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Brazil  

1. Introduction   

The quest for understanding the mechanisms responsible for the vortex shedding process 
comes from past decades, but it is still challenging. The turbulent wake downstream of bluff 
bodies induces alternating and dynamic loads in the bodies like (antennas, chimneys, 
suspended bridges, a set of risers and structures in general). These structures can produce 
disastrous results. Extrapolating the scale of the phenomena, one can refer to petroleum 
exploration, which starting from the platforms to the seabed, there are risers that are 
cylindrical tubes of great length. They are subjected to ocean currents and suffer fluid-
dynamic effort. The consequence is that the phenomenon as fatigue and wear are 
accelerated, reducing the useful life of equipment and could lead them to collapse. 
Thus, the study of problems involving immersed bodies is motivated by great technological 
challenges, both within the academic and industrial environment. Fluid-structure 
interaction is today one of the crucial problems in various areas of mechanical and civil 
engineering, because of the necessity of extensive structures subjected to fluid-dynamic 
random efforts. Therefore, it is important to appreciate the great importance of the study of 
flow around stationary circular cylinder in order to extrapolate to moving bodies or to set of 
moving bodies. This is a model, used to simulate, for example, a set of risers. We also 
emphasize the importance of such studies, including transition and turbulent flows, in order 
to better approximate the real conditions. 
In the context of fluid mechanics, the study of fluid flows and how they interact with solid 
materials has been of great interest in various fields such as civil and mechanical 
engineering, meteorology and environment. In recent decades, great efforts have been made 
for the development of new numerical methods to analyze the wide range of problems in 
fluid mechanics, as well as improving existing ones. The Computational Fluid Dynamics has 
been considered an interesting tool to simulate various problems of practical interest in 
engineering. The literature shows different computational methods with several techniques 
to solve differential equations aiming to accuracy of results. Different numerical methods 
developed for the study of flow in the presence of immersed bodies are basically divided 
into techniques based on the immersed boundary method, and those based on meshes that 
are able to adapt to the immersed body inside the flow. However, there is no method that 
can be considered absolutely superior to others. The choice of the most appropriate method 
should be made case by case, taking into account the specific characteristics of the focused 
problem. 
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The Immersed Boundary Method (IBM), due to their capability to deal with problems of 
complex and mobile interfaces, becomes attractive, especially in cases involving large 
displacements. In the modeling process of physical problems, the equations that govern the 
physics of the problem appear naturally. These models can range from those involving only 
one differential equation to those involving a system of differential equations, which can be 
fully coupled. However, in most cases, exact solutions can not be obtained and numerical 
methods appear as a tool to solve these problems. The Immersed Boundary method is used 
here with the Virtual Physical Model in order to simulate two-dimensional incompressible 
flows over stationary, rotating and rotationally-oscillating circular cylinders. Different time 
discretization methods are used: first order Euler scheme and the second-order Adams-
Bashforth and Runge-Kutta schemes. The sub-grid Smagorinsky model and a damping 
function are also used. Considering the existence of a mistaken view about the mentioned 
numerical methods, their stability analyses are made in the present work. The results are 
compared with numerical and experimental results obtained from the literature. 

2. Mathematical modeling  

The mathematical model that describes the flow consists of a set of coupled differential 
equations representing the physical phenomenon for which we want the solution. The 
literature has shown that only a fraction of practical problems can be resolved due to the 
complexity of the equations. Thanks to high-performance computers and numerical 
methods, the solution of several problems becomes possible. The formulations of the 
Immersed Boundary Method and Virtual Physical Model are briefly presented. 

2.1 Immersed boundary method  
The Immersed Boundary Method (Peskin, 1977) along with the Virtual Physical Model 

(Lima e Silva et al., 2007) are used to solve two-dimensional, incompressible, isothermal and 

transient flows. It is based on the motion equations plus a force term which model the 

interface. Thus, it becomes necessary to use two formulations: one for the fluid (Eulerian 

fixed mesh) and another for the immersed interface (Lagrangean mesh). These meshes are 

geometrically independent and coupled through the force term. 

2.1.1 Mathematical formulation for the fluid  
The Navier-Stokes equations, Eq. (1), and the continuity equation, Eq. (2), for a Newtonian 
fluid, are presented below using the tensor form: 

 
  1i j ji i

i
j i j j i

u u upu u
+ = + + f

t x ρ x x x x

        
         

, (1) 

 0i

i

u

x





,  (2) 

where   [kg/m3] and   [m2/s] are respectively the specific mass and the kinematic 

viscosity, properties that characterize the fluid. The variables of interest are represented by: 

the velocity components iu  [m/s], the pressure p  [N/m2] and the components of the 

Eulerian force acting on the interface if  [N/m3]. The force term only exists in Eulerian 
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points coincident or close to the Lagrangean mesh, being zero for the remaining points of 

the calculation domain. This term is calculated by distributing the components of the 

Lagrangean interfacial force vector, using a distribution function (Peskin & McQueen, 1994): 

        2
ij k k k

k

D S  f x x x F x x  (3) 

where  xf  [N] is the Eulerian force vector, x  [m] and kx  [m] are respectively the position 

vectors of Eulerian and Lagrangean points, S  [m] is the arc length centered on each 

Lagrangean points,  kF x  [N] is the interfacial force calculated by the IBM and ijD  [m-2] is 

a interpolation/distribution function, which properties are the same of the Gaussian 

function. 

2.1.2 Mathematical formulation for the immersed interface – Virtual Physical Model 
(VPM)  
The VPM allows the calculation of Lagrangean force based on physical interaction of the 
fluid and immersed solid surface in the flow. This model is based on applying the balance of 
momentum quantity over the fluid particles located at the Lagrangean points. The equation 
that determines this force is expressed as: 

               ,
, , , , , ,

pi v

k T
k k k k k k

t
t t t t t p t

t
  
            

a

FF FF

V x
F x V x V x V x V x x   (4) 

where aF  [N] is the acceleration force, iF  [N] is the inertial force, vF  [N] is the viscous force 

and pF  [N] is the pressure force.  

2.2 Turbulence model  
Turbulence is one of the most challenging problems of modern physics and is among the 
most complex and beautiful phenomena in nature. Due to several practical implications for 
many sectors, the number of research related to understanding and controlling these flows 
has increased. The turbulence effects can be modeled and simulated since emprirical 
correlations and diagrams up to modern methodology of numerical simulation. 

2.2.1 Turbulence equations  
It is known that even for flows controled by moderate Reynolds numbers, it is not possible 
to solve directly all frequencies present in a turbulent flow. Reynolds (1894) proposed a 
decomposition process of the Navier-Stokes equations in a mean and floating part in order 
to solve the turbulent flow. The decomposition process of the scales yielded two groups of 
equations for the turbulence, the first being called Reynolds Averaged Navier-Stokes 
equations, and another called the filtered Navier-Stokes equations (Smagorinsky, 1963). 
After applying the filtering and the decomposition process and applying the definitions in 
Eqs. (1) and (2), we obtain the following equation: 

 
  *1i j ji i

ef i
j i j j i

u u upu u
+ = + + + f

t x ρ x x x x

       

         
 (5) 
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 * 2

3
p p k   and ef t= +    (6) 

where t  is the turbulent viscosity. 

2.2.2 Sub-grid modeling and large eddy simulation 
The sub-grid models are suitable for the calculation of turbulent viscosity. The sub-grid 
Smagorinky model used here is based on the assumption that the production of sub-grid 
turbulent stress is equal to the dissipation. The turbulent viscosity is a function of strain rate 
and the length scale and is expressed as: 

  2 2t S ij ijν = C S S  (7) 

where   is the characteristic length, ijS  is the strain rate, sC  is the Smagorinsky constant. 

Large eddy simulation allows us to obtain three-dimensional and transient results using the 

motion equations, as well as to simulate flows at high Reynolds numbers with the use of 

refined meshes. Like any methodology, the sub-grid model has some disadvantages, such as 

adjusting the constant in accordance with the problem, deficiency in modeling phenomena 

involving energy transfer from small scales to larger scales and disability in the calculation 

of viscosity near the walls, which may require the use of wall laws. 

3. Numerical methodology  

It is important to appreciate that numerical analysis of a two-dimensional flow is possible 
since that determine the values of the interest variables at discrete points. The result of a 
discretization process are finite difference equations, which are written for each point in the 
domain that we want to solve. After solving these equations, the approximated solution of 
the problem is found. As the number of grid points becomes large, the solution of 
discretized equations tends to the exact solution of the corresponding differential equation. 

3.1 Fractional step method  
The Fractional Step Method (Chorin, 1968) with displaced meshes for the coupling between 
the pressure and velocity fields is used here. This arrangement allows greater facility on 
discretization, without the need of mean calculus, because the velocity components are 
positioned on the face of control volume. Moreover, this arrangement provides more 
stability in the pressure-velocity coupling. 
As the flow is incompressible, the pressure is no longer a function of specific mass, that is 
constant, ie, is not a function of the thermodynamic pressure of the fluid. The Fractional 
Step Method is a non-iterative method, where, from the force, velocity and pressure fields of 
the previous iteration, we estimate the velocity components fields. With these estimated 
fields, we calculate the pressure correction, through the solution of a linear system, by 
Modified Strongly Implicit Procedure (MSI) (Schneider & Zedan, 1981). The pressure acts as 
a Lagrange multiplier in minimization problems. The importance of the Poisson equation 
for pressure correction is that it makes the connection between the equations of motion and 

continuity. Provides values of p that allow that the values of velocities components, 1nu   

1nv  , obtained from the  respective Navier-Stokes equations, satisfy the mass conservation 

at time 1n  . 
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The spatial discretization is performed using the second order centered finite difference 
scheme and the time discretization with the first order Euler method, Adams-Bashforth and 
Runge-Kutta, both of second order. 

3.2 Time discretization methods  
It is presented, then, a brief description of the time discretization methods used here, 
already making an analogy with the motion equation.  

3.2.1 Euler method  
It is a first-order method for solving transient problems. With this method the time 

derivative iu

t




  can be approximated by:  

  
1n+ n

n n n ni i
i j i i

u u
= f u ,u P + F

Δt





 (8) 

where f  includes advective and diffusive terms of the motion equation. The index n , is 

related to time and Δt  is the time step. This method is easy to implement, but requires the 

use of small time step to ensure the stability of the solution. The terms n
iP  and n

iF  are the 

pressure gradient and force field, respectively in the i  direction. The term u  is an estimate 

of the velocity inherent of the coupling  method used. 

3.2.2 Second order Adams-Bashforth method 
It is a multi-point method, where the velocity fields at the current time is obtained using 
information from two previous time instants. In other words, the advective and diffusive 

terms in n  and 1n   are needed for the calculations in time 1n + . Multipoint methods are 

easy to be implemented and require only an evaluation of the derivatives by time step, 
making them relatively inexpensive. The main disadvantage of these methods is that as they 
require information on previous points, they can not be started by themselves. For this 

purpose, we use the Euler method for initial calculus. For i  component of the estimated 

velocity, this method can be represented by: 

    
1

1 13 1

2 2

n+ n
n n n n n ni i
i j i j i i

u u
= f u ,u f u ,u P + F

Δt
 

 


 (9) 

3.2.3 Second order Runge-Kutta method 

It is a single stage method, ie, to determine 1n+
iu , one needs only the information available 

at the previous time n n
i ju , u . In this method or in the superior orders the function in one or 

more additional points should be calculated. The first step until the middle of interval can 

be regarded as a predictor step, based on the explicit Euler method, which is accompanied 

by a correction to the end of the range. In summary, this method needs of information 

calculated only on the last time. Moreover, it requires the calculation of the function 

 n n
i jf u ,u  twice and thus consumes more time. For the i  component of the estimated 

velocity, this method can be represented by:  
Predictor step: 
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  
1

2

2

n+
n

n n n nii
i j i i

u u
= f u ,u P + FΔt





 (10) 

Corrector step: 

 
1

1 1

2 2
n+ n+n+ n

n ni i
i ii j

u u
= f u ,u P + F

Δt

 
 

 
 
 

    (11) 

4. Problem description  

Stability analysis of the second order spatial centered scheme with the time discretization 
schemes is performed by two-dimensional simulations of incompressible flows around a 

stationary circular cylinder. The rectangular domain is chosen to be d15 x d30 with the 

cylinder located at 5.16  cylinder diameters from the inlet as illustrated in Fig. (1). The time 

step used in all simulations is 0.0001 s. 
 

 

Fig. 1. Schematic illustration of the calculation domain. 

The flow develops from the bottom to top and the boundary conditions for velocity are : in 

the inlet: 0u e V  , in the outlet: 0
u

y y

 
 

 
 and in the lateral boundaries: 

0
u

x x

 
 

 
. For the pressure, the boundary conditions used are:  in the inlet: 0

p

y





, in the 

outlet and in the lateral boundaries: 0p  . 

d5.16

d30

d15

d

d5.7
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4.1 Analyses of the grid refinement  

For these simulations three grids are used, which are shown in the Tab. (1), along with the 

three time discretization schemes. It is observed through the mean values of drag 

coefficients (Table 2), the similarity of results when different time discretization methods 

were considered and the same grid refinement. Considering the various refinements, it is 

noted that with the coarser grid the destabilization of the flow occurs more slowly. With the 

grid refinement, which filters the instabilities of high frequency, the transition of the flow is 

faster. It is also observed that with the grid refinement from the grid 2 to grid 3, the mean 

values of drag coefficients are approximately the same, which leads to the independence of 

the results for finer mesh than 125x250. The Sthouhal number, obtained by Fast Fourier 

Transform (FFT) of the lift coefficient signal is also shown in Tab. (2) for Reynolds number 

100. 

 

Grid Points number Method 

1 62x124 
Euler 

Adams-Bashforth 

Runge-Kutta (R-K) 

2 125x250 

3 250x500 

Table 1. Grids used for the three time discretization schemes, Re=100. 

 

Re=100 

Grid 1 2 3 

Method Adams Euler R-K Adams Euler R-K Adams Euler R-K 

Cd 1.41 1.41 1.41 1.38 1.39 1.38 1.38 1.38 1.38 

St 0.12 0.12 0.12 0.15 0.15 0.15 0.15 0.16 0.16 

Table 2. Mean values of drag coefficients and Strouhal number for the three time 
discretization methods and different grids. 

Note that the mean values of the drag coefficient decreases with grid refinement for the 

three methods. No significant difference is observed when passing from the intermediate to 

the most refined grid, as mentioned previously. These results are also visualized through 

the time evolution of the drag coefficient, Fig. (2), which presents the different grid 

refinement for each of the time discretization methods. 

4.2 Stability of the time discretization schemes increasing the Reynolds number  
For this analysis, simulations are carried out with the different time discretization methods 

mentioned and Reynolds numbers of 100, 300 and 1,000. For these simulations the grid is 

composed by 125x250 points, once, as analysed, the grid refinement did not alter 

significantly the inherent characteristics of the flow as the drag coefficient. Moreover, the 

cost of grid 3 is greater. 
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          (a)                    (b) 
 

 
(c) 

Fig. 2. Time evolution of the drag coefficient for the three grid refinement, at Re=100. Euler 
(a), Adams-Bashforth (b) and Runge-Kutta (c). 

For Re=100, it is noted that the results are identical both qualitatively and quantitatively for 

the three time discretization methods (Fig. (2)). Again it is illustrated that the transient 

regime, with instabilities, appears later for the coarse grid (grid 1). For this grid, the start 

time of the instabilities formation is 150, while for the grids 2 and 3, this time is 75. Another 

interesting fact is that the drag coefficient oscillations is more pronounced for grids 2 and 3. 

This is due to the fact that the vortices are formed closer to the cylinder. 

Increasing the Reynolds number from 100 to 300, it is found that the flow becomes more 

unstable, appearing instabilities and the drag coefficient decreases. Such instabilities can be 

related to the centered scheme of spatial discretization, where for this Reynolds number, the 

nonlinear effects become important. Figure 3 shows the time evolution of the drag and lift 

coefficients for the Euler, Adams-Bashforth and Runge-Kutta methods. There is a small 

difference in the results obtained with Euler's method when compared with the others two. 

When observe the lift coefficient in Fig. (3b) we see that the oscillations amplitude for Euler's 

method is larger than the amplitude of the signal for the others methods. This shows that 
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the coupling of the spatial centered scheme with a second order temporal scheme makes the 

method more stable (Ferziger, 2002).  

With further increase of Reynolds number for 1,000, there is an increase in the numerical 

instabilities in the three methods, being more pronounced in the Euler and Runge-Kutta 

methods. These instabilities were already expected once a turbulence model is not being 

used. Being the spatial discretization scheme, centered and without numerical diffusion, it is 

natural that the calculation becomes unstable, leading to divergence as seen through the 

time evolution of the dynamic coefficients in Fig. (4). 
 

      
            (a)      (b) 

Fig. 3. Time evolution of the drag (Cd) (a) and lift (Cl) (b) coefficients at Re=300, for the three 
time discretization methods. 

 

        
           (a)                    (b) 

Fig. 4. Time evolution of the drag (Cd ) (a) and lift (Cl) (b) coefficients, at Re=1,000, for the 
three time discretization methods. 

It is important to appreciate that for a high Reynolds number the turbulence model is 
needed to ensure that the kinetic energy of turbulence is carried by the wave number or 
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cutoff frequency. The apparent convergence given by the Adams-Bashforth method can be 
misleading as will be seen in the item 4.3. It is noteworthy that the spatial centered schemes 
have no numerical viscosity, as in the case of upwind schemes, which are stable without 
turbulence model, even at high Reynolds numbers. The following are presented the 
simulations results with sub-grid Smagorinsky modeling, needed to ensure the stability of 
the methodology as previously commented. 

4.3 Simulations with the sub-grid Smagorinsky modeling  
The motion equations are sufficient to model flows in any regime and for any value of 

Reynolds number. However, as the Reynolds number increases the energy spectrum 

associated with the flow becomes wider, making it necessary the use of grid extremely fine, 

which implies high computational costs. Thus, with the use of coarse grids, the grid filtering 

process will eliminate all high frequencies providing only the low frequencies, hence the 

restriction on its use, without additional turbulence modeling. It is observed in Fig. (5) that 

even for the most stable method, Adams-Bashforth, for high Reynolds number (Re=10,000) 

the calculation diverges without turbulence modeling. 

 

        
          (a)       (b) 

Fig. 5. Time evolution of the drag coefficient (Cd) (a) and of the lift coefficient (Cl) (b); both 
without and with turbulence model, Re=10,000. 

4.4 Simulations with damping function  
Figure 6 shows the flow visualization, through the instantaneous vorticity fields, for the grid 

of 250x500 points, using the damping function in the outlet of the domain. It is noted for the 

case without damping function, Fig. (6a) that the wake vortex presents an unusual behavior 

for two-dimensional flows, which can lead to divergence of the calculations. With the 

damping function, Fig. (6b), the calculation becomes more stable even at greater times of 

simulations. The damping function aims to remove the vortices in the outlet of the 

calculation domain, thus enabling the application of the boundary condition of the 

developed flow. This function eliminates the input of mass at the domain outlet that occur 

due to the vortices rotation. As verified in the presented results the second order spatial 

centered scheme with the second order time discretization scheme may be perfectly used for 
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simulations at high Reynolds number since the turbulence modeling and the damping 

function is also applied to ensure the stability of the methodology. 

 

  
(a)                         (b) 

Fig. 6. Instantaneous vorticity fields for Re=10,000, Adams-Bashforth; without damping 
function (a), with damping function (b). 

5. Applications of the immersed boundary methodology  

Firstly, are presented, simulations‘results of flow over a pair of cylinders of the same 
diameter, following by the results of rotating and rotationally-oscillating cylinder. 

5.1 Flow around two circular cylinders in tandem configuration 
One of the main applications of this type of study is to obtain a better understanding of the 
flow around a set of risers, which is subject to shear flows by ocean currents. The flow 
interference over bluff bodies is responsible for changes in characteristics of the fluid load 
that acts on immersed bodies. Consequently, the study of cylinders pair even in two-
dimensional simulations has received considerable attention both from the standpoint of 
academic and industrial fields. In addition, flow over circular cylinders involve different 
fundamentals dynamic phenomena, such as boundary layer separation, shear layer 
development and vortex dynamic (Akbari & Price, 2005). 
The configurations with a cylinders pair in tandem and side by side are the most extensively 
discussed in the literature (Sumner et al., 1999; Deng et al., 2006; Silva et al., 2009), although 
the form more general is the staggered configuration ( Sumner et al., 2008; Sumner et al., 
2005; Silva et al., 2009). According to the literature, there are various interference regimes, 
which were based on flow visualization in experiments. The wake behavior of two cylinders 
can be classified into groups according to the pitch ratio between the cylinders centers by 
diameter (P/D) (Sumner et al., 2005).  
Here, the two cylinders have equal diameters d and the distance center to center of the 
cylinders, is called L. The cylinder A is located upstream and cylinder B is located 
downstream of the inlet. In all simulated cases, the two cylinders are disposed such that the 
minimum distance from the surface of each cylinder to the end of the uniform grid region is 
1.25d in the x direction and 2d in the y direction as shown in Fig. (7). The non-uniform grid 
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region is composed by 600x300 points, the Reynolds number equal to 39,500 and the pitch 
ratio equal to L/D=2. 
 

 

Fig. 7. Illustrative scheme of the distance from the cylinder surface to the uniform region 
boundaries. 

5.1.1 Instantaneous vorticity fields  
Figure 8 shows the flow visualization through the instantaneous vorticity field after the flow 
has reached steady state. It is noted that the shear layers originated from the surface of the 
upstream cylinder surrounding the downstream cylinder, forming a single wake behind the 
cylinder B. It is also noted, that the vortex wake oscillates around the symmetry line of the 
domain. The interaction between the two layers occurs only behind the downstream 
cylinder, which is within the wake of the upstream cylinder. For this case, the '2S' vortex 
shedding mode compose the wake. It is important to appreciate that for this pitch ratio and 
geometrical configuration, the two cylinders behave as a single body.  
According to Naudascher & Rockwell (1994) no detectable vortex shedding behind the 
upstream cylinder occur, for L/D<3.8. Also according to these authors, as the spacing 
between the cylinders increases, vortex shedding occur in the upstream cylinder with a 
frequency that gradually approaches to the frequency for a stationary cylinder. Deng et al. 
(2006), in they work at low Reynolds number (Re=220), concluded that for two-dimensional 
simulations, each cylinder will produce a vortex wake only for L/D  4.0, with no vortex 
shedding between the cylinders for L/D  3.5. They also affirmed that even in three-
dimensional flows, for this configuration and L/D  3.5, the flow is equal to the two-
dimensional. 
 

 

Fig. 8. Instantaneous vorticity field for L/D=2 and Re=39,500.  

d30  

d50

d2

d25.1  
 

cylinder A 

cylinder B 
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Figure (9a) shows the time evolution of the drag coefficient of the upstream (A) and 
downstream (B) cylinders and Fig. (9b) shows the time evolution of the lift coefficients. It is 
verified that the drag coefficient on the cylinder B is considerably smaller than the cylinder 
A, with mean close to zero. This can be understood by the fact that the cylinder B is inside of 
the upstream cylinder wake. The fluctuations of the lift coefficient of the two cylinders have 
zero mean, as shown in Fig. (9b). The amplitude obtained for the cylinder B is 
approximately seven times greater than the amplitude of cylinder A. The absence of vortices 
behind the upstream cylinder minimizes the lift fluctuations. Note also that the both 
fluctuations are in phase, Fig. (9b). This is consistent, once the vortices that are formed and 
transported induce forces on both cylinders simultaneously.  
 

      
             (a)                                                                      (b) 

Fig. 9. Time evolution of the dynamic coefficients for Re=39,500 and L/D=2: a) drag 
coefficients and b) lift coefficients. 

5.2 Flow around a rotating cylinder  
The flow dynamics around a rotating cylinder is different from that observed for a 
stationary cylinder. The rotation of a cylinder in a uniform viscous flow modifies the 
vortices configuration and probably has an effect on flow-induced oscillations. As the 
cylinder rotates the flow is accelerated in one side and decelerated in the other side. This can 
be attributed to viscous effects injected by the cylinder on the flow. Therefore, the pressure 
on the accelerated side becomes smaller than the pressure at the decelerated side resulting 
on a lift force, transverse to the flow. In recent years more attention has been given to 
control the wake formed behind the cylinder, especially in order to suppress the vortices 
with the use of active or passive controls. The rotating motion of an immersed body can 
suppress partially or totally the vortex shedding process, so that the wake separation on one 
side of the body, be displaced from the axis of vertical symmetry. 

5.2.1 Comparison of results  
Aiming to compare the present results with the literature, simulations were carried out at 
low Reynolds numbers, which are 60, 100 and 200. For this simulations, the grid is 
composed by 200x125 points, refined over the cylinder (twenty grids per diameter) to ensure 
good accuracy in the results. The rotating moviment is imposed clockwise around its axis 
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and is achieved by the imposition of the velocity components in each Lagrangean point. 
Figure 10 shows the amplitude of the drag and lift coefficients in function of the specific 

rotation  (the ratio of the tangential velocity and free-stream velocity) compared with the 
numerical results of Kang et al. (1999), for Re=60 and Re=100.  
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             (a)                                                                       (b) 

Fig. 10. Fluctuations amplitude of the dynamic coefficients: a) drag and b) lift. Full symbols: 
present work and empty symbols: Kang et al. (1999). 

Note that the drag coefficient amplitude, Fig. (10a) increases until given  and then 
decreases, reaching a near-zero amplitude. Note also that the amplitudes increase with the 
Reynolds number and the rotation in which the amplitude decreases is different for each 

Reynolds number. For Re=60, the amplitude of the drag is reduced for >1.0 and for Re=100 

and Re=200, the reduction occur for >1.5. On the other hand, the amplitude values of the 

lift coefficient, Fig. (10b), shows small variations for   1.0, for all Reynolds numbers and 
then decreases, tending to zero. As observed, there was good agreement between the 
present results with those of Kang et al. (1999).  

5.3 Flow over a rotationally-oscillating circular cylinder  
For the stationary cylinder at low Reynolds numbers, it is known that the vortex wake is 
aligned and symmetrical about the central axis of the flow. The behavior is not verified 

when the cylinder is subjected to rotationally-oscillating moviment around its own axis. The 
mutual interaction between cylinder moviment and the adjacent fluid modifies the pattern 
wake of the flow through the acceleration and deceleration of the flow around the cylinder. 

Thus, there is a transition between different vortex shedding modes as the relationship 
between oscillation frequency and the vortex shedding frequency for the stationary cylinder 

varies for the same amplitude A . Commonly, some authors present two different flow 
regimes, being the no lock-in regime and the lock-in regime (Cheng et al. 2001a, 2001b). 

According to Löhner & Tuszynski (1998), the flow around a rotationally-oscillating cylinder 
is a forced oscillator form, or a nonlinear system, that in some cases, can become chaotic. 
Here, the rotationally-oscillating cylinder is started impulsively from rest and the tangential 

velocity on the cylinder is given by the expression: 

 sin(2 )tg cV R A f t R   , (12) 
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where  is the angular velocity, A is the oscillation amplitude, R is the cylinder radius, fc is 
the oscillation or imposed frequency and t is the physical time. The simulations were 
performed for Reynolds number equal to 1,000, the non-uniform grid is composed by 
400x125 points and the turbulence model and damping function in the outlet of the domain 
were applied. 

5.3.1 Different vortex shedding modes  

In Fig. (11) the flow visualizations are presented, through the instantaneous vorticity fields 

for the dimensionless time equal to 200, at different amplitude values and frequency ratios. 

Figure (11a) corresponds to the stationary cylinder. Figures (11b) and (11c) correspond to 

A=1, for / 1.05c of f   and / 2.5c of f   respectively. Figures (11d) and (11e) correspond to 

A=2, for / 0.5c of f   and / 2.5c of f   respectively. Figures (11f), (11g) and (11h) correspond 

to A=3, for / 0.5c of f  , / 2.5c of f   and / 6.0c of f  respectively. It is observed that there 

are different vortex shedding modes, when the same amplitude and different frequency 

ratios are considered.  

In Fig. (11a), corresponding to the stationary cylinder, as already mentioned, there is the 

classical Von Kárman Street, represented by the classical '2S' vortex shedding mode. This 

mode indicates the generation of a positive vortex in one side of the cylinder and a negative 

vortex on the other side, at each oscillation cycle, forming a single vortex wake with 

displaced vortices around the symmetry line of the flow. In Fig. (11b), / 1.05c of f  , the 

vortex wake is similar to pattern wake ('2S' mode), however, the vortices are presented more 

rounded and with smaller longitudinal and transversal spacing between them when 

compared with Fig. (11a). Increasing the frequency ratio to / 2.5c of f   and keeping the 

amplitude 1A  , Fig. (11c), there is a new vortex shedding mode called 'P+S'. This mode 

corresponds to a pair of vortices and single vortex composing the wake. Pairs of vortices 

having opposite signs are located at the inferior side of the central line of the flow, while the 

single vortices are released at the superior side of the cylinder. 

For / 0.5c of f   and A=2 it is also observed a new vortex shedding mode called '2P ', which 

corresponds to pairs of vortices of opposite signs along the wake. Keeping the same 

oscillation amplitude and increasing the frequency ratio to / 2.5c of f  , Fig. (11e), it is 

noted the same vortex shedding mode of the previous case, Fig (11d). Interesting to note, in 

this case, that the pairs are disposed symmetrically about the centerline of the flow forming 

a cone-shaped wake. 

Increasing the amplitude to A=3, and taking / 0.5c of f   again, a new vortex shedding 

mode is obtained, called '2C ', as quoted in Williamson & Jauvtis (2004). It is noteworthy that 

the '2C' mode is not taken by other authors for the case of circular cylinder in rotationally-

oscillating moviment. According to Williamson & Jauvtis (2004) this mode was obtained for 

pivoted cylinders. For / 2.5c of f  , Fig. (11g), there is a new standard of vortex emission, in 

which the double vortex wake near the cylinder, composed by vortices of the same sign in 

each row, after a given distance away from the cylinder are coupled to form a single wake. 

The double wake length decreases with increasing the frequency ratio. In Fig. (11h), 

corresponding to / 6.0c of f   the instability caused by the cylinder oscillation is limited to a 

region near the cylinder, while far from the immersed body, the vortices reorient themselves 

to form the stable Von Kármán Street. Occurs, therefore, a vortex-vortex interaction of the 
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same sign near the cylinder, resulting in large scale vortices, whose frequencies have values 

close to the vortex shedding frequency of the stationary cylinder (0.23). The return to the '2S' 

mode is observed for high /c of f  in all simulated amplitudes. 
 

  
(a)                                         (b) 

 

  
(c)                                         (d) 

 

  
(e)                                         (f) 

 

  
(g)                                         (h) 

Fig. 11. Instantaneous vorticity fields for Re=1,000: a) stationary cylinder; b) and c) A=1 and 

/ 1.05c of f   and / 2.5c of f   respectively; d) and e) A=2 and / 0.5c of f   and / 2.5c of f   

respectively and f), g) and h) A=3 and / 0.5c of f  , / 2.5c of f   and / 6.0c of f   

respectively. 

5.3.2 Vortex shedding frequency 
Figure (12) shows the power spectra ( CE


) obtained by Fast Fourier Transform (FFT) of the 

lift coefficients signals. The frequency peak more energized are called by 1St  and 2St  where 

1St  will be considered equal to the dimensionless frequency corresponding to the cylinder 

oscillation /c cSt f D U . When the power spectrum contains only one promiment peak it is 
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Fig. 12. Power Spectra for Re=1,000: a) stationary cylinder; b) and c) A=1 and / 1.05c of f   

and / 2.5c of f   respectively; d) and e) A=2 and / 0.5c of f   and / 2.5c of f   respectively 

and f) g) and h) A=3 and / 0.5c of f  , / 2.5c of f   and / 4.0c of f   respectively. 
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called ressonance phenomenon or lock-in, ie, the cylinder is oscillating with a frequency 

equal to the vortex shedding frequency. It is worth remembering that the energy peaks 

corresponding to the harmonics are not considered here. 

For the stationary cylinder case, Fig. (12a), the power spectrum shows a single energy peak, 

corresponding to the Strouhal number equal to 0.23. For A=1 and / 1.05c of f   given in Fig. 

(12b), only one prominent peak is observed, corresponding to the lock-in regime. It is 

important to observe that the lower limit of the lock-in regime for this amplitude, starts for 

the studied cases, in / 0.6c of f  . The ratio / 1.05c of f   correspond to the upper limit of 

this regime. Due to the large amount of data regarding all amplitudes and frequency ratios 

studied, only few results are reported here. With the increase of the frequency ratio and 

keeping the oscillation amplitude, Fig. (12c), there is more than one frequency peak in the 

spectrum, which indicates that the lock-in regime no longer exists. Interesting to note, for 

/ 2.5c of f   ('P+S' mode, as Fig. (11c)), that for this vortex shedding mode, the frequency 

peak corresponding to 1St  has low energy level.  

Increasing the amplitude for A=2 the lock-in regime range is greater, which is given by 

0.5 / 1.05c of f  . Figure (12d), / 0.5c of f  , represents the lower limit of the lock-in 

regime for this amplitude. Note a considerable increase in energy level with the amplitude. 

For / 2.5c of f  , Fig. (12e), out of lock-in regime, it is noted a great reduction in the energy 

level in comparison with Fig. (12d), inside the lock-in regime. 
Considering A=3 and / 0.5c of f   in Fig. (12f), there is only one prominent peak, which 

indicates that this frequency ratio is within the lock-in regime. Comparing Figs. (12d) and 
(12f), corresponding to the same frequency ratio and different oscillation amplitude, there is 
an increase in energy level for a greater amplitude. It is noteworthy that the range of lock-in 
regime, for this amplitude is greater than for A=2, being 0.2 / 2.5c of f  , as Fig. (12g) 

(upper limit of the regime). It is Interesting to note that, within the lock-in regime, the 
increase of the frequency ratio from / 0.5c of f   to / 2.5c of f   leads to a great reduction in 

energy level, as shown in Figs. (12f) and (12g). This reduction is associated with different 
vortex shedding modes, as shown in the Figs. (11f) and (11g). For / 4.0c of f   and A=3, Fig. 

(12h), one observes two frequency peaks, which indicates that, the lock-in regime no longer 
exists. It is verified for all considered amplitudes that as the frequency ratio is increased, the 
frequency called 2St  gradually recovers the frequency corresponding to the stationay 

cylinder, due to the fact that for high oscillation frequencies, there is no more 
synchronization between the oscillating cylinder and vortex shedding downstream of it. 
Thus, the vortices tend to reorient themselves to form a classical von Kárman Street and the 
frequencies match up again. 

6. Conclusion  

One of the goals that motivated the development of this work was to demonstrate through 
analysis of the important parameters such as dynamic coefficients, obtained through two-
dimensional simulations of incompressible flows, that the second order centered spatial 
schemes can perfectly provide accurate results when used toghether the second order time 
discretization scheme. Another motivation was to continue the development of the 
Immersed Boundary method with the Virtual Physical model for further application in 
problems of interst both academic and industrial. 
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Firstly, simulations were performed with stationary cylinder, considering different 

Reynolds numbers and time discretization schemes. Results such as vorticity, time histories 

and fluctuations amplitude of dynamic coefficients and the Strouhal number are obtained. 

The concomitant use of second order temporal schemes with the spatial centered scheme is 

crucial for the stability of the methodology. The Adams-Bashforth temporal scheme 

presented more stable than the second order Runge-Kutta scheme. As the Reynolds number 

is increased the methodology showed to be unstable for all second-order temporal 

discretization schemes. This result is expected once the centered scheme has no numerical 

diffusion. Thus, it is concluded that for high Reynolds number, the use of turbulence 

modeling for the energy transfer process between the largest and smallest scales of 

turbulence is needed. It is important to appreciate that without the modeling and numerical 

diffusion the kinetic energy of the physical instabilities accumulates on the cutoff frequency 

and the simulation diverges. The cutoff frequency is determined by the mesh discretization. 

It is known that the use of developed flow boundary condition at the outlet of the domain is 

common in the literature. However when there are physical instabilities, which must leave 

the domain, there may be problems of numerical stability, especially when using centered 

spatial schemes. This is due to the fact that the physical instabilities carry spurious 

information from the outside of the domain to inside. The result is also the divergence of the 

simulations. To solve this problem the use of a damping function is essential to ensure 

stability for higher values of Reynolds number.  

Aiming to illustrate the applicability of the Immersed Boundary method used togheter the 

second order spatial centered scheme and second order temporal discretization scheme, 

simulations were carried out with a circular cylinder pairs, rotating cylinder and 

rotationally-oscillating cylinder. For the rotating cylinder case, the results showed good 

agreement with literature data. It was found that the rotation has greater influence on the 

amplitude of the drag coefficient than on the amplitude of the lift coefficient. It's worth 

noting that with increasing rotation the amplitude of the dynamic coefficients tends to null, 

as expected, once the vortex shedding process decreases. 

For simulations with rotationally oscillating cylinder is analyzed the influence of amplitude 

and frequency ratio in the vortex shedding modes, as well as in the vortex shedding 

frequency. It is observed different vortex shedding modes when fixed the oscillation 

amplitude and varies the frequency ratios. It is important to appreciate the 2C mode 

obtained in this study once this mode is not found in the literature for rotatinally-oscillating 

cylinder and it is worth mentioning that, according to Williamson & Jauvtis (2004) the 2C 

mode is obtained for pivoted cylinder. It is also obtained for the amplitude and frequency 

ratios considered the lock-in regime, whose range increases as the oscillation amplitude 

increases. 
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