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1. Introduction

The full Navier-Stokes equations are difficult or impossible to obtain an exact solution in

almost every real situation because of the analytic difficulties associated with the nonlinearity

due to convective acceleration. The existence of exact solutions are fundamental not only in

their own right as solutions of particular flows, but also are agreeable in accuracy checks for

numerical solutions.

In some simplified cases, such as two-dimensional stagnation point flows, by introducing

coordinate variable transformation, the number of independent variables is reduced by

one or more. The governing equations can be simplified to the non-linear ordinary

differential equations and are analytic solvable. The classic problems of two-dimensional

stagnation-point flows can be analyzed exactly by Hiemenz Hiemenz (1911), one of Prandtl’s

first students. These are exact solutions for flow directed perpendicular to an infinite flat

plate. Howarth Howarth (1951) and Davey Davey (1961) extended the two-dimensional and

axisymmetric flows to three dimensions, which is based on boundary layer approximation in

the direction normal to the plane.

The similarity solutions for the temperature field were studied by Eckert Eckert (1942). Case

corresponding a step change in wall temperature or in wall heat flux in laminar steady flows

at a stagnation point has been also investigated by several authors (see Chao et al. Chao

& Jeng (1965), Sano Sano (1981) and Gorla Gorla (1988)). Further, Lok et al. Lok et al.

(2006) investigated the mixed convection near non-orthogonal stagnation point flow on a

vertical plate with uniform surface heat flux, where the results published are very good with

present value of θ(0) for the constant wall temperature boundary condition. On the contrary,

reversed stagnation-point flow over an infinite flat wall does not have analytic solution in

two-dimensional steady state case.

The aim of this study is to investigate the unsteady viscous reversed non-isothermal

stagnation-point flow, which is started impulsively in motion with a constant velocity

away from near the stagnation point. A similarity solution of full Navier-Stokes equations

and energy equation are solved by applying numerical method. Studies of the reversed

stagnation-point flow have been considered during the last few years, as this flow can be

applied in different important applications that occur in oil recovery industry, as shown in

Fig. (1).
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Fig. 1. Oil recovery industry

2. Governing equation

2.1 Momentum equation

The viscous fluid flows in a rectangular Cartesian coordinates (x, y, z), Fig. 2, which illustrates

the motion of external flow directly moves perpendicular out of an infinite flat plane wall. The

origin is the so-called stagnation point and z is the normal to the plane.

✻

✲�

Ou = 0

u = −Ax❑✕ ❑✕ ✻

y

x

Fig. 2. Cooridnate system of reversed stagnation-point flow

By conservation of mass principle with constant physical properties , the equation of

continuity is:
∂u

∂x
+

∂v

∂y
= 0 (1)

We consider the two-dimensional reversed stagnation-point flow in unsteady state and the

flow is bounded by an infinite plane y = 0, the fluid remains at rest when time t < 0. At t = 0,

it starts impulsively in motion which is determined by the stream function

ψ = −αxy (2)

For a viscid fluid the stream function, since the flow motion is determined by only two factors,

the kinematic viscosity ν and α, we consider the following modified stream function
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ψ = −
√

Aνx f (η, τ) (3a)

η =

√

A

ν
y (3b)

τ = At (3c)

where η is the non-dimensional distance from wall and τ is the non-dimensional time. Noting

that the stream function automatically satisfies equation of continuity 1 . The Navier-Stokes

equations White (2003) governing the unsteady flow with constant physical properties are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −

1

ρ

∂p

∂x
+ ν(

∂2u

∂x2
+

∂2u

∂y2
) (4a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −

1

ρ

∂p

∂y
+ ν(

∂2v

∂x2
+

∂2v

∂y2
) (4b)

where u and v are the velocity components along x and y axes, and ρ is the density.

From the definiton of stream function, we have

u =
∂ψ

∂y
= −Ax fη (5a)

v = −
∂ψ

∂x
=

√
Aν f (5b)

Substituting u and v into the governing equations results a simplified partial differential

equation

fητ − ( fη)
2 + f fηη − fηηη + 1 = 0, (6)

with the boundary conditions

f (0, τ) = fη(0, τ) = 0 (7a)

fη(∞, τ) = 1. (7b)

Equation (6) is the similarity equation of the full Navier-Stokes equations at two-dimension

reversed stagnation point. The coordinates x and y are vanished, leaving only a dimensionless

variable η.

When the flow is in steady state such that fητ = 0, it can be proved that the differential

equation does not have solution under the boundary conditions Davey (1961). Thus we

concentrate on the transient behavior in other section.

2.2 Energy equation

In this section, we shall focus on the non-isothermal flow which is at a temperature T different

from that of the wall Tw. By solving the energy equation, we are able to determine the

temperature distribution in the reversed stagnation-point flow.
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For constant-property fluid such as results, the transient energy equation Burmeister (1993) is

given as follow

ρcp

(

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

)

= k

(

∂2T

∂x2
+

∂2T

∂y2

)

+ µΦ (8)

where k is the thermal conductivity and cp is the heat capacity.

Note that u and v are the velocity components. These give

u = −Ax fη (9a)

v =
√

Aν f (9b)

and Φ is defined as

Φ = 2

[

(

∂u

∂x

)2

+

(

∂v

∂y

)2
]

+

(

∂u

∂y
+

∂v

∂x

)2

−
2

3

(

∂u

∂x
+

∂v

∂y

)2

(10)

and is called the viscous dissipation since it represents the irreversible conservation of

mechanical forms of energy to a thermal form.

To transform equation (8) into a nondimensional form, a dimensionless temperature θ is

defined as

θ =
T − Tw

T∞ − Tw
. (11)

where T∞ is the ambient temperature. Noting that both Tw and T∞ are constant,

T(0, t) = Tw, T(∞, t) = T∞, (12)

the temperature distribution T can be considered as a function of y and t only.

Under the assumption that the viscous dissipation is negligible compared to conduction at the

wall, the energy equation may be written as

θηη −
ρcpν

k
f θη =

ρcpν

k
θτ (13)

subject to the boundary conditions

θ(0, τ) = 0 θ(∞, τ) = 1 (14)

Equation (13) is a second-order partial differential equation with variable coefficients f (η, τ)
and the Prandtl number Pr = ρcpν/k is assumed to be constant. Consider the fluid of which

Pr = 1, the thermal boundary layer and the velocity boundary layer collapse, and thus,

substituting θ = f ′, equation (6) and (13) represent the same equation.

3. Asymptotic solution

3.1 Velocity distribution

When τ is relatively small, Proudman and Johnson Proudman & Johnson (1962) first

considered the early stages of the diffusion of the initial vortex sheet at y = 0. They

suggested that, when the flow is near the plane region, the viscous forces are dominant,

and the viscous term in the governing Navier-Stokes equations is important only near the
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boundary. On the contrary, the viscous forces were neglected away from the wall. The

convection terms dominate the motion of external flow in considering the inviscid equation

in the fluid. According to their solution, the general features of the predicted streamline are

sketched in Fig. (3).

We therefore consider the similarity of the inviscid equation

fητ − ( fη)
2 + f fηη + 1 = 0. (15)

Proudman and Johnson obtained a similarity solution of (15) is in the form

f (η, τ) = eτ F(γ) (16)

and the further integration provides an exact solution

F(γ) = γ −
2

c
(1 − e−cγ) (17)

where c is a constant of integration; the improved numerical evaluations of Robins and

Howarth Robins & Howarth (1972) estimate the value of c to be approximately 3.51. This

solution describes the flow in the outer region. When τ → ∞ and η/eτ is relatively small, the

solution (17) yields

F ∼ −γ = −ηe−τ

and

f = −η, f ′ = −1 (18)

Substituting in equation (6) becomes

f ′′′ − f f ′′ + ( f ′)2 − 1 = 0 (19)

with the boundary conditions

f (0) = f ′(0) = 0 (20a)

f ′(∞) = −1 (20b)

This is exactly the classic stagnation-point problem Hiemenz (1911)) by changing the sign in

f . It is a third-order nonlinear ordinary differential equation and does not have an analytic

solution, and thus it is necessary to solve it numerically and the result is show in Fig. 4 .

3.2 Temperature distribution

Wen τ → ∞, we have an exact solution of the momentum equation in outer region, and thus,

we still apply the same procedure to solve the temperature profiles in outer region. Consider

the following transformation:

θ(η, τ) = Θ(γ) (21)

where

γ = ηe−τ
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✻

✲�
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✲
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x

Fig. 3. Streamlines of reversed stagnation-point flow

Fig. 4. Numerical solutions of stagnation-point flow
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if we consider a finite value of τ, equation (13) becomes an ordinary differential equation

Θ′′ +
2Pr e2τ

c
(1 − e−cγ)Θ′ = 0 (22)

subject to the boundary

Θ(0) = 0, Θ(∞) = 1 (23)

where

c = 3.51.

The following pages (Figs. (5) to (6)) show the asymptotic solution of temperature

distributions with Pr in outer region.

4. Finite-difference formulations

4.1 Governing equations

According to the previous work, the governing equations in reversed stagnation-point flow

are

fητ − ( fη)
2 + f fηη − fηηη + 1 = 0. (6)

θηη − Pr f θη = Pr θτ (13)

The above equations (6) and (13) subject to the boundary conditions are are nonlinear

third-order partial differential equations. They do not admit similarity solution and numerical

or perturbation methods are needed to solve the equation.

We shall, however, use here a numerical method. It is an implicit finite-difference method with

second-order accuracy. The partial differential equations can be expressed as approximate

expressions, so that it is easy to program the solution of large numbers of coupled equation.

We start with rewriting the partial differential equations in the form:

fητ = fηηη + ( fη)
2 − 1 + f fηη (24a)

θτ =
1

Pr
θηη − f θη (24b)

and introducing the new dependent variables

h = 1 − fη (25a)

g = θ (25b)

The equations can be rewritten as

hτ = hηη + 2h − h2 + hη

∫

(1 − h) dη (26a)

gτ =
1

Pr
gηη − gη

∫

(1 − h) dη (26b)

165Computation of Non-Isothermal Reversed Stagnation-Point Flow over a Flat Plate

www.intechopen.com



8 Will-be-set-by-IN-TECH

(a) Pr = 0.7

(b) Pr = 1

Fig. 5. Asymptotic temperature solution Θ for various value of γ
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(a) Pr = 3

(b) Pr = 10

Fig. 6. Asymptotic temperature solution Θ for various value of γ
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We now consider the net rectangle in the τ − η plane shown in Fig. (7) and the net points

defined as below:

η0 = 0, ηj = ηj−1 + ∆η, j = 1, 2, ...J, ηJ = η∞

τ0 = 0, τn = τn−1 ++∆τ, n = 1, 2, ...J,

Here n and j are just the sequence of numbers that indicate the coordinate location, not

tensor indices or exponents. The partial differential equations are easily discretized by central

Fig. 7. Net rectangle for finite-difference method

difference representations with second-order accuracy, for example the finite-difference forms

for any points are

hη =
hn

i+1 − hn
i−1

2∆η
(27)

and

hηη =
hn

i+1 − 2hn
i + hn

i−1

∆η
(28)

When i = 0, since the value of hn
i−1 is not logical, the derivative is replaced by the forward

difference with second-order accuracy

hη =
−hn

i+2 + 4hn
i+1 − 3hn

i

2∆η
(29)
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The finite-difference form of the ODE is written for the midpoint (τn, ηj), the discretized

equation takes the form.

hn+1
i − hn

i

∆τ
=

hn+1
i+1 − 2hn+1

i + hn+1
i−1

(∆η)2
+ 2hn

i − (hn
i )

2

−
hn

i+1 − hn
i−1

2∆η

∫ i∆η

0
(1 − h) dη (30a)

gn+1
i − gn

i

∆τ
=

gn+1
i+1 − 2gn+1

i + gn+1
i−1

Pr(∆η)2

−
gn

i+1 − gn
i−1

2∆η

∫ i∆η

0
(1 − h) dη (30b)

This procedure yields the following linear tridiagonal system:

−βhn+1
i+1 + (1 + 2β)hn+1

i − βhn+1
i−1 = hn

i + ∆τ

[

2hn
i − (hn

i )
2 −

hn
i+1 − hn

i−1

2

i

∑
0

(1 − hn
i )

]

(31a)

−
β

Pr
gn+1

i+1 + (1 +
2β

Pr
)gn+1

i −
β

Pr
gn+1

i−1 = gn
i − ∆τ

gn
i+1 − gn

i−1

2

i

∑
0

(1 − hn
i )(31b)

where β = ∆τ/(∆η)2.

4.2 Initial flow

The initial condition is the solution of the following linear partial differential equations

hτ = hηη (32a)

gτ =
1

Pr
gηη (32b)

an the required solutions are

h = 1 − er f

(

η

2
√

τ

)

(33a)

g = er f

(

η

2
√

τ/Pr

)

(33b)

where the error function er f (z) is defined as

er f (z) =
2

√
π

∫ z

0
exp(−ξ2) dξ (34)
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When τ → 0, the boundary conditions are convenient to write in the form

hn
0 = gn

0 = 0,

h0
i = er f

(

ηi

2
√

τ

)

,

g0
i = er f

(

ηi

2
√

τ/Pr

)

(35)

Equations (31) are defined as being implicit, as more than one unknown appears in the left

hand side. They are unconditionally stable, however, set of linear algebraic equations is

required to be solved by the tridiagonal matrix algorithm (TDMA), also know as the Thomas

algorithm, which is a simplified form of Gaussian elimination that is applied to evaluate

tridiagonal systems of equations.

The procedure is straightforward, except for the algebra. The resulting algorithm of the

finite-difference method is written in MATLAB, a numerical computing environment allowing

matrix manipulations and plotting of functions and data.

5. Numerical result

The following figure (Figs. (8)) shows the velocity distribution f . From the solution 17, we

have

log(1 − fη) = −cη + log 2 (36)

and if the similarity solution holds, then the graph of log(1− fη) against ηe−τ should provide

a straight line of gradient −c, except for small values of η, In Figs. (8), the values of log(1− fη)
are plotted against ηe−τ−3.5 at different value of τ. The value of c is 3.51 which is consistent

with the previous discussion.

Next, we show the numerical solution of temperature distributions with Pr in Figs. (9)

through (10)) . It is noticed that the dimensionless wall temperature gradient Θ′(0) raises

with increase of Prandtl number, but the thermal boundary layer thickness decrease with

increase of Prandtl number. The thermal boundary layer thickness is the distance from the

body at which the temperature is 99% of the temperature obtained from an inviscid solution.

The decrease of thickness can be explained by the definition of Prandtl number that Prandtl

number is inversely proportional to the molecular thermal diffusivity α. If the Prandtl number

is greater than 1, the thermal boundary layer is thinner than the velocity boundary layer. If

the Prandtl number is less than 1, which is the case for air at standard conditions, the thermal

boundary layer is thicker than the velocity boundary layer.

In comparison to the asymptotic solution, we note that increase in non-dimensional time τ

leads to an increase in temperature profiles in both cases. Near the wall region where γ is

small, the dimensionless wall temperature gradient of the numerical solution is lower than

that of the asymptotic solution. It is because the asymptotic solution is only valid for the outer

region. At our level of discretization, however, we are only able to resolve in small time range.
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Fig. 8. Numerical solution of Eq. (17) against (a) τ, (b) ηe−τ
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(a) Pr = 0.7

(b) Pr = 1

Fig. 9. Numerical temperature solution Θ for various value of γ

172 Computational Simulations and Applications

www.intechopen.com



Computation of Non-isothermal Reversed Stagnation-point Flow over a Flat Plate 15

(a) Pr = 3

(b) Pr = 10

Fig. 10. Numerical temperature solution Θ for various value of γ
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6. Conclusion

This study provides velocity and temperature distributions at different locations along

the wall of a reversed stagnation-point flow by solving the numerical solution of full

Navier-Stokes equations with finite difference method. Numerical findings show that velocity

profiles obtained from similarity solution and numerical simulation are in tremendously good

agreement and in region close to the stagnation point. Discrepancy of results in velocity

profiles increases in region which is away from the reversed stagnation-point flow.

With the establishment of this frame work, the more important practical properties in

engineering and technology application, like the velocity of wall is function of time, the

temperature of wall is function of time and distance from wall, can be investigated and they

would be the next phase of this study.
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