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1. Introduction  

Four decades ago, calcium phosphate systems were introduced for in-vitro gene delivery 

applications. Recently, many studies have been conducted regarding the different 

applications of these systems in delivering genes to different cell types for therapeutic 

purposes. Although there are important limitations of using calcium phosphates in gene 

delivery, there is a high interest in using this type of gene delivery system.  This is because 

of the significant biocompatibility of calcium phosphates, easy synthesis methods of this 

system, and intrinsic characteristics of calcium phosphates that increase the transfection 

efficiency. The combination of these properties are rarely seen in other gene delivery 

systems. 

This chapter aims to localise  calcium phosphate nanoparticles among  the most common 

non-viral gene delivery systems. It also reviews the history of using calcium phosphates in 

gene delivery applications and the efforts made to make this system suitable for further 

clinical applications. 

1.1 Non-viral gene delivery 

The application of non-viral systems increased considerably after it was shown that using 
viral systems can result in several problems including difficulty in production, limited 
opportunity for repeated administrations due to acute inflammatory response, and delayed 
humoral or cellular immune responses. Insertional mutagenesis is also a potential issue for 
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some viral systems that integrate foreign DNA into the genome (Al-Dosari & Gao, 2009). 
Although viral systems such as retrovirus, adenovirus, and adeno-associated virus are 
potentially efficient, non-viral systems have some advantages in that they are less toxic, less 
immunogenic, and easier to prepare (Nishikawa & Huang, 2001).  
A lot of research has been conducted to find suitable non-viral systems. An ideal gene 
delivery method needs to meet 3 major criteria:  
i. It should protect the transgene against degradation by nucleases in intercellular 

matrices. 
ii. It should be able to carry the transgene across the cell membrane and into the nucleus of 

targeted cells. 
iii. It should have no detrimental effects (Gao et al., 2007). 
Recently, various materials have been introduced as potential gene delivery systems. Three 
groups of substances are more advantageous  in this application. These three groups are: 
i. Cationic polymers (like polyethyleneimine (Kichler et al., 2001; Kircheis et al., 2001; 

Wightman et al., 2001), dendrimers (Tang et al., 1996; Zinselmeyer et al., 2002; Dufes et 
al., 2005), chitosan (Lee et al., 1998; Koping-Hoggard et al., 2001; Loretz & Bernkop-
Schnurch, 2006) and poly-L-lysine (Trubetskoy et al., 1992; Benns et al., 2000)); 

ii. Lipids (like liposomes (Alton et al., 1993; Templeton et al., 1997; Templeton & Lasic, 

1999));  

iii. Inorganic materials (like calcium phosphates (Liu et al., 2005) and silica nanoparticles 

(Kneuer et al., 2000; Csogor et al., 2003; Sameti et al., 2003)).  

However, some limitations accompany the use of most of these systems including cell 

toxicity, immune response and low tranfection efficiency. 

1.2 Inorganic vectors 

Inorganic systems have been used in in-vitro gene delivery for many years, but their 

clinical application has been developed mostly in the last decade when amino-

functionalized silica was introduced. Researchers at Saarland University showed that 

amino-functionalized silica exhibits good gene tranfection efficiency in addition to its 

suitable biocompatibility (Kneuer et al., 2000; Csogor et al., 2003; Sameti et al., 2003). 

Because of this, several studies have been conducted on using amino-funtionalized silica 

as a gene delivery system (Bharali et al., 2005; Roy et al., 2005; Klejbor et al., 2007; Choi et 

al., 2008). Research was also conducted on using silica in combination with other 

polymers for gene delivery. Results demonstrated that making composites of certain 

polymers with silica nanoparticles could enhance transfection efficiency due to the dense 

nature of silica nanoparticles (Luo et al., 2004).  

There is an increasing interest in mesoporous silica for drug/gene delivery applications 

because of their higher capacity and of the potential for tailored release of the active 

molecule. Some studies have been conducted on functionalized or non-functionalized 

mesoporous silica but the research on using this type of inorganic systems is still ongoing 

(Park et al., 2008; Slowing et al., 2008). 

Some studies have been done on using functionalized gold nanoparticles as a gene delivery 

system. The results demonstrated the feasibility of using this approach, but further research 

is needed in this new area (Liang et al., 2010; Niidome et al., 2011). 

In addition to calcium phosphate, (their gene delivery application is reviewed in this 
chapter), other inorganic systems have also been studied regarding in-vitro gene delivery to 
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targeted cells. Silica nanotubes (Namgung et al., 2011), zirconia (Tan et al., 2007), carbon 
nanotubes (Pantarotto et al., 2004) and layered double hydroxides (Choy et al., 2008) are 
some examples of these inorganic systems. However, their low transfection efficacy limits 
their use. Table 1 summarizes inorganic nanoparticles properties.  
The following sections discuss calcium phosphates; one of the most important groups of 
inorganic non-viral gene delivery systems. 

2. Calcium phosphate 

The work of Graham and Van Der Eb completed in 1973 shows the first application of 
calcium phosphate in condensation of genetic materials. The brilliant results of their 
research were that calcium phosphate could condense DNA and increase the transfection 
efficiency with a relatively simple procedure (Graham & Van Der EB, 1973a). This first 
research led to vast application of this technology  in in-vitro gene delivery because of the 
demonstrated easy preparation method and proper results. 
In order to have a better understanding of calcium phosphate gene delivery properties, first 
we shall have a look at the structure and characteristics of the calcium phosphate family. 

2.1 Calcium phosphates family 

Calcium phosphate-based bioceramics have been used in medicine and dentistry for 
decades. Applications include dental implants, percutaneous devices, periodontal treatment, 
alveolar ridge augmentation, orthopedics, maxillofacial surgery, otolaryngology and spinal 
surgery (Hench, 1991). 
Bone is a natural nano-composite composed of organic (40%) and inorganic (60%) 
components. The inorganic constituent of bone is made up of biological apatites, which 
provide strength to the skeleton and act as a storehouse for calcium, phosphorus, sodium, 
and magnesium. These biological apatites are structurally similar, though not identical, to 
the mineral apatite hydroxyapatite (HAp, Ca10(PO4)6(OH)2). Hydroxyapatite is the most 
ubiquitous and well-known phase of calcium phosphate. It has the Ca/P ratio of 1.67 
(Narayan et al., 2004). Different phases of calcium phosphate ceramics are used depending 
upon whether a resorbable or bioactive material is desired. The stable phases of calcium 
phosphate ceramics depend considerably upon temperature and the presence of water, 
either during processing or use in the environment (See Fig. 1) (Hench, 1991). 
Going through aforementioned properties, it can be realized that the calcium phosphates 
family includes several members with different characteristics. Calcium phosphate ratio, 
Ca/P, has been found as the best way to distinguish among these members. In table 2 these 
members are shown based on their Ca/P ratio. 

2.2 Properties 

Calcium phosphates being light in weight, chemically stable and compositionally similar to 
the mineral phase of the bone are preferred as bone graft materials in hard tissue 
engineering. They are composed of ions commonly found in physiological environment, 
which make them highly biocompatible. Many research works demonstrated the 
biocompatibility of calcium phosphates in-vitro and in-vivo. In addition, these bioceramics 
are also resistant to microbial attack, pH changes, and solvent conditions (Thamaraiselvi & 
Rajeswari, 2004; Kalita et al., 2007). Degradation properties are very important, especially in 
the application of calcium phosphates related to drug delivery. It has been shown that   
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Kind of 
nanoparticle 

Chemical 
Composition 

Typical Size 
Range 

Solubility in 
μgL-1 

Comments 

Cadmium 
Sulfide 

CdS 2–5 nm 0.69 ngL-1 
toxic, fluorescent, 
semiconducting 

Calcium 
Phosphate 

Ca10(PO4)6OH2 
(hydroxyapatite) 

10–100 nm 6.1 mg L-1 

biodegradable, 
biocompatible; 
may be made fluorescent 
by incorporation of 
lanthanides; 
cations and anions 
may be substituted 

Carbon 
Nanotubes 

Cn 

diameter of a 
few nm and 
length of a few 
mm 

0 

Not biodegradable, 
hollow; may be 
covalently functionalized 
to improve solubility 
and 
may be loaded with 
molecules

Cobalt-
Platinum 

CoPt3 3–10 nm ≈ 0 
ferromagnetic or 
superparamagnetic; 
toxic in uncoated form 

Gold Au 1–50 nm ≈ 0 
easily covalently 
functionalized, 
for example, with thiols 

Iron Oxide 
(Magnetite) 

Fe3O4 5–20 nm ≈ 0 

ferromagnetic or 
superparamagnetic; 
harmful for cells in 
uncoated form; solubility 
increases with falling pH 

Layered 
Double 
Hydroxide 

Mg6Al2(CO3)(OH)16·4
H2O 
(hydrotalcite) 

50–200 nm 

moderate, 
increases 
below 
pH 5–6 

high selective anion 
exchange capacity; 
biodegradable in 
slightly acidic 
environment; 
cations can be 
substituted 

Nickel Ni 5–100 nm ≈ 0 immunogenic, toxic 

Silica SiO2·nH2O 3–100 nm 
ca. 120 mg 
SiO2 L-1 (for 
silica particles) 

Biodegradable; available 
also in micro- or  
mesoporous form (e.g., 
zeolites); easily 
functionalizable, for 
example, by 
chlorosilanes 

Silver Ag 5–100 nm ≈ 0 
Bactericidal; dissolution 
product (Ag+) potentially 
harmful for cells 

Zinc Oxide ZnO 3–60 nm 
1.6 to 
5 mg L-1 

fluorescent, 
semiconducting 

Zinc Sulfide ZnS 3–50 nm 67 ngL-1 
fluorescent, 
semiconducting 

Table 1. Some key properties of inorganic nanoparticles which are used for transfection in 
cell biology (Reprinted from (Sokolova & Epple, 2008)). 
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different crystalline phases of calcium phosphate present different degradation properties. 
Table 3 summarizes the solubility properties and stability pH range of calcium phosphate. 
 

 

Fig. 1. Calcium phosphate phase equilibrium diagram with 500 mmHg partial pressure of 
water. Shaded area is the processing range to yield HAp (Hench, 1991). 

 

Ca/P Name Formula 

2 Tetracalcium phosphate Ca4O(PO4)2 

1.67 Hydroxyapatite Ca10O(PO4)6(OH)2 

N/A* Amorphous calcium phosphate Ca10-xH2x(PO4)6(OH)2 

1.50 Tricalcium phosphate (┙, ┚, ┛) Ca3(PO4)2 

1.33 Octacalcium phosphate Ca8H2(PO4)6.5H2O 

1 Dicalcium phosphate dihydrate CaHPO4.2H2O 

1 Dicalcium phosphate CaHPO4 

1 Calcium pyrophosphate (┙, ┚, ┛) Ca2P2O7 

1 Calcium pyrophosphate dihydrate Ca2P2O7.2H2O 

0.7 Heptacalcium phosphate Ca7(P5O16)2 

0.67 Tetracalcium dihydrogen phosphate Ca4H2P6O20 

0.5 Monocalcium phosphate monohydrate Ca(H2PO4)2.H2O 

0.5 Calcium metaphosphate (┙, ┚, ┛) Ca(PO3)2 

*N/A = not applicable 

Table 2. Various calcium phosphates with their respective Ca/P atomic ratios (Reprinted 
from (Vallet-Regi & Gonzalez-Calbet, 2004)). 
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Phases Solubility at 25 °C, -log (Ksp)
pH Stability Range in aqueous 
solution at 25 °C 

Hydroxyapatite (HAp) 116.8 9.5-12 

┚-Tricalcium Phosphate (┚-
TCP) 

28.9 
Cannot be precipitated from 
aqueous solutions.  

┙-Tricalcium Phosphate (┙-
TCP) 

25.5 
Cannot be precipitated from 
aqueous solutions. 

Tetracalcium Phosphate 
(TTCP) 

38-44 
Cannot be precipitated from 
aqueous solutions. 

Dicalcium Phosphate 
Dehydrate (DCPD) 

6.59 2.0 – 6.0 

Dicalcium Phosphate 
Anhydrate (DCPA) 

6.90 
Stable at temperatures above 
100 °C 

Amorphous Calcium 
Phosphate (ACP) 

Cannot be measured 
precisely. However, the 
following values were 
reported: 25.7 ± 0.1 (pH 7.40), 
29.9  ± 0.1 (pH 6.00), 32.7 ± 
0.1 (pH 5.28) 

Always metastable. The 
composition of a precipitate 
depends on the solution pH 
value and composition. 

Calcium-deficient 
Hydroxyapatie (CDHA) 

≈ 85.1 6.5-9.5 

Table 3. Solubility and pH stability of different phases of calcium phosphates (Reprinted 
from (Kalita et al., 2007)). 

2.3 Calcium phosphate nanoparticles 

With the introduction of smaller calcium phosphate particles, it has become possible to use 

them in advanced fields of biomedicine. Calcium phosphate nanoparticles, with a size about 

100 nm, are highly biocompatible. These particles are able to penetrate the outer membrane 

of cells and bacteria. Calcium phosphate nanoparticles could be utilized in different fields of 

biomedicine such as drug delivery, gene delivery, and imaging (Epple et al., 2010). Also, to 

produce high quality HAp bioceramics for artificial bone substitution, ultrafine HAp 

powder is usually employed. Nano-HAp powder results in easy handling, casting, and 

sintering leading to an excellent sintered body in the bioceramics preparation process (Cao 

et al., 2005). 

3. Calcium phosphate nanoparticles as gene delivery vector 

3.1 Historical view 

Previously, it is mentioned that the first use of calcium phosphate in gene delivery 

application was conducted by Graham and Van Der EB in 1973.  In this study, calcium 

phosphate was used for transfecting cells with Adenovirus 5 DNA to assay infectivity. 

(Graham & Van Der EB, 1973a). They diluted Adenovirus 5 DNA in a buffer containing 

Na2HPO4. Then, calcium chloride was added and the mixture was incubated with KB Cells. 

Using labeled DNA they concluded that by adding the calcium precursor in the experiment, 

the uptake of DNA increased and DNA showed a better stability against enzymatic 

degradation (Fig. 2). It was reported that this technique gave a 100 fold increase in efficiency 

over the DEAE-dextran method for human adenovirus DNA. 
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Fig. 2. Effect of CaCl2 on adsorption of 14C-Ad5 DNA to KB cells. KB cells were exposed to 
MEM-Tris containing DNA plus CaCl2 at various concentrations. The curves represent the 
fraction of radioactivity recovered in the medium (●), in the DNase digest (○), or in the SDS 
lysate of the cells () (Graham & Van Der EB, 1973a). 

With the same methodology, this group conducted another study to transform rat kidney 
cells with the DNA of human adenovirus 5. In Fig. 3 the transfected area is clearly visible as  
contained small, round, densely packed cells characteristic of adenovirus transformation. 
This work claimed that the “calcium technique” was a suitable system to study 
transformation by adenovirus DNA and the efficiency of transformation, though not high, 
appeared to be reasonably reproducible (Graham & Van Der EB, 1973b). 
In another study, Graham, Veldhuisen and Wilkie used the aforementioned technique to 
investigate the infectivity of herpes simplex virus type I (HSV-I) (Graham et al., 1973). In 
1975, Abrahams and Van Der EB made a transformation of rat kidney cells and mouse 3T3 
cells by DNA from Simian Virus 40 using “calcium technique”. They stated that this 
technique for in-vitro transformation was reproducible (Abrahams & Van Der Eb, 1975). 
Later, Van Der EB and Graham successfully used “calcium technique” to determine the 
ability to transform primary baby rat kidney (BRK) cells with specific fragments of human 
adenoviruses 2 and 5 DNAs (Van Der EB et al., 1977). 
In 1976, Stow and Wilkie reported that treatment of cells with dimethyl sulphoxide (DMSO) 
after injection with “Herpes Simplex Virus DNA”/calcium phosphate complex could  
lead to a significant increase in the number of plaques obtained. These researchers proposed 
that DMSO could initiate the plaque formation. It was interesting that in other method 
(DEAE-dextran) using DMSO did not exhibit that significant enhancement (Fig. 4) (Stow & 
Wilkie, 1976). 
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Fig. 3. Part of transformed colony resulting from exposure of primary rat kidney cells to 
Adenovirus 5 DNA+ CaCl2 22 days previously. Three normal cells can be seen to the right of 
the photograph. Giemsa stain (Graham & Van Der EB, 1973b). 

During the 1980’s, the calcium phosphate method for in-vitro gene delivery had become a 

common method. In 1981, some of the parameters that affect the transformation procedure 

by calcium phosphate system had been investigated by Corsaro and Pearson (Corsaro & 

Pearson, 1981). First, to confirm the work of Stow and Wilkie in 1976, they performed a 

study on the effect of rinsing the complex of DNA/calcium phosphate with DMSO. They 

also added an additional variable to this experiment which was the exposure time of 

DNA/calcium phosphate complex to cells. They claimed that when suboptimal DNA 

exposure time is applied (e.g. 4-12 hours), the DMSO rinse increases the transformation 

frequency. However, rinsing with DMSO had no effect when the optimal condition was 

utilized. They concluded that exposure to DMSO offers no significant advantage. 

 

 

Fig. 4. The effect of DMSO concentration on the enhancement of HSV-I DNA infectivity. 
Varying concentration of DMSO dissolved in HeBS () or eagle’s medium () (Stow & 
Wilkie, 1976). 
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Regarding the formation of DNA/calcium phosphate precipitates, they found that it is 
critical to add the solution of DNA/CaCl2 to the HEPES-phosphate buffer rather than in the 
reverse order. Also, they claimed that it is important to add the solution drop-wise, rather 
than directly (Corsaro & Pearson, 1981). 
In 1982, a research group at Yale University conducted research on the mechanism for entry 
of DNA/calcium phosphate complex in to mammalian cells by electron microscopy and 
fluorescent  dyes (Loyter et al., 1982a; Loyter et al., 1982b). 
Electron microscopy and filter hybridization studies revealed that most of the DNA strands 
enter by phagocytosis. The effect of different drugs and respiratory inhibitors on the entry of 
DNA was also investigated (Table 4, Fig. 5). Results showed phagocytosis of DNA is inhibited 
both by respiratory inhibitors and drugs, such as Colcemid, which disassemble microtubules. 
They concluded that the uptake of DNA/calcium phosphate resembles “receptor mediated” 
phagocytosis. Also it was seen that ATP-depleted and cold treated cells were not able to 
adsorb the complex. Thus the authors claimed that the phagocytosis of DNA/calcium 
phosphate complex is an energy- and temperature-dependent process (Loyter et al., 1982a). 
 

 

Fig. 5. Effect of increasing concentration of Colcemid on the entry of DAPI-stained 
DNA/calcium phosphate complexes into Ltk- cells (Loyter et al., 1982a). 

These researchers also claimed that the pH of the formation of the DNA/calcium phosphate 
complexes is crucial for successful gene transfer. Studies on the effect of pH and DNA 
concentration on the entry of fluorescent dye-labeled DNA into cells showed that only 
during the calcium phosphate complexes formation in the pH rang of 7.1 to 7.5 could 
fluorescent spots be visualized in the cytoplasm of recipient cells. For the complexes formed 
above pH = 7.5 no entry to cells could be detected (Fig. 6A). 
On the other hand, the DNA/calcium phosphate ratio is important on the adsorption of the 
complexes. When higher concentrations of DNA was utilized with the constant 
concentration of calcium phosphate, adsorption was not affected, whereas the appearance of 
cytoplasmic florescence was drastically reduced (Fig. 6B) (Loyter et al., 1982b). 
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System Effect of DNA Entry 

Drugs 

   Cytochalasin B (1-4             
μg/ml) 

No effect 

   Colcemid (5 μg/ml) Complete inhibition 

   DMSO (10%, 10-30 min) No effect 

Respiratory inhibitors  

   2 deoxyglucose Partial inhibition 

   NaN3 Partial inhibition 

   NaF Partial inhibition 

   NaF + 2 deoxyglucose Complete inhibition 

   NaN3 + 2 deoxyglucose Complete inhibition 

Table 4. The effect of various drugs and respiratory inhibitors on introduction of DNA into 
Ltk- Aprt- cells (Reproduced from (Loyter et al., 1982a)). 

 

 

Fig. 6. Adsorption (cells containing adsorbed fluorescent dots) and uptake (cells containing 
more than 10 intracellular fluorescent dots) of DAPI-stained DNA as a function of the pH of 
the DNA/calcium phosphate complex (A) and DNA concentration in DNA/calcium 
phosphate complex (B) (Loyter et al., 1982b). 

One of the limitations of calcium phosphate systems in gene delivery applications is that 
most of the input DNA is degraded before it reaches the nucleus of the cell, where gene 
expression and DNA replication take place. In 1983, Luthman and Magnusson conducted 
research on increasing the efficiency of transfection by inhibiting the lysosomal 
degradation using Chloroquine as a lysosomotropic compound. For this purpose they 
used a conventional procedure for transfection with calcium phosphate, but they added 
Chloroquine to the growth medium of the cells. In Fig. 7 the effect of Chloroquine 
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concentration on transfection efficiency using DNA/calcium phosphate complexes can be 
seen. The authors concluded that when Chloroquine treatment was effective, it increased 
the fraction of cells that could be successfully transfected. They claimed that this 
conclusion was supported by the results of experiments in which cells were transfected 
with linear forms of viral DNA. In that case, in Chloroquine treated cells, the number of 
DNA molecules which had re-circularized and were able to replicate was much larger 
than untreated cells (Luthman & Magnusson, 1983). 
With the same approach, in 1984 a research group in Norway used different inhibitors of 
intracellular degradation (such as 3-methyl adenine, NH4Cl, FCPP and etc.) and claimed 
that the frequency of transformation was increased due to increasing the cytoplasmic level 
of exogenous DNA (Table 5) (Ege et al., 1984). 
In 1987, Chen and Okayama introduced a new method for gene delivery with calcium 
phosphate systems. The aim of their work was the formation of DNA/calcium phosphate 
complexes gradually in medium during incubation with cells. They found that in this 
method the crucial factors that affect the transfection efficiency are the pH of the buffer used 
for calcium phosphate precipitation (optimized pH was 6.95) and the CO2 level during the 
incubation of DNA with cells. They also found that the amount and the form of DNA are 
important factors. It was observed that circular DNA has better efficiency than linear DNA 
but, the reason for this phenomenon was not clear at that time. The authors claimed that the 
efficiency of their method is comparable to the efficiency of other common transfection 
systems of that time (Chen & Okayama, 1987). 
In 1990 Orrantia and Chang investigated the intracellular distribution of DNA after the 
DNA/calcium phosphate complexes move into the cells. Results showed that only a small 
fraction of internalized DNA could be found in the nucleus, the target place for gene 
delivery. In the enriched nuclear fraction, the mouse cells retained 6.4% of internalized DNA 
while the human cells retained only 2.2% (Fig. 8). 
 

 

Fig. 7. Effect of Chloroquine concentration on transfection efficiency. Rat-1 cultures were 
transfected by co-precipitating calcium phosphate and polyoma DNA, 20 ng () and 100 ng 
(○) (Luthman & Magnusson, 1983). 
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Addition Concentration
Transformation 
Frequency after 
6 hours 

None, no DNA  0 

None, DNA alone  4 

DNA + glycerol 17 % 10 

DNA + DMSO 20 % 22 

DNA + NH4Cl 20 mM 64 

DNA + FCPP 1 μM 50 

DNA + Procaine 10 mM 3 

DNA + chloroquine 100 μM 5 

DNA + monensin 5 mM 1 

DNA + 3-methyl 
adenine 

5 mM 46 

Table 5. Effect of different compounds on the transformation frequency of rat 2 tk- cells 
transfected with pAGO DNA 6 hours after incubation of the indicated compounds with the 
cells (reproduced from (Ege et al., 1984)). 

The authors concluded that transfection with DNA/calcium phosphate is a procedure with 

low efficiency partly because most of the endocytosed DNA is quickly degraded and 

excreted to the cytosol (Orrantia & Chang, 1990). 

In 1994, O’Mahoney and Adams modified the calcium phosphate transfection procedure 

described by Chen and Okayama in 1987 and claimed that they reached a reliable and 

reproducible method with high transfection efficiency. They claimed that the critical factor 

in this method is the standing time of the DNA/CaCl2/BES-buffered saline prior to addition 

to cultured cells. They concluded that in the optimal condition it is possible to reach 100% 

efficiency (Omahoney & Adams, 1994). 

 

 

Fig. 8. Distribution of internalized DNA in subcellular fractions from human and mouse 

cells. Cultured Cells were transfected with 32P-labeled high-molecular-weight DNA/calcium 

phosphate for 4 h. : Human primary fibroblast cells, : Transformed mouse Ltk- cells 

(Orrantia & Chang, 1990). 
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In 1996, a research group in Taiwan conducted some research works on electrochemical 

properties of DNA/calcium phosphate complexes. The study focused on the variation of 

zeta potential with changes in pH for calcium phosphate and DNA/calcium phosphate 

complexes. The point of zero charge (pzc) and isoelectric point (iep) were found to be at pH 

7.09 and 7.0, respectively. With addition of plasmid DNA, both pzc and iep points shifted to 

higher values of 7.18 and 7.15, respectively (Yang & Yang, 1996a). 
In their other research on this topic, they revealed that the pH of the formation of 
DNA/calcium phosphate complexes and the concentration of DNA within the complexes 
were the crucial factor for the entry of these complexes to cells. The results of their study 
showed that optimum transfection efficiency occurred in the region close to the iep of DNA-
calcium phosphate co-precipitates of pH 7.15 and close to the maximum flocculation of this 
colloidal system. The enhanced cell transformation efficiency occurred at pH 7.01. The zeta 
potentials of the DNA co-precipitates prepared in the absence of DMEM and calf serum 
were determined to lie between 11 and 21 mV.  Preparation within these limits resulted in 
an efficient internalization of the DNA/calcium phosphate complexes, and for endocytosis 
to occur (Yang & Yang, 1996b). 
In 2004, Jordan and Wurm investigated the methods that were applied previously for gene 
delivery with calcium phosphate particles by different authors. They stated that all of the 
numerous variations of the protocol found in the literature are based on the same 
principle—a spontaneous precipitation that occurs in supersaturated solutions. Although a 
wide range of conditions will lead to precipitates, high transfection efficiencies are only 
obtained within a narrow range of optimized parameters that assure certain properties of 
the precipitate. Finally, they concluded that despite a rapidly growing choice of efficient 
transfection reagents, this method remains highly attractive due to its highly biocompatible 
nature (Jordan & Wurm, 2004). 

3.2 Current studies 

Research on using calcium phosphate nanoparticles for gene delivery application is still 
continuing. Researchers perform a lot of new experiments to optimize the parameters 
involved in gene delivery with calcium phosphate nanoparticles. We have tried to review 
some of these studies in this chapter. 
A research group in the University of Duisburg-Essen, proposed a method to prepare multi-
shell calcium phosphate/DNA particles. They utilized a simple method to prepare multi-
shell calcium phosphate as illustrated in Fig. 9. 
They prepared different nanoparticles and showed that with multi-shell calcium 
phosphate/DNA nanoparticles the transfection efficiency is increased due to the protection 
of DNA against nuclease enzymes (Fig. 10). Moreover, the authors claimed that in contrast 
with conventional calcium phosphate, these particles could be stored for weeks without loss 
of their transfection efficiency (Sokolova et al., 2006). 
They also showed that the standard calcium phosphate method selectively unbalanced 
intracellular calcium homeostasis while it remained at low control levels after transfection 
using nanoparticles. They concluded that with using DNA-functionalized calcium 
phosphate nanoparticles, cells are able to cope with the associated calcium uptake and 
therefore proved their method to be a superior transfection method (Neumann et al., 2009). 
Hanifi et al. conducted some research on the feasibility of using strontium and magnesium 
substituted calcium phosphate in gene delivery applications. They prepared the particles via 
a simple sol-gel route. They obtained some particles with nano-size structure, high specific 
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surface area, and a high dissolution rate (Fig. 11). The zeta potential (Table 6) was increased 
in comparison with simple calcium phosphate. They concluded that due to increased 
surface charge and solubility, these novel systems could increase the gene transfection 
efficiency (Hanifi et al., 2010a; Hanifi et al., 2010b).  
 

 

Fig. 9. Schematic set-up of the apparatus used for preparation of DNA-functionalized 
calcium phosphate nanoparticles. Calcium nitrate and diammonium hydrogen phosphate 
solutions are mixed in a vessel to form a precipitate. A part of the dispersion is taken with a 
syringe and mixed with DNA solution in an Eppendorf tube (Sokolova et al., 2006). 

 

 

Fig. 10. Comparison of the transfection efficiency of multi-shell calcium phosphate/DNA by 
different methods. There are significant differences between single-shell and triple-shell 
(P<0.01) and triple-shell and the standard calcium phosphate methods (P<0.05) (Sokolova et 
al., 2006). 
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Recently there has been an approach to incorporate other agents or materials with calcium 

phosphate to improve its function as a gene delivery system. Stabilizing with bis-

phosphonate (Giger et al., 2011), coating with lipids (Zhou et al., 2010), incorporating in 

alginate hydrogel (Krebs et al., 2010) and association with Adenovirus (Toyoda et al., 2000) 

are some examples for this approach. 
 

 

(a) 
 

 

(b) 

Fig. 11. Concentration of Ca++ ions in SBF solution after predicted period of time. A: Sr-CaP, 
B: Mg-CaP (Not Published). 
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Sample composition Zeta potential (mV) 

Sr-Substituted CaP 

0.0Sr-CaP 4.5±0.1 

0.5Sr-CaP 5.0±0.2 

1.0Sr-CaP 6.1±0.1 

5.0Sr-CaP 7.3±0.3 

10.0Sr-CaP 7.8±0.2 

Mg-Substituted CaP 

0.0Mg-CaP 3.2±0.5 

0.25Mg-CaP 6.7±0.4 

0.50Mg-CaP 7.5±1 

1.0Mg-CaP 8±0.8 

Table 6. Surface charge of Sr and Mg substituted calcium phosphate nanoparticles 
(Reproduce from (Hanifi et al., 2010a; Hanifi et al., 2010b)). 

4. Conclusion 

Nano-particulate calcium phosphate has shown several interesting advantages in 
biomedical applications because of its biocompatibility and easy preparation process. The 
DNA condensation characteristic of nano-particulate calcium phosphate makes it a potential 
choice for gene therapy system applications. Nano-particulate calcium phosphates are able 
to condense DNA strands, carry them in the blood, deliver the genetic material to target 
cells, and move them into cells resulting in reasonable transcription.  
Therefore, there is a common agreement among most of the works regarding gene delivery 
application on utilizing the calcium phosphate to deliver the gene into the nucleus; the final 
target of gene therapy methods. Because of the advantages of the DNA/calcium phosphate 
complex, it is one of the highly appealing systems currently studied, although it has been 
used in in-vitro gene delivery for many years already. The translation of its application into 
clinical therapy methods requires more work.  
Researchers need to solve the instability of calcium phosphate in physiological conditions. If 
calcium phosphate/DNA complexes degrade in the blood circuit, it cannot be used in most 
of the clinical gene delivery applications. The other problem is the low transfection 
efficiency, which currently limits the application of the system. There are controversial 
reports about the transfection efficiency of calcium phosphate/DNA system, mostly because 
of instability and the complicated nature of calcium phosphate in solution. Once these 
problems are overcome by adequate novel technologies, the excellent biocompatibility and 
biodegradability of calcium phosphate remains as a major advantage.  
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