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1. Introduction  

Fluid flow phenomena in porous materials can be found in many important processes in nature 
and in society. In particular, fluid flow through a porous medium contribute to several 
technological problems, e.g. extraction of oil or gas from porous rocks, spreading of contaminants 
in fluid-saturated soils and certain separation processes, such as filtration  (Torquato, 2001). In 
paper and wood industry single and multi phase fluid flow properties in porous media play 
important roles related to manufacturing process and product development. 
The general laws describing creeping fluid flows are well known. However, a detailed study 
of fluid flow in porous heterogeneous media is complicated. This is a direct consequence of 
the often very complex, internal micro-scale structures of these materials. That is, the 
interplay between fluid flow and complex internal structure at the micro-scale gives rise to 
the effective fluid flow properties at the macro-scale. Traditionally, efforts for analysing 
fluid flow properties by means of modelling are based on using regular pore geometries that 
may possess the bulk properties of the actual medium and are simple enough to allow for 
analytic solution of the relevant transport equations. However, the development of imaging 
techniques based on computerised x-ray micro-tomography (CXµT) together with advanced 
numerical techniques have made it possible to analyse structural and transport properties of 
complex materials based on 3D digitalisation of their real microstructures (Coles et al., 1998; 
Samuelsen et al., 2001; Goel et al., 2002; Thibault & Bloch, 2002; Holmstad et al., 2003; 
Rolland et al., 2005; Goel et al., 2006; Stock, 2009). X-ray tomography is a non-invasive and 
non-destructive imaging method where individual x-ray images recorded from different 
viewing directions are used for reconstructing the internal 3D structure of the object of 
interest (Stock, 2009). Although a great opportunity to materials research, CXµT also poses 
new challenges. The imaging method produces noise, edge blurring, and various other 
artefacts that may distort the 3D reconstruction of the sample structure and thus result in 
unrealistic analysis results. 
In various industrial and scientific applications an effective material property, permeability, 
is used for describing the ability of porous materials to transmit fluids. Permeability 
coefficient for single phase creeping fluid flow through a porous media is defined by the 
phenomenological law by Henry Darcy as the proportionality constant between the average 
fluid velocity and applied pressure gradient (Darcy, 1856). The analytical approaches to 
analyse permeability are often confined to simplified sample geometries. Some of the 
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numerical permeability studies are based on analysis made for computationally generated 
models of porous media (Rasi et al., 1999; Aaltosalmi et. al., 2004; Belov et al., 2004; 
Holmstad et al. 2005; Lundstrom et al., 2004; Verleye et al., 2005; Verleye et al., 2007). 
Tomographic reconstructions are increasingly utilised in combination with numerical 
methods to analyse permeability of porous materials (Manwart et al., 2002; Martys & 
Hagedorn, 2002; Aaltosalmi et al., 2004; Kutay et al., 2006; Fourie et al., 2007). According to 
our knowledge, only a few studies are based on analysing the effect of tomographic image 
properties on numerical permeability results (Aaltosalmi et al., 2004; Holmstad, 2005) 
The effects of imaging noise, imaging artefacts and the quality of image segmentation on 
flow permeability found by using direct numerical flow simulation by a specific 
implementation of finite-difference method (FDM) (Wiegmann, 2007) are studied. The 
specific surface area of the samples and the features of pore geometry are also analysed. The 
analyses are done for four different sample types. First, an artificial sample geometry, 
comprised of hexagonal array of cylinders with known analytical permeability result, is 
used to analyse the effect of added random noise and edge blurring on the analysis results. 
Second, CXµT reconstructions of wool fibre web, packaging board and sandstone samples 
are used to illustrate the effects of different artefact removal and image segmentation 
methods on permeability results. Finally, the numerically simulated values of flow 
permeability are compared with experimental results for the same material.  

2. Tomography and image processing  

CXµT is a non-destructive technique for analysing interior features within solid objects and 
for obtaining digital information of their 3D structure and properties. During the recent 
decade, the precision of x-ray tomographic imaging techniques have reached the sub-
micrometre resolution and enables analyses of statistical properties of various materials.   

2.1 Tomography imaging of porous samples 
Authentic simulation geometries were obtained by utilising CXµT. Both synchrotron -based 
x-ray beams and conventional x-ray tubes were used as the radiation sources. The adequate 
resolution and the overall quality of the images depend on the techniques used. In this 
study, two laboratory scale devices (Sky-Scan 1172 and Xradia Micro XCT-400) based on x-
ray tubes, and a tomographic imaging facility ID19 of the European Synchrotron Radiation 
Facility (ESRF) were used.  
The voxel resolution of the laboratory scale devices can be varied from a few micrometres 
up to few tens of micrometres. The wool fibre web sample was imaged by SkyScan 1172 
device with the voxel resolution of 4.48 µm and the sand stone sample with Xradia Micro 
XCT-400 with the voxel resolution of 2.10 µm. The packaging board sample was scanned at 
ESRF beam-line ID19. The imaging set-up used at ID19 facility had the voxel resolution 
fixed to 0.7 µm.  

2.2 Imaging artefacts and image processing 
CXµT imaging is a two phased process. First, a tomographic scanner is utilised to acquire a 
series of 2D shadowgraphs of a sample from multiple angles. Then, the 3D reconstruction of 
the sample is computed from the shadowgraphs using special algorithms (Kak & Slaney, 
1988). The process involves many sources of artefacts.  
Typical CXµT imaging system is comprised of a light source, optical elements and a camera 
which all pose certain imaging artefacts (Gonzales & Woods, 2002). Basically, the main 
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imaging artefacts are noise and edge blurring caused by optics or the non-optimal light 
source of laboratory scale devices. In addition, the reconstruction procedure can add more 
artefacts to the tomographic reconstructions (Stock, 2009). The main reconstruction -based 
artefacts are rings, streaks and shadows caused by hardening of x-rays (Stock, 2009) or 
mechanical inaccuracy of the system.  
Many image processing tools have been developed in order to overcome the problems 
related to the imaging artefacts, see e.g. Stock (2009) and references therein. However, most 
of the artefacts cannot be fully removed algorithmically and they thus require either 
removal by hardware optimisation or robust analysis software. 

2.2.1 Sample geometry preparation 
Representative elementary volumes (REVs) of the sample geometries were cropped out of 

the full CXµT reconstructions. In this study the REVs were determined in a deterministic 

way by evaluating the porosity of larger and larger sample volumes always centred on the 

same image voxel (Drugan & Willis, 1996; Rolland du Roscoat et al., 2007). A REV size thus 

obtained for the wool fibre web sample was (in XxYxZ -directions, see Fig. 1) 300x300x360 

voxels, for the sand stone sample 500x500x500 voxels and for the packaging board sample 

450x450x420 voxels.  

The sample REVs were filtered by variance-weighted mean filter (Gonzales & Woods, 2002) 

and later thresholded to yield binary images including the solid material and the pore space. 

Visualisations of the REVs are presented in Fig. 1.  

 

 

Fig. 1. Tomographic reconstructions of (a) the wool fibre web, (b) the packaging board and 
(c) the sandstone samples. 

2.2.2 Edge blurring and imaging noise  
Especially in laboratory scale CXµT systems, like SkyScan and Xradia, the image quality of 
the material edges in the reconstructed geometry is limited by optical properties of the 
system. The edge spreading is caused by the non-zero aperture diameter of the x-ray source, 
the optics in between the source and detector, and scintillator, i.e. the component that 
converts the x-rays into visible light. Thus, instead of sharp transition between different 
material phases, there is a smooth curve called edge spread function (ESF). In Fig. 2, the 
edge smoothness can be seen in the intensity profile plot. The width of the ESF in this case is 
around 7 pixels. 
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Fig. 2. An example of a noisy CXµT image (a) and the intensity profile plot for the area 
marked on the CXµT image (b). 

In addition to ESF, the tomographic reconstructions are often contaminated by imaging 

noise. Collecting photons with Charge-Coupled Device (CCD) is a time-dependent discrete 

procedure that presents Poisson noise into the collected data. Utilisation of an analogue-to-

digital -converter such as in CCD causes Gaussian -type of noise into the images. In the final 

3D representation of the tomographic sample, noise can be seen as random variation of grey 

values. This effect causes edge blurring. Furthermore, when binarised by thresholding 

procedure, falsely labelled voxels can appear. 
Many algorithms have been developed to decrease the noise, e.g. anisotropic diffusion 
(Perona & Malik, 1987), bilateral filtering (Tomasi & Manduchi, 1998) and SUSAN filtering 
(Smith & Brady, 1997). However, none of the filtering methods is perfect and post 
processing is often necessary to reduce the artefacts from the binarised images.  

2.2.3 Image segmentation  

Segmentation means separation of the image into interesting sub-regions for further 

analyses. For segmentation of 3D reconstructions, there is a large variety of algorithms. To 

mention few the most commonly used, are global algorithms like thresholding, spatially 

aware algorithms like region grow and watershed (Gonzales & Woods, 2002), optimisation -

based algorithms like level sets (Osher &, Sethian, 1988) or active contours (Kass et al, 1987), 

shape -based methods like LOG or DOG (Gonzales & Woods, 2002), texture -based methods 

like local binary patterns (Ojala et al, 1994), and combinations of these. Often the complexity 

of the required algorithm is directly proportional to the signal-to-noise ratio of the original 

image. 

A typical task in segmentation procedure is to separate the image of a porous media to solid 

and void phase. In optimal conditions, the phases can be distinguished by the difference in 

their grey value distributions. However, the grey value distributions are often overlapping 

due to imaging noise. In many cases, thresholding combined with post processing gives 

satisfactory results. The post processing procedures aim to remove the non-connected parts, 

i.e. the “levitating” solid objects from the images or to fill the small non-effective (isolated) 

pores. In the cases where the overlapping regions of the grey value distributions are wide, 

more sophisticated algorithms are needed. 
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We have developed a so-called forest fire algorithm to separate the material phases when 

their grey value distributions are overlapping too much for simpler methods. As an input, a 

user will give the limits for the overlapping area in the grey value histogram. The algorithm 

processes the grey values in between the given limits and decides whether it is solid or void 

by adding more voxels to each phase iteratively. In addition to grey value information, 

spatial information is incorporated. The voxels are added into the group if there are enough 

members of the same group around it. By adjusting the number of required neighbours, the 

sensitivity of the method can be adjusted individually for each phase. In practice, the 

method is closely related to region grow method, but it enhances the traditional region grow 

by adding a weak “surface tension” to it. The benefits of the method are smooth surfaces 

and possibility to alter the volume of selected phase by allowing either solid or void to 

conquer its area easier. The disadvantage of the method is that some of the smallest details 

can be lost. The name forest fire comes from simple forest fire simulations where forest is 

divided into cells which will catch fire if certain amounts of its neighbouring cells are 

already burning.  

3. Fluid flow permeability analysis 

Permeability  is a tensor valued measure of the ability of a porous material to transmit 

fluids. It is defined for slow, steady-state, isothermal, Newtonian fluid flow through a 

porous medium by Darcys’s law (Darcy, 1856; Bear, 1972) 

 ,1q = - × Ñψμ


  (1) 

where q


 is the superficial volume flux vector and   is the dynamic viscosity of the fluid. 

The pietsometric head   is defined by equation p g    


 where p is the pressure and 

  is the density of the fluid, and g


 is the acceleration due to a body force. In general, 

permeability is a symmetric second-order tensor (Liakopoulos, 1965):  

 

k k kxx xy xz

k k kyx yy yz

k k kzx zy zz

 
 
    
 
  

  (2) 

Several theoretical results for permeability coefficients have been reported in the literature. 

Perhaps the most common formula which can be derived analytically for simplified 

capillary model is the Kozeny-Carman relation 

 

3
1

22 2 (1 )
0

k
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



  (3) 
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where c  is a constant that depends on the cross section of the capillaries (being 2c   for 

circular cross section), 0S  is the specific surface area of the sample,   is the tortuosity of the 

flow and   is the porosity of the media (Bear, 1972; Dullien, 1979).  

3.1 Numerical method 

Numerical permeability analyses were done directly on the voxel model of the samples. The 

diagonal elements of permeability tensor  (in Eq. (2)) were obtained within FDM by first 

solving over a periodic REV the following boundary value problem arising from the 

homogenisation process: 

 

2 0, in

0 in

0 on

µ v p f

v f

v

     

   

 






, (4) 

where f  and   represent the fluid volume and the fluid-solid interface, respectively. 

These three equations are the conservation of momentum, conservation of mass and the no-

slip condition on the fluid-solid interface. Here v


stands for the periodic microscopic 

velocity field,   is the pietsometric head and p  is the first order periodic fluctuation of 

the pressure p .  

The boundary value problem Eq. (4) was solved by using FDM implemented in 

GeoDict2010 R1 (64 bit Linux) software. In the method, the velocity v


 and the pressure 

p are discretised on a staggered grid: velocities are defined on their respective voxel faces 

and the pressure is defined in the centre of the voxel. Then the partial differential equations 

are solved by using the FFF-Stokes solver based on Fast Fourier Transform. This solver 

appears to be fast and memory efficient for large computations dedicated to 3D images 

(Wiegmann, 2007). Finally, the permeability coefficients of the samples can be deduced from 

equations (1) and (2) by calculating the volume average of the velocity field over the REV 

( v q
 

) for a given macroscopic gradient of pressure  .  
During the permeability analysis, periodic boundary condition was enforced on all the 
sample faces. For tomographic samples, ten extra fluid layers were added in flow direction 
on both sides of the sample volume. This was done in order to mimic the experimental 
measurement conditions, see Koivu et al., (2009a) and Koivu et al., (2009b). 

3.2 Experimental method 

Permeability coefficients zzk of the samples were measured experimentally using the 

permeability measurement device (PMD) presented in refs (Koivu et al., 2009a; Koivu et al., 

2009b). The PMD can be utilised for measuring permeability of porous materials using both 

liquids and gases as permeating fluids.  
For the purpose of this work, the PMD was modified such that the sample was compressed 
only at its peripheral part to prevent any flow on that region, and the central part was left 
fully open for flow; see a schematic illustration of the measurement set-up in Fig. 3a. The 
measured sample size for the wool fibre web and the packaging board had 90 mm diameter. 
For the measurements, the sand stone samples with diameter of 35 mm and thickness 10 
mm was attached with silicone glue into a special sample holder, see Fig. 3b.  
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Fig. 3. Schematic illustration of the measurement set-up (a) and a sandstone sample attached 
in the sample holder (b). 

In the experimental method, the diagonal values of the permeability tensor in the case 
dependent coordinate system (see e.g. Fig. 1) are found using the integrated form of Darcy’s 
law 

 

/ ( )
i

ii

q Q Lik
P L A P Pi out in

  
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  

 
(5)

 

where Q  is the volumetric flow rate through the sample, A is the cross-sectional flow area, 

out inP P P   is the pressure drop and iL is the length over which the pressure drop takes 

place.  

Experiments were conducted with air flow in order to prevent structural changes due to 

swelling of sample material. This is important in order to obtain similar structure of 

materials in experiments and in numerical flow solution based on the pore geometry given 

by tomographic images of dry material samples. Equation (5) is valid for the incompressible 

fluid flows. For gas flows through porous medium, Darcy’s law must be slightly modified to 

account for compressibility effects. For isothermal compressible flow the permeability 

coefficient is thus given by 

 

/ ( )
i

ii

q P PQ Li out outk
P L P A P P Pi ave out in ave

  
  

  

 
(6)

 

where outP  is the pressure, Q  is the volumetric flow rate at the downstream side of the 

medium, and 1 / 2( )ave out in outP P P P   (Bear, 1972; Leskelä & Simula, 1998). 

In the experimental approach, the values of the permeability coefficient in z-direction ( zzk ) 

were calculated using Darcy’s law for compressible fluid flow by Eq. (6). The coordinate 
conventions for the sample types are shown in Fig. 1. Measurements were repeated for five 
macroscopically identical samples in order to obtain an estimate of the statistical uncertainty 
of the results. The statistical uncertainty of the experimental results was 20%. 
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4. Results  

We proceeded in two steps. First, we used a numerical method to find values of 
permeability for fibrous porous media based on regular hexagonal array of cylinders. The 
numerical results thus obtained were compared with the analytical results found in the 
literature. In the second step, we used the numerical method to find values of permeability 
coefficient for the wool fibre web, packaging board and sandstone samples. These results 
were compared with the experimental results obtained by using the PMD (Koivu et al., 
2009a; Koivu et al., 2009b). 

4.1 Regular arrays 
Artificial sample geometries of hexagonal arrays of cylinders were prepared to test and 
demonstrate the effect of different imaging artefacts on structure and numerical fluid flow 
analysis. The volume size of the simulation geometries were 693 x 400 x 100 pixels and the 
porosity of the cylinder arrays was selected to be 50 %. 

4.1.1 Effect of noise 
Visualisations of flow speed field of four hexagonal arrays of cylinders having different 
levels of noise are shown in Fig. 4. The noise levels are defined as percentage of the faulty 
voxels of the total volume of the sample. 
 

 
        (a)              (b) 
 

 
        (c)             (d) 

Fig. 4. Visualisation of flow speed field of four hexagonal arrays of cylinders having 
different levels of noise: (a) 0 %, (b) 0.05 %, (c) 0.3 % and (d) 5 %. Flow direction is in these 
cases from top to bottom. Red and yellow colours represent high flow speed and green and 
blue low flow speed. 
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Numerically analysed permeability values and corresponding (noise free) analytical value 
by Drummont & Tahir (1984) are shown in Fig. 5. According to the results, even a small 
amount of noise has a drastic influence on fluid flow permeability. 
 

 

Fig. 5. Numerically solved permeability values for the hexagonal array of cylinders as a 
function of noise level. For comparison, analytical value for noise free geometry is also given 
(Drummont & Tahir, 1984). 

The effect of noise on specific surface area was evaluated as a function of noise level, see Fig. 
6. The specific surface areas were analysed utilising the marching cubes algorithm (Lorensen 
& Clive, 1987a; Lorensen & Clive, 1987b). Increase in the amount of noise increases the 
specific surface area of the simulation geometry and thus decreases the permeability value, 
see Eq. (3).  
 

 

Fig. 6. Dimensionless specific surface area as a function of noise level for the hexagonal 
array of cylinders. 
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The effect of noise on pore size distribution was evaluated as a function of noise level, see 
Fig. 7. The pore size distributions were determined with the so-called sphere fitting 
algorithm. In the sphere fitting method, the pore space is filled by non-overlapping spheres. 
The distribution of the radii gives estimation for the pore size distribution (Wu et al., 2007). 
The pore size distribution was found to change dramatically as a function of noise level. The 
mode value of the distribution of the geometry with the noise level of 0.01 % was 
approximately one third of the mode value for the noise free geometry.  
 

 

Fig. 7. Normalized pore size distribution for the hexagonal array of cylinders as a function 
of pore size in pixels with different noise levels. 

4.1.2 Effect of edge blurring 
Grey scale profiles on solid-void boundaries of a material in tomographic images are often 
blurred due to ESF. Imaging noise combined with blurred boundaries can cause the 
thresholded solid-void boundary of the final reconstruction to look rough, see visualisation 
in Fig. 8b. Without noise, the pure edge spreading causes changes mainly in the porosity 
value of the sample geometry and thus changes in the permeability value, see e.g. the results 
published by Koivu et al. (2010). When noise is incorporated, the surface roughness will 
have an effect to the fluid flow close to the surfaces.  
Artificial edge roughness was generated into the geometries of the hexagonal arrays of 
cylinders, see visualisations of the rough edges in Fig. 8a. To generate the simulation 
geometries the original geometry was blurred using standard 3D Gaussian blur. Gaussian 
distributed noise with known standard deviation was added to the blurred image. The 
image was then thresholded using 128 as the threshold value (in the original image void is 0 
and solid is 256). Finally, all the particles not touching the solid phase were removed. The 
number of the edge roughness level corresponds to the standard deviation of the Gaussian 
distributed noise. 
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Fig. 8. Visualisations of artificially generated edge roughness on the hexagonal array of 
cylinders (a) and edge roughness on reconstruction of wool fibre web caused by CXµT and 
image processing methods (b).   

Edge roughness on solid-void boundary increases the specific surface area of the sample 
and therefore decreases the permeability value, see Figs 9 and 10. Edge roughness has only 
small effect on the pore size distribution, see Fig. 11.  
 

 

Fig. 9. Numerically solved permeability values for the hexagonal array of cylinders as a 
function of edge roughness level. Analytical value for noise free geometry is also given 
(Drummont & Tahir, 1984). 

www.intechopen.com



 
Computational Simulations and Applications 

 

480 

 

Fig. 10. Dimensionless specific surface area as a function of edge roughness level for the 
hexagonal array of cylinders. 

 

 

Fig. 11. Normalized pore size distribution as a function of pore size in pixels for the 
hexagonal array of cylinders with different edge roughness levels. 

4.2 Tomographic geometries 
Tomographic sample geometries were obtained with three different imaging methods. This 

was done in order to demonstrate the effects of very common imaging artefacts, which are 

produced by most of the tomographic imaging methods. 
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4.2.1 Effect of artefacts on fluid flow permeability 
Visualisations of wool fibre web sample with different threshold values are shown in Fig. 
12. The sample geometries in (a) – (c) were denoised and then binarised using grey value -
based threshold (Gonzales & Woods, 2002). At the lowest threshold levels (a) and (b), the 
noise is clearly visible in the void space. While threshold value was gradually increased, the 
noise became less evident and the thickness of the fibres (or size of the solid particles) 
diminished. The sample geometry in Fig. 12d was segmented utilising the forest fire 
method. The forest fire method was found to give noise free pore space and a fibre radius 
that corresponded well with the mean value obtained from scanning electron microscope 
images, 20 µm.  
 

 

Fig. 12. Visualisation of segmented wool fibre web sample at different threshold values: (a) 
20, (b) 30 and (c) 40, and with the forest fire method (d).  
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Grey value -based thresholding procedure with different threshold values were conducted 

for all the three tomographic sample types. Numerical fluid flow permeability analyses were 

conducted for all the geometries and the obtained values were compared with experimental 

results, see Fig. 13.  

As an example, for the wool fibre web, the “optimal” threshold value would have been 
between 20 and 30, see Fig. 13a. By visually examining the corresponding images, it was 
found that there was still noise left in flow channels at threshold value 30. Permeability at 
the optimal threshold value would not have been result of the realistic sample geometry, but 
combination of noise causing higher specific surface area and thinner fibres increasing the 
porosity of the geometry. The results were found qualitatively similar for the packaging 
board and the sand stone samples. 
The forest fire method was found to be efficient tool for segmentation procedure. Numerical 
permeability values for the geometries segmented by the forest fire method were 2.5E-11 m2, 
4.8E-14 m2 and 2.5E-12 m2 for the wool fibre web, the packaging board and the sand stone 
samples, respectively. Corresponding experimental measurement results for the samples 
were 2.5E-11 m2, 5.1E-14 m2 and 2.5E-12 m2. The maximum difference between the 
experimental results and the numerical permeability values found by using the forest fire 
segmented sample geometries was in these cases less than 6.5 %. The statistical uncertainty 
of the experimental results was 20%. 
The numerical permeability results for the samples with different added noise levels 
(proportion of false voxels) are shown in Fig. 14. Artificial noise levels were generated into 
the sample geometries which were segmented by the forest fire method. The effect of noise 
on permeability was found to be qualitatively similar as for the hexagonal cylinder array. 
Increase in noise level caused decrease in fluid flow permeability value.  
 

 

Fig. 13. (a) 
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Fig. 13. (b) 

 

 
(c) 

Fig. 13. Numerically solved permeability coefficients for the wool fibre web (a), the 
packaging board (b) and the sand stone (c) as a function of threshold value. Experimental 
results are given as an average of the five measurements for each sample types. 
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Fig. 14. (a) 

 
 
 

 

Fig. 14. (b) 
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(c) 

Fig. 14. Numerically solved permeability coefficients for the wool fibre web (a), the 
packaging board (b) and the sand stone (c) as a function of noise level. Experimental results 
are given as an average of the five measurements for each sample types.  

4.2.2 Effect of artefacts on specific surface area and pore size distribution 
Specific surface area of the wool fibre web sample was analysed as a function of threshold 
value and noise level, see the results in Fig. 15. The specific surface area of the geometry 
thresholded by the forest fire method had a value of 0.175 m-1. The value of specific surface 
area of the sample geometry decreased as a function of increasing threshold value and 
increased as a function of increasing noise level. According to Eq. (3), when a sample 
geometry has a high specific surface area, it has a small permeability value. This could also 
be seen from the results in Fig. 15 and in Figs 13a and 14a. 
Pore size distribution of the wool fibre web sample geometry was analysed as a function of 
threshold value, see the results in Fig. 16a. When compared to the experimental 
permeability results, the optimal threshold value was found to be between 20 and 30, see 
Fig. 13a. The results in Fig. 16a clearly show that with the threshold values of 20 or 30 the 
pore size distribution differs highly from the pore size distribution of the geometry that was 
segmented using the forest fire method. These results support the interpretation related to 
the permeability values obtained using the geometries segmented by conventional grey 
value -based thresholding. Combination of too high specific surface area and too thin fibres 
(high porosity) resulted to the permeability values very close to the experimental results. 
These interpretations were found to be similar for the packaging board and for the sand 
stone samples also. 
Pore size distribution as a function of noise level for the wool fibre web sample is presented 
in Fig. 16b. The effect of added noise was found to be not as high as for the hexagonal array 
of cylinders, see Fig. 7. For noise level of 2 %, the mode value of the distribution was 
approximately a half of the mode value of the noise free geometry.  
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Fig. 15. (a) 

 
(b) 

Fig. 15. Specific surface area of the wool fibre web sample as a function of threshold value 
(a) and noise level (b). 
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Fig. 16. (a) 

 
(b) 

Fig. 16. Normalized pore size distribution for the wool fibre web sample as a function of 
pore size with different threshold values (a) and with different noise levels (b).  

5. Conclusions 

Approximate factors of how certain levels of noise and edge roughness effect on 

permeability value, mode value of pore size distribution and specific surface area of the 

hexagonal array of cylinders are summarised in Table 1. According to the results, even a 

small amount (0.01 % of sample volume) of noise in the void space has a drastic influence on 

the permeability values. The noise level of few percent caused magnitudes decrease in the 

permeability values. Increase in the amount of noise increases the specific surface area of the 

simulation geometry and thus decreases the permeability value. Also the pore size 
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distributions of the simulation geometries were found to change dramatically as a function 

of noise level. The mode value of the pore size distribution with the noise level of 0.01 % is 

approximately one third of the mode value of the noise free geometry.  

Edge roughness on solid-void boundaries increases the specific surface area of the 

hexagonal cylinder geometry and therefore decreases the flow permeability value. The effect 

is, however, moderate compared to the effect of noise. Edge roughness was found to have 

only a small effect on the pore size distribution of the geometry. 

Approximate factors of how certain levels of threshold value and noise effect on 
permeability value, mode value of pore size distribution and specific surface area of the 
wool fibre web sample are given in Table 2. The factors are given as values compared to the 
analysis results based on the forest fire segmented geometry that gives values very close to 
the experimental results. The results obtained using the forest fire method were compared to 
the data obtained from the scanning electron microscope images. Agreement with the sizes 
of characteristic solid objects was found to be good. The numerical permeability analyses for 
the sample geometries segmented using the forest fire method provided good agreement 
with the experimental results. The difference between the experimental results and the 
numerical permeability values found by using the forest fire segmented simulation 
geometries was less than 6.5 % for all the sample types. 
 

 Noise level 0.01 % Noise level 1 % Noise level 10 % 

Permeability 0.5 0.01 0.001 

Mode value of pore 
size distribution 

0.3 0.2 0.1 

Specific surface area 1.1 3 30 

 
Edge roughness 

level 10 
Edge roughness 

level 50 
Edge roughness 

level 120 

Permeability 1 0.9 0.5 

Mode value of pore 

size distribution 
1 0.9 0.8 

Specific surface area 1.2 2.5 9 

Table 1. Approximate factors of how certain levels of noise and edge roughness effect on 

permeability value, mode value of pore size distribution and specific surface area of the 

hexagonal array of cylinders. Factors are given as values compared to the results for the 

noise free geometry.  

The permeability results were found to be very sensitive for the threshold value used in 
segmenting the 3D geometries. Faulty selection of the threshold value can cause an error for 
the permeability value by a factor of approximately 2-5. By using grey value -based 
threshold method, the permeability value might by chance have approximately correct 
values (compared to the experimental results). However, the permeability value with 
selected threshold value would not necessarily be result of the realistic sample geometry, 
but combination of noise causing higher specific surface area and too thin fibres increasing 
the porosity value of the geometry. This result was found to be qualitatively similar for all 
the three sample types and the imaging methods used here. 
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Pore size distributions of the tomographic geometries were analysed as a function of 

threshold value. Although fluid flow analyses based on geometries segmented by grey 

value -based segmentation method might result in approximately correct permeability 

values, the structure of the pore geometry does not necessarily correspond with the realistic 

case. According to the results, the pore size distributions based on the grey value segmented 

geometries differ from the distributions based on geometries which were segmented using 

the forest fire method.   

The forest fire segmented tomographic reconstructions were used in studying the effect of 

noise on tomographic geometries. Results in these cases indicate that the permeability 

results of tomographic geometries are not as sensitive to noise as in the case of regular 

hexagonal cylinder arrays. By increasing the noise level to 2 %, the permeability results 

decreased approximately by a factor of 0.5.  

The effect of noise level on pore size distribution was analysed.  The effect of added noise on 

tomographic reconstructions is not as drastic as in the case of the hexagonal cylinder arrays. 

With the noise level of 2 %, the mode value of the distribution is approximately a half of the 

mode value for the noise free geometry.  

The results indicate that effective methods for handling imaging artefact removal and 

segmentation are essential for obtaining reliable results for structural and transport 

properties by means of direct numerical analyses based on CXµT reconstructions of the 3D 

structure of complex porous materials. According to our studies, the most essential factor 

for successful structural analysis and flow simulation is the quality of the tomographic 

reconstruction, i.e. noiseless and realistic structure. To achieve this requirement, a well 

controlled image acquisition and a good segmentation algorithm together with a verification 

based on a characteristic parameter, e.g. the mode value of pore size distribution measured 

by an independent method like mercury intrusion porosimetry or average characteristic 

dimension from a 2D microscopic image of the material, is required. 

 

 
Error in threshold 

value + 10 grey 
values 

Error in threshold 
value + 20 grey 

values 

Error in threshold 
value + 30 grey 

values 

Permeability 2 3 5 

Mode value of pore 
size distribution 

1.1 1.4 2 

Specific surface area 0.9 0.8 0.7 

 Noise level 2 % Noise level 5 % Noise level 10 % 

Permeability 0.5 0.3 0.2 

Mode value of pore 
size distribution 

0.5 0.2 0.1 

Specific surface area 1.2 1.2 2 

Table 2. Approximate factors of how certain levels of threshold value and noise effect on 
permeability values, mode value of pore size distribution and specific surface area of the 
wool fibre web. The factors are given as values compared to the analysis results based on 
the forest fire segmented geometry. 
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