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1. Introduction 

Typhoon Morakot struck southern Taiwan in the summer of 2009, causing the region’s most 
severe flooding since the 1950s. In the early morning of August 9 (local time), a rainfall-
triggered landslide and debris-flow extinguished the township of Siaolin Village, 
Kaohsiung. The interviews of many survived villagers could shed light on some parts of the 
story about the landslide catastrophe (Lee et al., 2009). Scientifically, a simulation of the 
landslide/debris-flow can be used to examine its complex kinematic characteristics. A 
landslide/debris-flow simulation is conventionally performed using constrained digital 
terrain models, field geological mappings of channel cross-sections or laboratory 
measurements of slope material properties. Here, we employ seismological and near-surface 
magnetic data in a novel way to validate and reinforce our simulation of the catastrophic 
Siaolin debris avalanche. 
Siaolin is identified from a high-resolution aerial photograph taken before Typhoon 
Morakot (Figure 1). Changes in elevation before and after Typhoon Morakot (Figure 1) were 
derived from two digital terrain models (DTMs) with a precision of five meters by the 
Agriculture and Forestry Aerial Survey Institute (AFASI) of Taiwan. Based on the DTMs 
before and after Typhoon Morakot, the major landslide body (cool colors in Figure 1) had an 
extent of 57 hectares, and the volume of the landslide was about 23.87 million m3. According 
to extensive field investigation, the sliding block was mainly composed of Pliocene shale 
and Quaternary colluvium. The sliding surface may have been located along the interface 
between the fresh and weathered Pliocene shale. The volumes of the deposits (warm colors 
in Figure 1) on the unnamed creek and the west bank of the Cishan River were estimated to 
have loose-measure volumes of 10.91 and 4.53 million m3, respectively. Most of the deposits 
laid down in the Cishan River, which had dammed the river for a short time after the debris 
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avalanche, were washed away. The deposits that were washed away had an estimated 
volume of 10.83 million m3, assuming that the loose-measure volume of the sliding body 
yielded an expansion of 10%. Consequently, the total bulk of the natural landslide dam (i.e., 
the sum of the washed-away materials and the deposits left on the west bank of the Cishan 
River) was 15.36 million m3. 

2. Frictional experiments of the sliding materials 

Frictional properties of sliding surfaces at low to high slip rates are crucial for conducting 
numerical simulations of landsides/debris-flows. Recently, researchers have utilized the 
rotary-shear high-velocity friction apparatus to measure the frictional coefficients of the 
sliding surfaces of landside materials under common conditions present in landslide motion 
(Mizoguchi et al., 2007; Ferri et al., 2009; Miyamoto et al., 2009; Yano et al., 2009; Togo et al., 
2009). The high-velocity friction apparatus and the experimental procedures we utilized in 
this study are described in papers by Mizoguchi et al. (2007) and Togo et al. (2009). 
 

 

Fig. 1. Aerial photo before the catastrophic Siaolin landslide superposed by the elevation 
differences between two versions of DTM (before and after Typhoon Morakot) from AFASI. 
Cool colors represent the sliding mass while warm colors represent the deposits. The yellow 
and red dashed-line rectangles indicate the areas shown in Figure 3 and in Figure 6, 
respectively. 

Shale and colluvium in the Siaolin area were carefully sampled. The sampling locations are 
indicated in Figure 1. The tested samples were sustained under a normal stress of around 1 
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MPa, which accurately represents the in-situ normal stress for these sliding surfaces. For the 
colluvium samples, the initial water content was kept equal to the natural water content of 
the colluvium collected in the field (~20%). For the wet shale samples, we mixed 0.8 g of 
shale powder with 0.2 g of pure water, corresponding again to an initial water content of 
20%. A wide velocity spectrum from 0.01 through 1.3 m/s, covering the range of likely 
sliding velocities, was adopted.  
Figure 2A shows the frictional behavior of the wet colluvium at different slip rates. Except at 
0.01 m/s showing almost constant friction coefficient of 0.3, friction usually decreased with 
shear displacement after its peak was reached, and the residual friction fell in the range of 
0.05 to 0.2. The ‘V-shaped’ friction curve, i.e., slip weakening then slip hardening, observed 
in some experiments at 0.7 and 1.3 m/s may be due to the fluid pressure buildup followed 
by the fluid escape from the slip zone.  
Figure 2B displays the frictional behavior for the wet shale samples at three different slip 
rates. All showed that the friction decreased with shear displacement from the peak value of 
0.2 - 0.3 to its residual value of 0.15. Again, the friction at 1.3 m/s showed the ‘V-shaped’ 
behavior at displacement of 30 - 40 m. This indicates the dried shale gouge, after the release 
of fluid pressure, may have quite low frictional strength at such a high slip rate of 1.3 m/s.  
In both cases of colluvium and shale, the residual friction coefficients are mostly around 0.1 - 
0.2. The experimental results thus suggest that a frictional coefficient of around 0.2 is a 
reasonable estimate for the relatively high-velocity sliding regime before the moving block 
collapsed and transformed itself into a granular flow. Although the frictional coefficient of a 
granular flow is difficult to determine experimentally, an equivalent frictional coefficient of 
~0.2 also falls within the range between 0.1 and 0.2 inferred from theoretical calculations 
(Okura et al., 2000). 

3. Simulation of Siaolin landslide 

The apparent friction coefficients determined in the laboratory tests are helpful in the 
applications of continuum landslide models because they can be directly associated with the 
friction force. In the present study, we use a two-dimensional shallow-water model 
extended from the paper of Tai and Kuo (2008) to simulate the Siaolin landslide. The effects 
of the general topography on the landslide flow are brought into account. The flow is 
simplified as an incompressible and inviscid fluid with a basal Coulomb friction force. The 
sole rheological parameter, the friction coefficient, is assumed to be a constant. Though with 
such simplifications, this type of models has been successively validated to be able to 
reproduce experimental and natural granular flows (Gray et al. 2003; Kuo et al. 2009). 
In addition to be constrained by the frictional experimental results, the Coulomb friction 
coefficient in the simulation is further referenced to a universal scaling law (Staron and 
Lajeunesse, 2009) and reconfirmed by an iterative optimization scheme. Inspecting extensive 
practical landslide data and discrete element simulations, the friction coefficient is found to 
follow a simple geometrical relation, the universal scaling law, which is inversely 
proportional to the one-third power of the landslide volume (Staron and Lajeunesse, 2009). 
Based on the friction angle 6o found in the Tsaoling landslide with a volume 0.126 km3 (Kuo 
et al., 2009), we estimate the friction angle for the Siaolin landslide (about 1/6 in volume) is 
about 11o according to the geometrical scaling relation. This value is well constrained in the 
range suggested by the aforementioned frictional tests (assuming the friction coefficients 
asymptote to constant values). The initial volume is taken from the DTMs without a 
presumed volume dilation. The major slid mass on the east side of the Cishan River is 
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released from the rest at t = 0 (Figure 1). The computation domain 3,710×2,220 m2 is 
discretized into a 10×10 m2 grid mesh and the simulation time is 180 seconds. With the  
 

 

Fig. 2. Frictional coefficients of (A) colluvium and (B) shale powder sustained by 
accumulative shear displacement under different shearing velocities. Note that we have 
used different horizontal axes to indicate different conditions of shearing velocities. 
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best-fit algorithm to minimize the difference between the simulation and the field 
measurement, it is confirmed that the optimal value of the friction coefficient is 11.5o, with 
just a minute offset from the straightforward estimation. Fuller theoretical and numerical 
details of the simulation have been reported in a designated paper (Kuo et al., 2011). 
Two snapshots at t = 32 and t = 60 seconds are shown in Figures 3A and 3B, respectively. 

These times correspond to when the landslide flow reached the 590 Height (cf. Figure 1) 

and the west bank of the Cishan River. Upon hitting the 590 Height, the flow split into 

two sliding courses (Figure 3A). The main stream was diverted to flow along the valley of 

the unnamed creek, and the second flow moved through the southern part of the 590 

Height into the Siaolin Village. The simulation shows that when the flow hit the west 

bank of the Cishan River, a portion of the volume of debris overflowed from the guarding 

northeastern ridge into the Siaolin Village about 60 seconds after the initiation of the 

landslide (Figure 3B). The velocity of the landslide’s front reached a magnitude of about 

50 m/s, and the duration of the landslide was about 110 seconds. The simulated deposit 

volume (Figure 3C) in the Cishan River was about 21.1 million m3; this formed a dam that 

was subsequently flushed away when it was breached about 30 minutes later. An 

animation of the whole process of the Siaolin landslide can be found in the online 

supplementary material. 

 

 

Fig. 3. Snapshots of the Siaolin debris avalanche. (A) Simulated sliding mass hitting the 590 

Height (benchmarked with a black line AA’) 32 seconds after landslide initiation and (B) 

entering the Cishan River channel (benchmarked with a black line BB’) at 60 seconds, hitting 

the river bed and bank. Arrows indicate the flow velocities. (C) Final deposition depths due 

to the landslide. Note that a landslide dam formed along the Cishan River channel soon 

after the landslide. 
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4. Geophysical data validating the landslide simulation 

The scenario replayed in the simulation agrees with two aspects of the data obtained from 
seismographs and a near-surface magnetic survey. First, several broadband TCWBSN 
(Taiwan Central Weather Bureau Seismic Network) seismographs recorded ground 
motions, especially Rayleigh waves, generated by the Siaolin landslide. We used the arrival 
times of the 25-s Rayleigh waves recorded at 8 stations to locate the original position of the 
landslide. A half-space model with 3.75 km/sec of S wave and an inversion algorithm (Stein 
and Wysession, 2003) were adopted for the determination of the landslide location. 
Estimated from the Rayleigh-wave calculation is the landslide location (Figure 4), together 
with its occurrence time of 6:16 in the moring. 
 

 

Fig. 4. (A) Observed (blue) and synthetic (red) Rayleigh waves recorded at TCWBSN Station 
SCZB. (B) Source time function of three sub-events used for modeling the Rayleigh waves in 
(A). (C) Simulated debris flux past the two benchmarks AA’ (blue) and BB’ (green) in the 

Siaolin area (Figure 3). (D) Geographic locations of landslide (23.2637N, 120.6267E; located 

by means of seismic recordings) and of Siaolin Village (23.1625N, 120.6444E) marked by a 
star and a triangle, respectively. Also shown are two seismograms observed at Stations 
SCZB and YHNB (squares). 
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We note that at least three impact sub-events (marked by the arrows in Figures 4A and 4D) 
during the landslide can be clearly identified by the Rayleigh waves recorded, for example, 
at the distant Station YHNB. The seismogram recorded at Station SCZB (blue line in Figure 
4A) also shows the visible sub-events during the landslide. Having the waveforms as 
recorded by TCWBSN, we simulated the waveforms of Rayleigh waves at a frequency band 
of 0.033-0.05 Hz. The focal mechanism of a horizontal thrust faulting, i.e. an equivalent 
single-force representation of shallow landslide, was used in the waveform modeling 
(Dahlen, 1993). The velocity structure is again a simple half-space model with 6.5 km/sec of 
P wave, 3.75 km/sec of S wave and 2.8 g/cm3 of density. The program of synthetic 
waveform of surface wave was developed by Wang (1981). Also, to avoid the interferences 
from the velocity structure and the rupture directivity of source, we simulated the 
waveforms at the closer Station SCZB where is located to the south of the landslide. Three 
parameters in the forward modeling of the occurrence time, duration and moment for each 
sub-event were fitted to ensure that the synthetic waveform (red line in Figure 4A) matches 
the observed one. 
Three sub-events thus obtained in the modeling can fit well the waveform observed at 

Station SCZB indeed. Seismic moments for these three sub-events are 6.0, 1.4 and 3.0 1016 

Nm, respectively (Figure 4B). This calculation shows that the second and third sub-events 

occurred 34 and 55 seconds, respectively, after the occurrence of the first sub-event. If we 

assume that the first sub-event represents the landslide’s initiation, these two moments are 

quite coincident to the above-mentioned moments when the landslide flow reached the 590 

Height and the channel of the Cishan River. After calculating the debris fluxes at two 

benchmarks near the 590 Height (AA’ in Figure 3A) and the Cishan River (BB’ in Figure 3B), 

we find that the large impacts to the 590 Height (blue line in Figure 4C) and the Cishan 

River (green line in Figure 4C) occurred around 40 and 60 seconds after the landslide’s 

initiation, respectively. The waveforms recorded at Station SCZB are thus consistent with 

the kinematics resulting from the simulation of the Siaolin landslide event. 
In addition, the results of the near-surface magnetic survey (Figure 5) provide another 
confirmation of the landslide simulation regarding the flow direction of the debris. High-
resolution near-surface magnetic data covering the main township of Siaolin Village were 
obtained in October. The track lines of magnetic measurement were along the direction of 
NW to SE (with an interval of five meters). Portable proton precession magnetometers 
(Geometrics model G-856, with a sensitivity of 0.1 nT) were used in the magnetic surveys. 
The total-field magnetic data were collected at 1.22 meters and 1.82 meters above the 
ground. To ensure measurement reliability, the magnetic data were measured at least three 
times at each location within a few minutes. We refer readers to the paper of Doo et al. 
(2011) for the detailed information about magnetic survey and data analyses. 
The magnetic anomaly map (colors in Figure 5A) shows several anomalous patterns of 

magnetic dipole fields, and it can be used to derive the amplitude distribution (contours in 

Figure 5A) of the zeroth-order analytic signals of the magnetic sources (Hsu et al., 1998; Hsu, 

2002; Doo et al., 2009). When superimposing the distributions of magnetic sources onto the 

aerial photograph taken before Typhoon Morakot, we can clearly see that all of the magnetic 

sources correspond well to the buildings located in the southern part of the township 

(Figure 5B). Next, a sharp boundary of the destruction front of the landslide (thick, dashed 

lines in Figure 5) can be clearly identified by a comparison between the magnetic anomalies 

and the aerial photograph. Buildings located to the north of the boundary have been swept 
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off their original sites by a massive impact. The landslide simulation of the Siaolin event 

suggests the existence of such a destruction front indeed, and its location coincides well with 

that boundary identified by the magnetic survey. Shown in Figure 5C is the simulated flow-

field (arrows) of the landslide at t = 54 seconds in the corresponding region where the 

magnetic survey was conducted. We find that the impact of the landslide to the south, 

beyond the identified destruction front, is quite small. The final deposit heights (colors and 

black contours in Figure 5C) over the southern part of the village are less than one meter, 

suggesting that many of the buildings to the south may have been spared. The results of the 

filed magnetic survey thus strongly support the simulated flow pattern of the two-

dimensional shallow-water model. The magnetic results also draw the second phase of the 

disaster that buried the whole Siaolin – the fatal mud flow that followed the breach of the 

landslide dam. 
 

 

Fig. 5. (A) Magnetic anomaly (colors) and amplitude of the magnetic zeroth-order analytic 
signal (contours) over the main area of Siaolin Village. Crosses denote the measurement 
point locations. (B) Aerial photograph taken by AFASI before Typhoon Morakot, 
superposed by the magnetic analytic signal (white contours). Note that within the area 
where the magnetic survey was conducted, the photo has been filtered to emphasize the 
buildings. (C) Simulated velocity (arrows) of debris 54 seconds after the landslide initiation 
and deposit height (colors and black contours) 74 seconds over the same area of (A), again 
superposed by the magnetic analytic signal (red contours). The thick red dashed line in each 
panel depicts the sharp destruction front of the debris suggested from the results of the 
magnetic survey. 
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5. Scenario of the breached landslide dam 

While the landslide mostly destroyed the northern part of the Siaolin Village, the spared 
southern village obviously suffered different catastrophic scenario induced by the breach of 
the landslide dam. For a realistic simulation of the mud flow induced by the dam breach, the 
US National Weather Service BREACH model (Fread, 1991) was applied. This model generates 
a landslide dam break hydrograph, which in turn is used as input to drive the Federal 
Emergency Management Agency-approved FLO-2D model (O’Brien et al., 1993; O’Brien, 
2006). The equivalent landslide dam in the model had an along-river width of 300 m and a 
crest elevation of 420 m. The equivalent cross-valley length of the crest was 213 m after 
compensating for the differences between the real valley topography and the simplified 
trapezoidal dam shape required by BREACH. The corresponding debris volume over the main 
channel of the Cishan River that failed is thus 5.2 million m3. The model geometry of the 
landslide dam has been clearly elucidated in the paper of Li et al. (2011), together with the 
detailed description about the simulation of the dam breach and mud flow. 
The initiation time of the dam failure was 6:43 a.m., and it only took about 8 minutes to 
reach a complete breach. The peak discharge rate of this massive breach was 94,280 m3/s. 
The average sediment concentration by volume was 0.38, which was estimated as the ratio 
of landslide dam volume to the total mud volume of the break hydrograph. Figure 6 depicts 
the deposited sediment depths over Siaolin as simulated by the FLO-2D model. Muddy 
floods following the breach covered the entirety of the village around 6:51 a.m., resulting in 
tragedy for the inhabitants of Siaolin. The deposited mud brought by the breaching dam is 
around 10 meters thick above the southern village, where was little ruined by the landslide. 
In terms of spatial distribution and depth, the overall pattern of the deposited sediment 
obtained from the elevation differences (contours in Figure 6) of the DTMs before and after 
Typhoon Morakot was well simulated by the model (color patches in Figure 6). Also note 
that the main river course was slightly diverted to the east, indicating that a significant 
scour occurred after the dam break deposition. Such a process of mixed scour and 
deposition is beyond the limitations of current FLO-2D modeling. 

6. Concluding remark 

Typhoon Morakot, an example of extreme precipitation, dropped more than 2,500 mm of 

rain over southern Taiwan within the three days following August 7, 2009. The National 

Disasters Prevention and Protection Commission in Taiwan reported 724 deaths caused by 

the consequent flooding. Of these victims, 474 were buried alive by the landslide and debris-

flow event at Siaolin Village. This disaster had a severe socio-cultural impact on Taiwanese 

aboriginals of the Pingpu group. Reconstruction of the burying course due to the debris 

avalanche event will not only bring emotional satisfaction to the surviving villagers but will 

provide a fundamental understanding of the complex mass movement process (Densmore 

et al., 1997; Densmore and Hovius, 2000; Stark and Stark, 2001; Bachmann et al., 2004; Bruckl 

and Parotidis, 2005; Bonnet and Crave, 2006).  

Contrary to the fairly precise rupturing simulation of earthquakes, the complex mass 

movement of landslides/debris-flows is rarely reconstructed by numerical modeling (e.g. 

Kuo et al., 2009; Crosta et al., 2004; Lin et al., 2005). A quantitative description of the mass 

movement process of a landslide is thus a challenging task compared to the well-developed 

techniques associated with earthquake rupturing simulations. The accurate reconstruction 
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of landslide kinematics is generally extremely difficult because of its complexity and of the 

lack of detailed data on mass movement processes. A landslide/debris-flow simulation is 

conventionally performed using digital terrain models solely, but one can raise the question 

whether the results of such simulations are realistic. We here employ interdisciplinary 

seismological and near-surface magnetic data to validate the results of a simulation of the 

catastrophic Siaolin, Taiwan landslide triggered by Typhoon Morakot in 2009. We have 

demonstrated that a realistic reconstruction of the catastrophic Siaolin event can be achieved 

by a simulation of the frictional continuum debris model validated with the support of 

geophysical (seismological and magnetic) data. In the first stage of the Siaolin case, a debris 

avalanche swept away half the village while in the second stage a debris-blocking dam was 

breached about 30 minutes after it was formed. Then muddy floods shortly covered the 

entirety of the village. This study shows that the pattern of the Siaolin event can be 

interpreted as a hybrid of mass movement processes of an avalanche, a landslide dam and a 

dam breach. 

 

 

Fig. 6. Simulated deposited sediment depths (color patches) around Siaolin Village due to 
the muddy flood of the breached landslide dam (Figure 3C). Contour lines show the 
elevation differences between two versions of DTMs before and after Typhoon Morakot. 
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