thereby, the growing solid surface is supposed to be endowed with a volumetric density 

 0W F  depending upon the transformation gradient : X F x , a surface energy with 

density  , ;S
S F N X  per unit reference surface, depending upon the surface gradient F , 

the unit normal vector N  to gS , and possibly explicitly upon the surface position vector 
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SX  on gS  (no tilda notation is adopted here since the support of SX  is strictly restricted to 

the surface gS ), and chemical energy k kn , with k  the chemical potential of the surface 

concentration  of species kn . The surface gradient F  maps material lengths (or material 

tangent vectors) onto the deformed surface; it is elaborated as the surface projection of F  

(onto the tangent plane to a ), viz  

: .F F P  

The tissue element under grow is submitted to a surface force field Sf  (surface density) and 

to line densities ,p p   defined as the projections onto the unit vectors ,g gǕ ν resp. along the 

contour of the open growing surface gS  (Figure 5);  Hence, those line densities are 

respectively tangential and normal to the surface gS  (forces acting in the tangent plane).  

The variation of the previously built potential energy of the growing tissue elementV is next 

evaluated, assuming applied forces act as dead loads, using the fact that the variation is 

performed over a changing domain (Petryk and Mroz, 1986), here the growing surface gS . 

We refer to the recent work in (Ganghoffer, 2010a) giving the detailed calculation of the 

material forces for surface growth, very similar to present developments.  

The variation of the volumetric term (first term on the right hand side of V ) can be 

developed from the equalities (A2.1) through (A2.3) given in (Ganghoffer, 2010a,  

Appendix 2): 

      0 , . . . . .

g g

g g g gW dx d v t  
 

 
     
 
 
 F X Σ X p x N  (5.2) 

with volumetric terms denoted as ‘v.t.’ that will not be expressed here, as we are mostly 
interested in surface growth. The r.h.s. in previous identity is a pure surface contribution 
involving the volumetric Eshelby stress built from the volumetric strain energy density and 
the so-called canonical momentum 

 0: .tW Σ I F p  0:
W

x





p  (5.3) 

As we perform material variations over an assumed fixed actual configuration, the 

contribution of the canonical momentum vanishes ( x 0 ). Observe that the volumetric 

Eshelby stress Σ  triggers surface growth in the sense of the boundary values taken by the 

normal Eshelby-like traction .ΣN . The variation of the surface energy contribution S  can 

be expanded using the surface divergence theorem (equality (3.15) in Ganghoffer, 2010a) as  

    
exp

, ; . . . . .
S

g g

S t S s T
S g S N X S S g

l
S S

d d      
 

             
 
 F N X Σ ΠK F f X    (5.4) 

The surface energy momentum tensor (of Eshelby type) is then defined as the second order 
tensor 

 : : .S T s
sF

     T Σ F T I     (5.5) 
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basing on the surface stress T . The Lagrangian curvature tensor is defined as : R K N .  

The chemical potential as the partial derivative of the surface energy density with respect to 
the superficial concentration 

  
, ,

:
S

k k k
k X F N

n
n




 
 


 (5.6) 

The contributions arising from the domain variation due to surface growth are considered 
as irreversible.  
The material surface driving force (for surface growth) triggers the motion of the surface of 
the growing solid; it is identified from the material variation of V  as the vector acting on the 
variation of the surface position 

 : . . . .t S
g S N k S k Sn        ΣN Σ P K f  (5.7) 

itself built from the surface stress : S
F
 T  , and on the curvature tensor : R K N in the 

referential configuration.  

5.2 Bone remodeling 

Bone is considered as a homogeneous single phase continuum material; from a 

microstructural viewpoint, bone consists mainly of hydroxyapatite, a type-I collagen, 

providing the structural rigidity. The collageneous fraction will be discarded, as the mineral 

carries most of the strain energy (Silva and Ulm, 2002). The ultrastructure may be 

considered as a continuum, subjected to a portion of its boundary to the chemical activity 

generated by osteoclasts, generating an overall change of mass of the solid (the mineral 

fraction) given by 

.

g g

g g g S g

S

d
dx d

dt
  



  V N  

The quantity .g S gd V N therein represents the molar flux of bone material being dissolved, 

hence 

 g N g gV d MJd    (5.8) 

with NV  the normal surface velocity, M  the bone mineral molar mass, and /g NJ V M  

the molar influx of minerals (positive in case of bone apposition, and negative when 

resorption occurs). Clearly, the previous expression shows that the knowledge of the normal 

surface growth velocity determines the molar influx of minerals. Estimates of the order of 

magnitude of the dissolution rate given in (Christoffersen at al., 1997), for a pH of 7.2 

(although much higher compared to the pH for which bone resorption takes place) and at a 

temperature of 310K, are indicative of values of the molar influx in the interval 
9 8 1 210 ,1.8.10 . .J mol s m       . The osteoclasts responsible for bone resorption attach to the 

bone surface, remove the collageneous fraction of the material by transport phenomena, and 

diffuse within the material. This osteoclasts activity occurs at a typical scale of about 50 m , 
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which is much larger compared to the characteristic size of the ultrastructure; the resorption 

phase takes typically 21 days (the complete remodeling cycle lasts 3 months). The 

osteoclasts, generate an acid environment causing simultaneously the dissolution of the 

mineral - hydroxyapatite, a strong basic mineral    3 4 2 23
Ca PO Ca OH   , abbreviated HA in 

the sequel - and the degradation of the collageneous fraction of the material. The metabolic 

processes behind bone remodeling are very complicated, with kinetics of various chemical 

substances, see (Petrtyl and Danesova, 1999).  

The pure chemical driving force represents the difference of the chemical potential 

externally supplied e  (biochemical activity generated by the osteoclasts) with the chemical 

potential of the mineral of the solid phase,  denoted min ; it can be estimated from the 

change of activity of the H  cation (Silva and Ulm, 2002): 

  

2

min 2
: ln

eq
e

ex

H
R

H
   





 
 

   
 
 

 (5.9) 

This chemical driving force is the affinity conjugated to the superficial concentration of 

minerals, denoted ( )n t  in the sequel. The conversion to mechanical units   is done, 

considering a density of HA 33000 /kg m   (5.1), hence  / 20M MPa    , according to 

(Silva and Ulm, 2002); the negative value means that the dissolution of HA is chemically 

more favorable (bone resorption occurs).  
Relying on the biochemical description given thereabove, bone remodeling is considered as 
a pure surface growth process. In order to analyze the influence of mechanical stress on 
bone remodeling, a simple geometrical model of a long bone as a hollow homogeneous 
cylinder is introduced, endowed with a linear elastic isotropic behavior (the interstitial fluid 
phase in the bone is presently neglected). This situation is representative of the diaphysal 
region of long bones (Cowin and Firoozbakhsh, 1981), such as the human femur (figure 6).  
According to experiments performed by (Currey, 1988), the elastic modulus is assumed to 
scale uniformly versus the bone density according to 

  max
p

SE E t   (5.10) 

with  S t  the surface density of mineral, max 15E GPa  (Reilly and Burstein, 1975) the 

maximum value of the tensile modulus, and p  a constant exponent, here taken equal to 3 

(Currey, 1988; Ruinerman et al., 2005).  
Following the representation theorems for isotropic scalar valued functions of tensorial 

arguments, the surface strain energy density  , ;S
mech S F N X of mechanical origin is selected 

as a function of the curvature tensor invariants, viz the mean and Gaussian curvatures, the 

invariants of the surface Cauchy-Green tensor : .tC F F    and of its square. The following 

simple form depending on the second invariant of the linearized part of 2 C I ε   is 

selected, adopting  the small strain framework, viz, hence 

     2( ) :
2

S
mech

A
Tr B  ε ε ε ε     (5.11) 
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Fig. 6. Modeling occurring during growth of the proximal end of the femur. Frontal section 
of the original proxima tibia is indicated as the stippled area. The situation after a growth of 
21 days is superimposed. Bone formation (+) and bone resorption zones indicated [Weiss, 
1988]. 

with  . . .S r r   ε P ε I ε ε e e  the surface strain (induced by the existing volumetric strain), 

and ,A B  mechanical properties of the surface, expressing versus the surface density of 

minerals and the maximum value of the traction modulus as (the Poisson ratio is selected as 

0.3  ) 

 
 

  
 

 

3 3
max max;  

1 2 1 2 1
S SE t E t

A B
  
  

 
  

 (5.12) 

As the surface of bone undergoes resorption, its mechanical properties are continuously 
changing from the bulk behavior, due to the decrease of mineral density as reflected in 
(5.10). The surface stress results from (5.11), (5.12) as 

  : 2
S
mech

SA Btr


   


T ǔ ε ε I
ε

   


 (5.13) 

The unknowns of the remodeling problem are the normal velocity of the bone 

surface  NV t , the surface density of minerals  S t  and its superficial concentration. We 

shall herewith simulate the resorption of a hollow bone submitted to a composite applied 

stress, consisting of the superposition of an axial and a radial component, as 

 rr r r zz z z    ǔ e e e e  (5.14) 

in the cylindrical basis  , ,r ze e e ; this applied stress generates a preexisting homogeneous 

stress state within the bulk material, inducing a surface stress given by 
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. zz z z  ǔ P ǔ e e  

The radial component of Eshelby stress rrΣ  is then easily evaluated from the preexisting 

homogeneous stress state. Straightforward calculations deliver then the driving force for 
surface remodeling, as the sum of a chemical and a mechanical contribution due to the 
applied axial stress: 

 
     

21 1 2

8 8
ggN zz

i

A B
n t

r t A B B
 

      
  

  (5.15) 

with the material coefficients ,A B  given in (5.12), and the axial stress zz  possibly function 

of time. A simple linear relation of the velocity of the growing surface to the driving force is 

selected, viz 

    N ggNV t C t   (5.16) 

with C  a positive parameter; the positive sign is due to the velocity direction being opposite 

to the outer normal (the inner radius is increasing). The chemical contribution leads by itself 

to resorption, hence the normal velocity has to be negative; the mechanical contribution in 

(5.15) brings a positive contribution to the driving force for bone growth, corresponding to 

apposition of new bone when the neat balance of energy is favorable to bone growth. An 

estimate of the amplitude of the normal velocity is given from the expression of the rate of 

dissolution of HA in (5.8) as 

8 1 2 12/ 10 . . / 3.3.10 / 0.286 /g N N gJ V M mol s m V JM m s m day            

selecting a molar mass 1.004 /M kg mol , following (Silva and Ulm, 2002). This value is an 

initial condition for the radius evolution (its rate is prescribed), leading to 
23 2 13.5.10 . .C m kg s  ; it is however much lower compared to typical values of the bulk 

growth velocity, about 10 /m day . 
The mass balance equation for the surface density of minerals S writes 

 . S
S S S S     V  (5.17) 

expressing as the following conservation law 

      0 0
0 0exp

( )
S SS N

S s
S i i

V r
t t

r t r t

  


     


 (5.18) 

The initial surface density of minerals  0
0s S t  , is evaluated from the bulk density of 

HA, viz 33000 /kg m , and the estimated thickness of the attachment region of osteoclasts, 

about 7 m  (Blair, 1998), hence 0 2 22.1.10 /s kg m  . 

The surface growth rate of mass 0
S  is here assumed to be constant (it represents a datum) 

and can be identified to the rate of dissolution of HA, adopting the chemical reaction model 

of (Blair, 1998): 0
S  is estimated by considering that 80% of the superficial minerals have 

been dissolved in a 2 months period, hence 7 1
0 2.2.10S s    . The dissolution of HA is in 
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reality a rather complex chemical reaction (Blair, 1998) that is here simply modeled as a 

single first order kinetic reaction 

    2 2
3 4 4 22 23

8 10 6 2Ca PO Ca OH H Ca HPO H O          

The kinetic equation is chosen as: 

 
           

0

0
0

exp Ss
s i

n t
t n t r t t n t

t r


  


    


   (5.19) 

incorporating the density of minerals. The rate coefficient of dissolution of HA, namely the 

parameter  , is taken at room temperature from literature values available for CHA 

(carbonated HA, similar to bone), viz 4 12.2.10 s    (Hankermeyer et al., 2002). 

5.3 Simulation results 

The present model involves a dependency of the triplet of variables       , ,i Sr t t n t  

solution of the set of equations (5.15) through (5.19) on a set of parameters, arising from 

initial conditions satisfied by those variables:  

- The initial concentration of minerals 0n  is taken as unity, viz 3
0 1 mol.mn  .  

- The initial radius  0 : 0ir r  is estimated as 0 1.6 r cm  for the diaphysis of the human 

femur (Huiskes and Sloof, 1981). The evolution versus time of the internal radius 
obtained by time integration of the normal velocity expressed in (5.16).  

The evolution versus time of some variables of interest is next shown, considering a time 

scale conveniently expressed in days. Numerical simulations of bone resorption are to be 

performed for three stress levels in the normal physiological range, 

 1 ,2 ,5MPa MPa MPa  . The surface velocity (Figure 7) shows an acceleration of the 

resorption process with time, which is enhanced by the stress level, as expected from the 

higher magnitude of the driving force.  
The density and concentration vanish over long durations, meaning that the bone has been 
completely dissolved (Figure 8). 

An order of magnitude of the simulated radial surface velocity is about 10 /m day  for a 

stress level of 1MPa (Cowin, 2001). The superficial density of minerals and its concentration 

are both weakly dependent upon stress; the density of minerals decreases by a factor two 

(for low stresses; the resorption is enhanced by the applied stress) over a period of one 

month resorption period.  
Considering an imposed stress function of time, the surface driving force is seen to vanish 

for a critical stress ( )crit
zz t , depending upon the density and concentration, given from (5.18), 

(5.19) as 

    3/2 1/210( ) 9.4.10crit
zz St t n t   (5.16) 

This expression gives an order of magnitude of the stress level above which bone apposition 

(growth) shall take place; when the critical stress is reached, the chemical and mechanical 

driving forces do balance, and the bone microstructure is stable.  
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Fig. 7. Evolution vs. time of the surface growth velocity for three stress levels: 1zz MPa   

(thick line), 2zz MPa   (dashed line), 5zz MPa   (dash-dotted line).  

 

 

 

Fig. 8. Evolution of the superficial density of HA versus time for three stress levels. 

1zz MPa   (thick line), 2zz MPa   (dashed line), 5zz MPa   (dash-dotted line).  
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For an applied stress 0.2zz MPa   lying slightly above the critical stress expressed in (5.16), 

growth will occur due to mineralization (the chemical driving force in (5.9) favors 
apposition of new bone on the surface), as reflected by the simulated decrease of the internal 
radius over the first week (Figure 9).  
 

 

Fig. 9. Evolution of the internal radius of the diaphysis of the human femur (in microns) 

versus time. Applied stress above the critical stress level: 0.02zz MPa  .  

Apposition of new bone would occur in the absence of mechanical stimulus, under the 

influence of a pure chemical driving force; in that case, the internal radius will decrease very 

rapidly (Figure 9) and tends to an asymptotic value (for long times) after about two weeks 

growth. For a non vanishing axial stress above the critical stress in (5.16), the driving force is 

negative in the first growth period, and becomes thereafter positive due to the decrease of 

the surface density of minerals, indicating that growth takes over from bone resorption.  

Hence, the developed model is able to encompass both situations of growth and resorption, 

according to the level of applied stress (the nature of the stress, compressive or under 

traction, does not play a role according to (5.15)), which determine the mechanical 

contribution of the overall driving force for growth.  

6. Concluding remarks 

Surface growth is by essence a pluridisciplinary field, involving interactions between the 
physics and mechanics of surfaces and transport phenomena. The literature survey shows 
different strategies for treating superficial interactions, hence recognizing that no unitary 
viewpoint yet exists. The present contribution aims at providing a pluridisciplinary 
approach of surface growth focusing on  
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A macroscopic model of bone external remodeling has been developed, basing on the 
thermodynamics of surfaces and with the identified configurational driving forces 
promoting surface evolution. The interactions between the surface diffusion of minerals and 
the mechanical driving factors have been quantified, resulting in a relatively rich model in 
terms of physical and mechanical parameters. Applications of the developed formalism to 
real geometries   
Works accounting for the multiscale aspect of bone remodeling have emerged in the 
literature since the late nineteen’s considering cell-scale (a few microns) up to bone-scale (a 
few centimeters) remodeling, showing adaptation of the 3D trabeculae architecture in 
response to mechanical stimulation, see the recent contributions (Tsubota et al., 2009; Coelho 
et al., 2009) and the references therein. It is likely that one has in the future to combine 
models at both micro and macro scales in a hierarchical approach to get deeper insight into 
the mechanisms of Wolff’s law.       
The present modeling framework shall serve as a convenient platform for the simulation of 
bone remodeling with the consideration of real geometries extracted from CT scans. The 
predictive aspect of those simulations is interesting in a medical context, since it will help 
doctors in adapting the medical treatment according to short and long term predictions of 
the simulations.   
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