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1. Introduction  

Heat transfer is the main concern in designing shell and tube heat exchangers. Flow- 
induced vibration (FIV) is also a major concern while designing shell and tube heat 
exchangers. Fluidelastic instability (FEI), turbulence, periodic instability, and acoustic 
resonance are the FIV mechanisms that could cause to vibrations in heat exchanger tube 
bundles. FEI is the most dangers mechanism, since it can cause to tube damage in short time 
when the flow velocity exceeds the critical flow velocity (Ucr). Therefore, intensive 
researches have been undergoing in the last five decades to predict and under stand this 
mechanism. Different theories and models are in use to predict the FEI thresholds as 
function of mass damping parameters (MDP). These theories and models rely on some 
coefficients and parameters.  Experimental approaches are used to predict these parameters 
for some tube arrays geometries. The experimental approach is expensive and a time 
consumer. Computational Fluid Dynamics (CFD) is an alternative approach proposed in 
this study to predict these parameters. This study utilized the CFD model to simulate the 
unsteady flow and the resulting fluidelastic forces in a tube bundle. Numerical simulations 
of in-line square tube arrays with a pitch-to-diameter (P/d) ratio of 1.33 utilizing a 2-
dimensional model are presented. In this model, a single tube was forced to oscillate within 
an otherwise rigid array.  The numerical model solves the Reynolds-Average Navier-Stokes 
(RANS) equations for unsteady turbulent flow, and is cast in an Arbitrary Lagrangian-
Eulerian (ALE) form to handle mesh motion associated with a moving boundary. The 
fluidelastic instability was predicted for both single and fully flexible tube arrays over a 
mass damping parameter (MDP) range of 0.1 to 200. Fluid forces acting on the oscillating 
tube and the surrounding tubes were estimated. The predicted forces were utilized to 
calculate fluid force coefficients for all tubes.  
Fluidelastic instability is the most destructive excitation mechanism leading to rapid failure 
by fatigue or tube-to-tube clashing if the stability threshold is exceeded. Due to this potential 
for catastrophic failure intensive research has been ongoing for several decades on the topic 
of predicting and mitigating FEI effects. This has resulted in a vast amount of literature on 
the topic. Much of the research has been directed towards obtaining a reliable estimate of 
the critical flow velocity for the purpose of design. There are several models available to 
analyse FEI problems and the associated critical velocity. These models range from 
analytical approaches such as the models of Lever and Weaver (Lever & Weaver, 1982) and 
Païdoussis and Price (Païdoussis & Price, 1984) to the empirically-based unsteady flow 
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theory models such as those of Chen (Chen, 1991) and Tanaka and Takahara (Tanaka & 
Takahara, 1981). These approaches provide a good estimate of the critical flow velocity, with 
models based on the unsteady flow theory being the more general. However, the 
applicability of the unsteady flow theory is restricted to the availability of the force 
coefficients they depend on.  These force coefficients have to be measured experimentally or 
alternatively, as is investigated in this paper, can be generated using a comprehensive CFD 
model.  
Several numerical techniques and studies embarked on attempting to simulate unsteady 
fluid forces (Weber et al, 2001; Omar et al, 2009; Omar, 2010; Hassan et al, 2010). This, in 
turn, could be used in conjunction with the unsteady flow model. This approach will be 
presented in this chapter. There has been an attempt to numerically predict the unsteady 
fluid forces in a tube row by Weber et al (Weber et al, 2001). They utilized a commercial 
CFD package (STAR-CD) to analyze a tube row with a P/d ratio of 1.35. In this work (Weber 
et al, 2001), the fluid forces due to the prescribed motion of one tube were predicted. Using 
these fluid forces, fluid force coefficients equivalent to those of Chen (Chen, 1991) were 
obtained. 
The results obtained via this work (Weber et al, 2001)have good agreement with other 
experiments. Comprehensive numerical studies to simulate the unsteady fluid forces for In 
line square and normal triangle tube arrays were conducted by Omar et al (Omar et al, 
2009); Omar (Omar, 2010); Hassan et al (Hassan et al, 2010). In these studies (Omar et al, 
2009; Omar, 2010; Hassan et al, 2010), the ability to extract fluid force coefficients for the 
unsteady flow theory was undertaken for two tube array configurations, namely i) in-line 
square tube array and ii) normal triangle tube array. The ability to predict the tube array FEI 
from CFD derived coefficients for each configuration and for single and fully flexible tube 
arrays was assessed. The predicted fluid force coefficients and FEI are then compared to 
available experimental data. The comparison demonstrates the viability of the proposed 
model to provide fluid force coefficients for the unsteady flow theory.  The effect of the P/d 
ratio and the Reynolds number on the FEI threshold was also investigated.   
In the present study the accuracy of using CFD generated force coefficients in the unsteady 
flow theory model is tested by comparing against available experimental data for in-line 
square tube arrays.  The base geometry, depicted in Figure 1a, and test conditions, follows 
the experimental study of Tanaka and Takahara (Tanaka & Takahara, 1981). 

2. Fluid dynamics model 

The Reynolds averaged Navier-Stokes (RANS) equations describing mass and momentum 

conservation are solved to obtain the time evolution of velocity and pressure in the tube 

array.  The interactions between fluid motion and moving structures are handled by further 

casting the governing RANS equations in an Arbitrary Lagrangian-Eulerian (ALE).  ALE 

accommodates moving boundaries and any subsequent deformation of the underlying 

discrete mesh.  The mesh velocity, umj, is calculated based on the space conservation law: 

 mj j

V S

d
dV u dn

dt
    (1)  

The left hand term represents the rate of change of a volume V, while the right hand side 
represents the integral of the surface (S) velocities (where nj is the surface normal). 
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2.1 Conservation equations 

The RANS equations in ALE form for mass conservation appears as: 

 
( )

0
j mj

j

u u

t x

  
 

 
  (2) 

and momentum equation: 
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where uj and ui are the fluid velocity components,  is the fluid density, xj and  xi are 

cartesian spatial coordinates, P is the fluid pressure, eff is the effective viscosity (includes 

laminar and turbulent contributions) , and Si is any additional momentum source 

contributions. This form allows conservative fluid flow calculations with mesh adaptation in 

time. The discretization process of the governing equations is similar to that applied for 

finite-volume/finite-element discretization (Schneider & Raw, 1987; Omar, 2010; Hassan et 

al, 2010). 

The k- based Shear Stress Transport (SST) model is used (Menter, 1994) to include the 
influence of turbulent mixing.  The turbulence equations are cast in ALE form : 
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and the -equation: 

 2
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  (4b) 

In these equations Pk is the production rate of turbulence.  The SST model incorporates a 

transformation between the k- model in the free stream regions of the flow, and the k- 

model in the near wall regions of the flow.  Further details on the turbulence model 

implementation can be found in (Menter, 1994).   

Based on the oscillation frequency and amplitude, the nodes on the moving tube surface 

(shaded tube designated as 1 in Figure 1) are moved to the new position and the remaining 

nodes in the interior are moved according to a set of Laplacian diffusion equations. 

The simulation is first run with a static tube, to obtain a quasi steady-state solution to 

provide initial flow conditions for the transient simulation.    Following this quasi steady-

state solution a transient simulation is then started but with tube 1 in motion in the lift 

direction and then in the drag at a specified frequency and amplitude.  Reader  is forwarded 

to (Omar et al, 2009; Omar, 2010; Hassan et al, 2010) for more details. 

For each time step convergence is achieved to within an RMS residual of 1x10-4 before 

moving on. The solution of the RANS equations is based on a coupled algebraic multigrid 

solver (Raw, 1996).  Parallel computations are applied in the present case to reduce the 

solution time required per time step. 
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3. Unsteady flow model 

The unsteady fluid force includes the inertia, the damping, and the stiffness effects. 
The inertia effect is assumed to be independent of the flow velocity and can be measured 
experimentally, or computed using the potential-flow theory. In order to utilize this model, 
fluid force coefficients are required. The first attempt to obtain these force Coefficients 
experimentally was done by Tanaka and Takahara (Tanaka & Takahara, 1981). The damping 
and Stiffness effects were expressed in terms of fluid force amplitudes (C) and phase angles 
(φ) between fluid forces and tube oscillation. To validate  the CFD results with experimental 
data, a simpler variant of the unsteady flow theory as presented by Tanaka and Takahara 
(Tanaka & Takahara, 1981) is used.  The formulation is presented briefly here, however a 
complete description and derivation is available in (Tanaka & Takahara, 1981;  Omar, 2010). 
 

L

W

15 d

 
(a) 

 

 
(b) 

Fig. 1. In-line square tube geometry a) as given in experiments of Tanaka and Takahara 
(Tanaka & Takahara, 1981;  Omar, 2010; Hassan et al, 2010), and b) close-up of moving tube 
(shaded) and related dimensions. 

Referring to the square array in Figure 1a, and considering the forces and displacements in x 
as well as y, and assuming the effects of all surrounding tubes can be summed linearly (and 
that only the four tubes immediately adjacent the center tube 1 have significant influence) 
the total force expected on tube 1 can be expressed as 

P 

1 

x 

y 

1 2 

d 

Flow Direction Monitor points 

5 

2 

P 
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  2

1,2,3,4,5

1

2
x gap XjX j XjY j

j

F U C p C q


    (5a) 

  2

1,2,3,4,5

1

2
y gap YjX j YjY j

j

F U C p C q


    (5b) 

where 1X XC  and 1Y YC  are fluid force coefficient amplitudes. The fluid forces ( 1X XF , 1Y YF ) 

acting on tube j lead the displacement of tube j ( jX , jY ) by phase angles ( XjX and YjY ). The 

three suffixes of the coefficients represent the direction of the force, the tube index, and the 

direction of vibration, respectively. For example, the lift fluid force component acting on 

tube 1 due to the motion of tube 4 in the drag direction (Y ) is expressed as 4X YF .  Therefore, 

the total lift fluid forces consists of 10 different components corresponding to the lift motion 

effect ( 1X XC ... 5X XC ) and to the drag motion ( 1X XC ... 5X XC ). Similarly, the overall drag force 

comprises of 10 components ( 1Y XC ... 5Y XC , 1Y YC ... 5Y YC ). As the centre tube (1) oscillates in 

Y direction, XjYF  is equal to zero except for 4X YF  and 5X YF .  Similarly, as the centre tube 

oscillates in X direction, the YjXF  is equal zero except of 4Y XF  and 5X YF . 

The reader can refer to (Tanaka & Takahara, 1981;  Omar, 2010) for a description.  Based on 

these simplifications, Eq. 5 can be reduced to:  

 
   



2
1 1 4 4 5 4 4 5

2 2 3 3

1

2
X gap X X X X X Y

X X X X

F U C p C p p C q q

C p C p

    

 
  (6a) 

 
   



2
1 1 4 4 5 4 4 5

2 2 3 3

1

2
y gap Y Y LX Y Y

Y Y Y Y

F U C q C p p C q q

C q C q

    

 
  (6b) 

4. Results and discussion 

The results presented in this section are based on unsteady CFD simulations conducted on a 
specific tube array geometry over a range of reduced velocities, defined here as Ur=Ugap/fd 
where f is the frequency of oscillation of tube 1 and d the tube diameter.  A completed 
unsteady simulation provided tube forces as a function of time, which, following a FFT of 
the data, provided the force coefficients and associated phase information.  The choice of 
time step is very important to the accuracy of the calculations, but also for efficient use of 
computational resources.  The optimal simulation time step was chosen based on previous 
investigations (Williams, 2004; Omar, 2010; Hassan et al, 2010), which indicated that fifty or 
more time steps per tube oscillation period is needed.  In the present computations on 
average the time step was based on subdividing the tube period by ~90.  The total number 
of tube oscillations simulated, beginning from a quasi-steady initial solution, was 50 and 
ensured steady statistics could be obtained when applying the FFT process to the force data.  
The coefficient data as a function of Ur was then processed to obtain an FEI stability map as 

a function of mass damping parameter, defined here as mdp=m2 /d2where m is the mass 

per unit tube length and 2  is the log decrement.   In generating the stability maps mdp 
was varied from 0.1 to 200.   
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An in-line square tube array were considered where the geometry, as given in Figure 1, 
P/d=1.33 W=0.288 m.  A set of force coefficients and phase shift versus Ur curves was created 
and a stability map generated.  For a subset of this data, in particular for the P/d=1.33 case, 
direct comparison to the force coefficients and phase data of Tanaka and Takahara (Tanaka 
& Takahara, 1981) could be made as will be discussed subsequently. 

4.1 Mesh sensitivity 
Before performing the complete set of unsteady simulations a mesh sensitivity study was 
undertaken to determine the best mesh resolution.  This assessment was done using a range 
of meshes ranging in node count from 18,000 to 220,000.  In conducting the simulations 
changes in predicted CX1X and CY1Y coefficients were monitored as a function of changing 
mesh resolution.  From this study it was determined that 80,000 nodes was a good 
compromise between accuracy and computational time.  In Figure 2a is shown the mesh 
topology used in the simulations, while in Figure 2b the near wall mesh resolution is 
highlighted. 
 

 
(a) 

 

 
(b) 

Fig. 2. Mesh (80,000 node case) with a) view of tubes 1,2,3,4 and 5 intervening mesh 
topology (Omar, 2010; Hassan et al, 2010), and b) view of near wall mesh. 

4.2 Validation of the predicted fluid force coefficients 

This study presents samples of  the predicted fluid force coefficients ( 1X XC  and 1Y YC ) and 

their phase angles ( 1X X and 1Y Y ) and compared against the experimental data of Tanaka 
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and Takahara (Tanaka & Takahara, 1981).  Figure (3) shows the predicted fluid force 

coefficients ( 1X XC  and 1Y YC ) and Figure (4) shows their phase angles ( 1X X , 1Y Y ) 

compared against the experimental data. 
As shown in Figure (3), the general behaviour of the fluid force coefficients obtained 
experimentally and predicted numerically, is similar. All force coefficients decrease sharply 
from their highest value to a low value in the range of reduced flow velocities between 1.5 
and 20, and then become mostly independent of reduced flow velocity. This is because at a 
low reduced flow velocity, the flow velocity and the tube velocity are comparable. 
Therefore, the influence of the structural motion on the flow is significant, which in turn 
causes a high rate of change in the fluid forces. 
At reduced flow velocities greater than 20, the flow velocity is much higher than the tube 
velocity; therefore, the influence of the tube motion on the flow is very small. This causes the 
fluid forces acting on Tube 1 to be almost independent of the flow velocity. 

The predicted phase angles are shown in Figure (4). The trend of the phase angle as a 

function of the reduced flow velocity can be divided into two groups. In the first group, as 

depicted by Figures (4a), the phase angle has a trend opposite to that of the fluid force 

coefficient. For example, the phase angle 1X X  increases sharply from a negative value to a 

positive value over a range of the reduced flow velocities between 1.5 and 5. 1X X  

approaches a constant value of approximately 150o in the range of reduced flow velocities 

between 25 and 100. Phase angles with values in the range of 0 to 180o will cause the fluid 

damping coefficient to have a positive value, which contributes to the instability of the tube 

array in the lift direction. 
 

 
        (a)               (b) 

Fig. 3. Fluid force coefficients for an in-line square tube array with a P/d ratio of 1.33: (a) 

XXC 1
; (b) 

YYC 1
 (Omar, 2010). 

An example of the second group is presented by Figure (4b), where the phase angle 

1Y Y decreases to a negative value in the lower ranges of reduced flow velocity, then 

gradually increases to a value of −20o at a reduced flow velocity of 100. In general, the 

agreement between the predicted phase angle and the reported experimental results is good 

especially for 1X X . The largest deviation from the experimental results is found in the case 

of 1Y Y , especially in the range of reduced flow velocities between 10 and 80. 
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The rest of the fluid force coefficients and the phase angles due to tube motion in the lift and 
the drag directions are presented in (Omar, 2010). 
 

 
(a) 

 
(b) 

Fig. 4. Fluid force phase angles for an in-line square tube array with a P/d ratio of 1.33: (a) 

XX1 ; (b) 
YY1   (Omar, 2010) 

4.3 Prediction of stability map characteristics 

In addition to comparison against fluid force coefficients obtained by experiment, the 
coefficients were used to simulate a fully flexible 3x3 tube array over a mdp range of 0.1 to 
200.  Firstly, the predicted force coefficients were transformed into added stiffness and  
added damping parameters and incorporated in the system equations of motion.  The 
equation of motion of the tube system is given by: 

      [ ] [ ] [ ] 0s a s a s aM M x C C x K K x          
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where sM , sC , and sK  are the structural mass, damping, and stiffness, respectively.  aM
, 

aC
, and aK

 are the fluid added mass, damping, and stiffness, respectively.  Each individual 

tube was assumed to have two degrees of freedoms.  The size of the system matrices are the 

same as the total number of degrees of freedoms (18 x 18). The flow added matrices ( aM
, 

aC
, and aK

) are functions of added fluid-damping, fluid stiffness coefficients, flow density, 

flow velocity and tube diameter. Secondly, the eigenvalue extraction of the above equation 

was employed to study the stability of the system as a function of the flow velocity.  This 

results in a number of complex eigenvalues and eigen vectors.  The reader is forwarded to 

(Tanaka & Takahara, 1981;  Omar, 2010) for more detail. The system is unstable if the real 

part of the eigenvalue is positive.  The critical flow velocity is determined by solving for the 

flow velocity at which the real part of the eigenvalue becomes zero. Results were located on 

the stability map and compared to experimental results available in the open literature for 

the same tube array geometry. The case of Tanaka and Takahara (Tanaka & Takahara, 1981) 

was selected since it matches the pitch to diameter ratio of the current simulation (P/d of 

1.33). The predicted reduced critical flow velocity, Uc, as a function of mass damping 

parameter agrees well with the experimental data sets as shown in Figure 5.  The agreement 

between the simulations and the experimental results is excellent. 
 

 

Fig. 5. Comparison of the predicted critical flow velocity with experimental data of Tanaka 
and Takahara (Tanaka & Takahara, 1981): ◦ experiments, − simulation (Omar, 2010; Hassan 
et al, 2010). 

4.4 Separation and attachment  

FEI models such as the unsteady analytical model by Lever and Weaver (Lever & Weaver, 

1981) rely on input of separation and attachment angles for their model, shown as 1 and 2 
respectively in Figure 1. Generally, for either case, an angle of approximately ten degrees is 
applied.  In addition a time delay model is input to account for the delay between stream 
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lines perturbation and tube motion.  The times delay model approximates how quickly flow 
along the monitoring points shown in Figure 1 is affected by any intervening tube motion.  
In models such as that of Lever and Weaver (Lever & Weaver, 1981), it is assumed the flow 
inside the tube bundle is divided into wake and channel flows. The wake flow appears as 
large recirculation zones located between tubes in the spaces running transverse to the flow 
(zones 1 and 2 in Figure 6a).  Spaces between tubes aligned with the flow direction allow the 
flow to proceed relatively freely along lanes (or channels as depicted in Figure 6a). The outer 
edges of the lanes attach and separate from neighbouring tubes on the basis of 1 and 2.  
Streamlines in the channel regions are assumed not to between intervening recirculation 
zones. Therefore the mass flow at each gap between tubes remains constant.  In the present 
study the flow patterns are examined in light of these approximations. 
Figure 6 shows the streamlines prevalent at three instances during one period (of time T) of 
tube motion in the lift direction. At time 0 s (Figure 6a) there exists a significant recirculation 
zone between tubes 2 and 1 (zone 1), while at time 1/3T (Figure 6b), when the tube has just 
passed it peak downward position, fluid streamlines are redirected from the channel 2 to the 
channel 1.  Conversely when the tube, at 2/3 T (Figure 6c), is nearing its peak upward 
position, streamlines are diverted from channel 1 to channel 2.   The migration of flow back 
and forth between channels 1 and 2 through zones 1 and 2 is not entirely periodic as other 
asymmetries exist in the overall flow structure.   
 

       
(a)     (b) 

 

 
(c) 

Fig. 6. Flow visualization showing flow conditions proceeding moving tube at period 
intervals of 0T, 1/3T and 2/3T.  (P/d=1.33, Ur=50, T= 3.33s). 
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5. Conclusions 

In this study the use of CFD to generate force coefficients in the unsteady flow models for 

FEI of Chen (Chen, 1991) and Tanaka and Takahara (Tanaka & Takahara, 1981) has been 

undertaken.  The unsteady CFD simulations, with appropriate care taken for mesh and time 

step resolution, yield results that enable force coefficients to be well predicted.  With 

comprehensive studies that cover a range of pitch-to-diameter ratios and reduced velocities, 

a series of FEI stability curves can be generated.  The curves generated in this work based on 

CFD derived data follow the trends of that available in the literature, and reveal expected 

trends such as increasing critical reduced velocity with increasing P/d ratio.   The results 

thus far indicate the CFD based approach for computing stability maps for family of arrays 

(in this case in-line) is very promising.  The use of CFD data also has the added benefit of 

providing considerable detail on the flow behaviour in the array, and thus enables 

extracting information that could be used in models such as those of Weaver and Lever 

(Lever & Weaver, 1981).  Along this vein simulations are planned using a larger array in 

order to isolate the region of interest around the oscillating tube from the downstream 

vortex shedding.   This would allow a more careful investigation of the movement of the 

stagnation regions on the attachment side, and the degree of mass flow redirected, as a 

function of pitch-to-diameter ratio and reduced velocity. 
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