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1. Introduction  

There are several methods to model the process of water and solute transport during 
peritoneal dialysis (PD). The characteristics of the phenomena and the purpose of modelling 
influence the choice of methodology. Among others, the phenomenological models are 
commonly used in clinical and laboratory research. In peritoneal dialysis, the compartmental 
approach is widely used (membrane model, three-pore model). These kinds of models are 
based on phenomenological parameters, sometimes called “lumped parameters”, because one 
parameter is used to describe the net result of several different processes that occur during 
dialysis. The main advantage of the compartmental approach is that it decreases substantially 
the number of parameters that have to be estimated, and therefore its application in clinical 
research is easier. However, in the compartmental approach, it is usually very difficult to 
connect the estimated parameters with the physiology and the local anatomy of the involved 
tissues. Therefore, these models have limited applications in the explanation of the changes 
that occur in the physiology of the peritoneal transport. For example, the membrane models 
describe exchange of fluid and solute between peritoneal cavity and plasma through the 
“peritoneal membrane”. However, this approach does not take into account the anatomy and 
physiology of the peritoneal transport system and cannot be used for the explanation of the 
processes that occur in the tissue during the treatment. 
Basic concepts and previous applications of distributed models are summarized in Section 2. 
A mathematical formulation of the distributed model for fluid and solute peritoneal 
transport is also presented in Section 2. The effective parameters, which characterize 
transport through the peritoneal transport system, PTS (i.e. the fluid and solute exchange 
between the peritoneal cavity and blood), can be estimated from the local physiological 
parameters of the distributed models. The comparisons between transport parameters 
applied in phenomenological description and those derived using a distributed approach, 
are presented in Sections 3 and 4 for fluid and solute transport, respectively. Typical 
distributed profiles of tissue hydration and solutes concentration in the tissue are presented 
in Section 5. 

2. Distributed modelling of peritoneal transport 

The first applications of the distributed model are dated to the early 1960s and were limited 
to the diffusive transport. Pipper et al. studied the exchange of gases between blood and 
artificial gas pockets within the body (Piiper, Canfield, and Rahn 1962). The transport of 
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gases between subcutaneous pockets and blood was studies in rats and piglets (Van Liew 
1968; Collins 1981). The theory of heat and solute exchange between blood and tissue was 
investigated using distributed approach by Perl (Perl 1963, 1962). The first application of the 
distributed model for the description of the diffusive transport of small solutes was 
proposed by Patlak and Fenstermacher, in order to describe the transport from 
cerebrospinal fluid to the brain (Patlak and Fenstermacher 1975). The diffusive delivery of 
drugs to the human bladder during intravesical chemotherapy, as well as drug delivery 
from the skin surface to the dermis, has been also studied in normal and cancer tissue using 
distributed approach (Gupta, Wientjes, and Au 1995; Wientjes et al. 1993; Wientjes et al. 
1991). The distributed model was also applied for the theoretical description of fluid and 
solute transport in solid tumors (Baxter and Jain 1989, 1990, 1991). 
The need of the model that could relate the anatomy and local physiological processes with 
the observed outcome of the peritoneal transport was mentioned by Nolph, Miller, and 
Popovich (Nolph et al. 1980). One of the attempts in this direction was proposed by Dedrick, 
Flessner and colleagues. They considered a distributed approach, in which the spatial 
structure of the tissue with blood capillaries and lymphatics distributed at different distance 
from the peritoneal cavity, was taken into account (Dedrick et al. 1982; Flessner 2005; 
Flessner, Dedrick, and Schultz 1985). Another approach, based on the three-pore model, 
assumes existence of serial layers of two kinds: tissue and “peritoneal membrane” 
(Venturoli and Rippe 2001). 
The application of distributed models in intraperitoneal therapies was initiated in the early 
eighties of the 20th century. Initially, the diffusive transport of gases between intraperitoneal 
pockets and blood was studied by Collins in 1981 (Collins 1981). In the peritoneal dialysis 
field the distributed approach was introduced by Dedrick, Flessner and colleagues (Dedrick 
et al. 1982; Flessner, Dedrick, and Schultz 1984). The distributed modelling of diffusive 
solute transport during peritoneal dialysis was also studied by Waniewski (Waniewski 
2002). Further applications of the model in the peritoneal dialysis field were related to the 
transport of small, middle and macro -molecules in animal studies as well as in CAPD 
patients (Dedrick et al. 1982; Flessner 2001; Flessner, Dedrick, and Schultz 1985; Flessner et 
al. 1985; Flessner, Lofthouse, and Zakaria el 1997). The initial models of peritoneal solute 
transport considered interstitium as a rigid, porous medium with constant fluid void 
volume and intraperitoneal and interstitial hydrostatic pressures (Flessner, Dedrick, and 
Schultz 1984). This theoretical description was validated with experimental data from rats 
(Flessner, Dedrick, and Schultz 1985). In the later model of IgG peritoneal transport, the 
changes in interstitial and intraperitoneal pressure were taken into account according to 
experimental studies (Flessner 2001). The process of intraperitoneal drug delivery, especially 
for anticancer therapies, was also described using the distributed approach (Flessner 2001; 
Collins et al. 1982; Flessner 2009). The so far mentioned models were applied for diffusive 
and convective solute transport. Seames, Moncrief and Popovich were the first who 
investigated osmotically driven fluid and solute transport during peritoneal dwell (Seames, 
Moncrief, and Popovich 1990). However, their attempt was later disproved by animal 
experiments (Flessner et al. 2003; Flessner 1994). Further investigations by Leypoldt and 
Henderson were focused on solute transport driven by diffusion and ultrafiltration from 
blood and interactions of the solute with the tissue (Leypoldt 1993; Leypoldt and Henderson 
1992). A new attempt to apply a distributed approach to model impact of chronic peritoneal 
inflammation from sterile solutions and structural changes within the tissue on the solute 
and water transport was undertaken recently by Flessner et al. (Flessner et al. 2006). 
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The distributed model of fluid absorption was proposed by Stachowska-Pietka et al. and 
applied for the analysis changes in the tissue caused by infusion of isotonic solution into the 
peritoneal cavity (Stachowska-Pietka et al. 2005; Stachowska-Pietka et al. 2006). This model can 
be applied to describe situation at the end of a dwell with hypertonic solution, when the 
osmotic pressure decreases and the intraperitoneal hydrostatic pressure is the main transport 
force. The osmotically driven glucose transport was modelled by Cherniha, Waniewski and 
co-authors (Cherniha and Waniewski 2005; Waniewski et al. 2007; Waniewski, Stachowska-
Pietka, and Flessner 2009). These authors where able to predict high ultrafiltration from blood 
to the peritoneal cavity and positive interstitial pressure profiles assuming a high value of 
reflection coefficient for glucose in the capillary wall and a low value of reflection coefficient 
for glucose in the tissue. Further extensions of this model were suggested (Stachowska-Pietka, 
Waniewski, and Lindholm 2010; Stachowska-Pietka 2010; Stachowska-Pietka and Waniewski 
2011). In this new approach, the variability of dialysis fluid volume, hydrostatic pressure and 
solute concentrations with dwell time were additionally taken into account and yielded a good 
agreement of the theoretical description and clinical data. A distributed model that takes into 
account also the two phase structure of the tissue and allows for the modelling of bidirectional 
fluid and macromolecular transport during PD was recently formulated (Stachowska-Pietka, 
Waniewski, and Lindholm 2010; Stachowska-Pietka 2010). 

2.1 Basic concepts 
The distributed approach takes into account the spatial distribution of the peritoneal 
transport system (PTS) components. Typically, this concept includes the microcirculatory 
exchange vessels that are assumed to be uniformly distributed within the tissue. However, 
this simplifying assumption can in general be omitted and the variability of the tissue space 
and structure can be taken into account. In order to describe the distributed structure of PTS, 
the methods of partial differential equation (instead of ordinary differential equations) 
should be applied. As a result, the changes in the spatial distribution of solutes and fluid in 
the tissue with time can be modelled.  
Peritoneal fluid and solute exchange concerns all the organs that surround peritoneal cavity. 
It is assumed that tissue is perfused with blood by capillaries, which are placed at different 
distance from the peritoneal surface (Figure 1).  
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Fig. 1. Fluid and solute transport pathways during peritoneal dialysis: dashed, red circles – 
blood capillaries walls, solid, orange circles – lymphatic capillaries 
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Lymphatic absorption plays an important role in the process of regulation of fluid and solute 
transport within the tissue. The tissue properties, including the spatial distribution of blood 
and lymph capillaries, are idealized in the distributed modelling by the assumption that blood 
and lymph capillaries are uniformly distributed within the tissue and that the interstitium is a 
deformable, porous medium, see Figure 1 (Flessner 2001; Waniewski 2001). The difference in 
solute concentration between blood and dialysis fluid results in a quasi-continuous spatially 
variable concentration profile. Moreover, fluid infusion into the peritoneal cavity induces 
increase of interstitial hydrostatic pressure and results in fluid transport within the tissue. The 
tissue hydrostatic pressure equilibrates with the intraperitoneal hydrostatic pressure at the 
peritoneal surface, and decreases with the distance from the peritoneal cavity. 

2.1.1 Structure of the peritoneal transport systems and its barriers 
Once water and solutes leave the peritoneal cavity and enter the adjacent tissue they 
penetrate to its deeper parts, c.f. Figure 1. In the tissue, fluid and solute partly cross the 
heteroporous capillary wall and are washed out by the blood stream, whereas another part 
is absorbed from the tissue by local lymphatics. A part of the fluid and solute accumulates in 
the tissue. In some situations, fluid and solutes can leave the tissue on its other side, as in the 
case of the intestinal wall or in some experiments with the impermeable outer surface (skin) 
removed (Flessner 1994). Figure 1 summarizes the fluid and solute transport pathways.  
Two main transport barriers for peritoneal fluid and solute transport are considered in the 
distributed approach. On the basis of experimental data it was found that: 1) the 
heteroporous structure of the capillary wall, and 2) interstitium, are significant barriers of 
the peritoneal transport system (Flessner 2005). The experimental studies showed that 
interstitium is the most important barrier for the transport of fluid and selected solutes 
across the tissue. In contrast, some authors considered also the mesothelium as a substantial 
transport barrier and modeled it as a semipermeable membrane with the properties 
analogous to the that of the endothelium (Seames, Moncrief, and Popovich 1990). They 
analyzed the transport of water, BUN, creatinine, glucose and inulin. They fitted the model 
to the data on intraperitoneal volume and solute concentrations in dialysate and blood and 
predicted negative values of interstitial hydrostatic pressure (Seames, Moncrief, and 
Popovich 1990). However, later studies disproved this assumption and found the positive 
interstitial pressure profiles in the tissue (Flessner et al. 2003).  

2.1.2 Fluid and solute void volume 

The fluid space within the interstitium can be described using the interstitial fluid void 

volume ratio,  , that is defined as the fraction of the interstitial space that is available for 

interstitial fluid (non-dimensional, being the ratio of volume over volume). Typically, at 

physiological equilibrium, this value remains around 15% - 18%, and may be doubled 

during peritoneal dialysis (Zakaria, Lofthouse, and Flessner 2000, 1999). The fraction of 

solute interstitial void volume, S , i.e., the fraction of tissue volume effectively available to 

the solute S , depends on the solute molecular size, and in the case of large macromolecules 

can be significantly smaller than that for fluid. Experimental studies showed that 

distribution of the solute macromolecules can be restricted to even 50% of  (Wiig et al. 

1992). Therefore, in general S  .  
The interstitial fluid void volume ratio as a function of interstitial hydrostatic pressure 
derived on the basis of experimental studies is presented in Figure 2, c.f. (Cherniha and 
Waniewski 2005; Stachowska-Pietka et al. 2005; Stachowska-Pietka et al. 2006).  
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Fig. 2. The experimental data of interstitial fluid void volume ratio measured in the rat 
skeletal muscle and signed by solid circles (Zakaria, Lofthouse, and Flessner 1999) and the 

fitted interstitial fluid void volume ratio curve,  , as a function of interstitial pressure, P .  

This approach reflects the experimental findings showing that interstitial fluid void volume 

ratio may increase initially rapidly (for positive, low values of interstitial pressure), whereas 

there is no effect of further increasing of P  if   reaches its maximal value, MAX . The 

interstitial fluid void volume,  , can be mathematically described as (Stachowska-Pietka et 

al. 2006):   

 
 0

0

1 1

MAX MIN
MIN

P PMAX MIN

MIN

e


  
 
 

 


 

 
   

 (1) 

where 0 177.MIN   and 0 36.MAX   are respectively minimal and maximal values of the 

fluid void volume, 0 0 18.   is the fluid void volume for 0 0P P   mmHg, 

2 019.   mmHg-1, and 0P  is the initial value of interstitial hydrostatic pressure measured 

in mmHg, see Figure 2. A particular case of this general formula was considered previously 

by An and Salathe (An and Salathe 1976). They were the first, who proposed the explicit 

formula for the fluid void volume as a function of interstitial pressure, assuming 

erroneously that 0MIN   and 1MAX  . 

2.2 Distributed model of fluid transport 
The changes in the total tissue volume are considered to be small enough to assume the 
constant total tissue volume. Therefore, the whole tissue is considered as not expendable, 
whereas the interstitial compliance and changes in the tissue hydration are taken into 
account. Under this condition, the equation for the changes in the fraction of the interstitial 
fluid void volume ratio can be described using the volume balance of the interstitium as 
follows (Stachowska-Pietka et al. 2006; Stachowska-Pietka et al. 2005; Flessner 2001): 

 V
V

j
q

t x

 
  

 
 (2) 
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where   is the fraction of the interstitial fluid volume over the total tissue volume, further 

on called as the void volume, Vj  is the volumetric fluid flux across the interstitium, Vq  is 

the rate of the net fluid flow into the tissue from the internal sources (sinks) such as blood or 

lymphatic capillaries per unit tissue volume, t is the dwell time, and x  is the distance 

measured from the peritoneal cavity. Note, that volumetric flux, Vj , is defined as 

volumetric flow (in ml/min) per unit surface (in cm2) perpendicular to its direction, i.e., the 

unit of flux is cm/min. The unit of local volumetric flow density, Vq , is 1/min, i.e., as for 

volumetric flow (in ml/min) per unit volume (in mL). The orientations of specific fluid 

fluxes are presented in Figure 3. 

Fluid flux across the interstitium depends on the local tissue hydraulic conductivity, K , and 

local interstitial hydrostatic pressure gradient, /P x  . Moreover, the osmotic agent 

(crystalloid or colloid) may exert osmotic effect on the fluid. These effects can be taken into 

account by including the role of local tissue osmotic gradients into the model. In particular, 

the impact of the oncotic gradient exerted by proteins was previously included in the Darcy 

formula by Taylor et al. (Taylor, Bert, and Bowen 1990). Thus, the volumetric fluid flux 

across the interstitium may be calculated by the extended Darcy law as follows (Waniewski, 

Stachowska-Pietka, and Flessner 2009; Waniewski et al. 2007): 

 
1,...,

T S
V S

S N

CP
j K RT

x x




 
        

  (3) 

where T
S  is the reflection coefficient (positive for osmotically active solutes in the tissue), 

SC  is the concentration of solute in the tissue, and solutes are indexed by S from 1 to N.  
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Fig. 3. Scheme of fluid and solute transport and positive orientations of each flux as 
modelled by the distributed approach: dashed circles – blood capillaries walls, solid circles – 
lymphatic capillaries. 

Fluid flow between tissue and circulatory system, cap
Vq , can occur through the capillary 

wall in both directions: into and from the tissue. In addition, the final net inflow of fluid to 
the tissue is typically smaller due to the local tissue lymphatic absorption. Therefore, the net 
fluid inflow into the tissue is given as:  
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 cap
V V Lq q q   (4) 

where cap
Vq  is the net fluid flow through the capillary wall into the tissue, and Lq  is the rate 

of lymphatic absorption in the tissue. For the calculation of the fluid flow across capillary 

wall, the three-pore model or the membrane model can be applied. According to both 

approaches, the fluid flow across the capillary wall, cap
Vq , is driven by the hydrostatic (first 

term) and osmotic pressure (second term) differences that are exerted through the capillary 

wall. In particular, if the membrane model is applied for the microvascular exchange of 

fluid, net fluid flow across the capillary wall to the tissue can be calculated as (Stachowska-

Pietka et al. 2006; Waniewski, Stachowska-Pietka, and Flessner 2009): 

    
1

,
,...,

cap cap
V P B P S B S S

S N

q L a P P L a RT C C


       (5) 

where BP  and ,B SC  are the hydrostatic pressure and solute concentration in the blood, 

respectively, P  and SC  are interstitial hydrostatic pressure and solute concentration in the 

tissue, respectively, PL a  and cap
S  are the capillary wall hydraulic conductance and 

reflection coefficient of the capillary wall, respectively. If the three-pore model for the 

microvascular exchange across capillary wall is applied, the fluid transport through each 

type of pore should be calculated separately, and summed up.  
Equation (1) specifies the interstitial fluid void volume,  , as a function of interstitial 

pressure, P . Therefore, the rate of change of   can be transformed as 
d P

t dP t

  
 

 
 and 

equation (2) for time evolution of variable   can be converted to the following equation for 

the time evolution of variable P  (Stachowska-Pietka et al. 2006):  

 V V

d P
j q

dP t x

  
   
 

 (6) 

In order to find theoretical solution, these equations must be combined with equations for 

the transport of solutes. In general, the transport parameters in equations (2) - (5), such as 

K , Lq , PL a , T
S , cap

S  can be assumed constant for some approximate considerations 

(Waniewski 2001; Flessner 2001). However, physiological data suggest that in more realistic 

modelling, the relationship between the parameters and the tissue properties should be 

taken into account. In particular, the dependence of tissue hydration, hydraulic 

conductivity, or lymphatic absorption on the interstitial hydrostatic pressure as well as the 

vasodilation induced by hyperosmotic dialysis fluid should be considered. Therefore, in 

numerical simulations of distributed models, some of the transport parameters (such as K , 

Lq , PL a ) are typically functions of model variables (solute concentration in the tissue, SC , 

interstitial hydrostatic pressure, P, and also indirectly of interstitial fluid void volume ratio, 

 ) and dwell time, t . The specific forms of these functions can be found elsewhere 

(Stachowska-Pietka et al. 2006; Waniewski, Stachowska-Pietka, and Flessner 2009; 

Stachowska-Pietka 2010). Initial and boundary conditions for this problem are well define 

and were previously discussed in details (Stachowska-Pietka et al. 2006; Stachowska-Pietka 

2010; Stachowska-Pietka et al. 2005).  
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2.3 Distributed model of solute transport 
The solute concentration profiles within the tissue can be derived from the equation on the 
local solute mass balance using a partial differential equation for local solute balance as 
(Stachowska-Pietka et al. 2007; Waniewski 2002; Waniewski, Stachowska-Pietka, and 
Flessner 2009; Flessner 2001): 

 
 S S S

S

C j
q

t x

  
  

 
 (7) 

where S  is the fraction of interstitial fluid void volume ratio,  , available for the 

distribution of solute S , SC  is the solute concentration in the interstitial fluid, Sj  is the 

solute flux across the tissue, Sq  is the rate of the net solute inflow to the tissue from the 

external sources/sinks, such as blood or lymph, x  is the distance measured from the 

peritoneal surface, and t  is time. The solute flux across the tissue, Sj , is defined as the 

solute flow (in mmol/min) per unit surface (in cm2) perpendicular to its direction, i.e., the 

unit of flux is mmol/min/cm2. The unit of local solute flow density, Sq , is mmol/min/mL, 

i.e., as for solute flow (in mmol/min) per unit volume (in mL). The orientations of solute 

fluxes are presented in Figure 3. 
Solute flux across the tissue comprises two components. The diffusive transport of solute 

depends on the local concentration gradient, whereas fluid flux across the tissue induces its 

convective transport. Therefore, the solute flux across the tissue can be calculated as follows 

(Stachowska-Pietka et al. 2007; Waniewski 2002; Waniewski, Stachowska-Pietka, and 

Flessner 2009; Flessner 2001): 

 T TS
S S S V S

C
j D s j C

x


    


 (8) 

where T
SD  is the diffusivity of solute S  in the tissue, T

Ss  is sieving coefficient of solute in 

the tissue, and Vj  is the volumetric fluid flux across the tissue. Note, that for homogenous 

structure 1T T
S Ss    is the tissue reflection coefficient of solute S . 

The net changes in the solute amount in the tissue are considered to be caused by the local 

microvascular exchange between blood and tissue through the capillary wall, decreased by 

the solute absorption from the tissue by local lymphatics:  

 cap
S S L Sq q q C    (9) 

where cap
Sq  in the net solute flux across the capillary wall into the tissue, and Lq  is the rate 

of local lymphatic absorption. Depending on the purpose of the study, the solute transport 

between blood and tissue can be calculated according to the three-pore model or the 

membrane model. In general, solute flux across the capillary wall is driven by the solute 

concentration difference between blood and tissue, ,B S SC C , and by the convective fluid 

flow across the capillary wall, cap
Vq . In particular, if the membrane model is applied for the 

microvascular exchange, the solute net flux across the capillary wall to the tissue can be 

calculated as (Waniewski et al. 2007; Waniewski, Stachowska-Pietka, and Flessner 2009): 

    1, ,
cap cap cap

S S B S S S V B S Sq p a C C s q fC f C           (10) 
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where Sp a  is the diffusive permeability of solute S  through the capillary wall, cap
Ss  is 

sieving coefficient for solute in the capillary wall, and f  is the weighting factor within the 

range from 0 to 1, which in general can be calculated from the fluid flow across the capillary 

wall according to the formula for Peclet number. Note, that 1
cap cap

S Ss    is the capillary 

wall reflection coefficient for solute S . In the case of a three-pore model for the 

microvascular exchange across the capillary wall it can be described as the sum of solute 

fluxes through each type of the pore. 

Equation (7) together with equations (8) - (10) for Sj  and Sq  may be analyzed theoretically 

for constant values of S , constant transport parameters such as T
SD , T

Ss , Sp a , cap
Ss , and 

for given fluid transport characteristics Vj  and cap
Vq . However, in the general case, 

equation (7) must be coupled with equation  (6) for time evolution of P , in order to 

calculate   and then S . Furthermore, the dynamic changes in the transport parameters, 

caused by the changes in tissue hydration and vasodilation of the capillary bed, make T
SD  

and Sp a  functions of P  (or  ), SC  and dwell time, t . The specific forms of these functions 

can be found elsewhere (Stachowska-Pietka 2010; Stachowska-Pietka et al. 2006; Waniewski, 

Stachowska-Pietka, and Flessner 2009). The details concerning initial and boundary 

conditions for solute and fluid peritoneal transport can be found elsewhere (Stachowska-

Pietka and Waniewski 2011; Stachowska-Pietka 2010; Waniewski, Stachowska-Pietka, and 

Flessner 2009, Waniewski 2001, 2002). 

3. Modelling of fluid transport  

The purpose of this section is to present relationships between the net fluid transport 

parameters for the transport between blood and dialysis fluid in the peritoneal cavity (as 

estimated using phenomenological models of peritoneal dialysis in clinical and 

experimental studies), and the separate characteristics of the capillary wall and interstitial 

transport barriers as well as the distributed geometry of peritoneal transport system (PTS). 

Two simplified versions of the distributed model for fluid peritoneal transport are analysed 

assuming steady state conditions. The effective permeability of the tissue is analysed for the 

simplified model in which fluid transport is driven by hydrostatic pressure difference, 

causing fluid absorption. In order to present osmotic properties of PTS, the distributed 

model of osmotic fluid flow is presented, in which water absorption from the peritoneal 

cavity is neglected.  

In order to evaluate effective transport parameters from the distributed model, which can be 
compare with the experimental values, one should refer to the net fluid flow instead of fluid 
flux. In general, the net fluid flow can be calculated from the fluid flux by multiplying by the 

effective peritoneal surface area A  in cm2. Therefore V VJ A j   is the fluid flow described 

in mL/min, and 6000A   cm2. More details concerning results presented in this section can 

be found in (Waniewski, Stachowska-Pietka, and Flessner 2009). 

3.1 Effective hydraulic conductivity 
A simple version of the distributed model with fluid flow induced only by hydrostatic 
pressure may be applied for the derivation of the description of the flux across the tissue 

peritoneal surface,  0, perit
V steady Vj t x j  , and the effective hydraulic conductivity for fluid 

www.intechopen.com



 
Progress in Peritoneal Dialysis 

 

32

at time steadyt , when the system reaches its steady-state. Therefore, equation (3) for fluid 

transport across tissue can be simplified to the from V

P
j K

x


 


, whereas fluid transport 

across capillary wall is given by  cap
V P Bq L a P P  . In this case, the fluid flow across 

the peritoneal surface (i.e. fluid flux multiplied by effective peritoneal surface area) 
depends on the hydrostatic pressure difference between peritoneal cavity and the tissue 
and can be described by the following formula (Waniewski, Stachowska-Pietka, and 
Flessner 2009): 

  perit eq
V P DJ memL a P P   (11) 

where DP  and eqP  are hydrostatic pressures in the peritoneal cavity and tissue, 

respectively, and PmemL a  is the effective hydraulic conductivity for transport between 

blood and dialysate that is calculated as: 

  tanhP PmemL a A K L a    (12) 

with / FL   , L - tissue width, and /F PK L a   - fluid penetration depth in the tissue, 

K  - tissue hydraulic conductivity, PL a  - hydraulic conductance of capillary wall, A  -

effective peritoneal surface area. Furthermore, assuming that tissue width is much higher 

than the fluid penetration depth, F L  , i.e. 1  , one can get the following, simplified 

formula for the effective hydraulic conductivity for transport between blood and dialysate: 

 P PmemL a A K L a   (13) 

Some exemplary values of fluid penetration depth, effective hydraulic conductivity of 
PTS and the corresponding values of tissue and capillary wall transport are presented 
in Table 1. 

Remark 1. Formula (13) can be transformed to P P FmemL a A L a    , which means that the 

fluid transport may be considered, according to the distributed model, as proceeding 

directly between blood and dialysis fluid across the total capillary wall surface within the 

tissue layer of the width F  with hydraulic conductance pL a , as this capillary would be 

immersed directly in dialysis fluid (Waniewski, Stachowska-Pietka, and Flessner 2009). 

Remark 2. Formula (13) can be alternatively transformed to /P FmemL a A K    indicating 

that the same fluid transport may be considered also as proceeding between blood and 

dialysis fluid across the tissue layer with hydraulic conductivity K  and width F  (which is 

fluid penetration depth) without any interference from blood flow in the capillaries; 

however, F  depends on pL a  (Waniewski, Stachowska-Pietka, and Flessner 2009). 

Remark 3. The maximal possible value of PmemL a  is PA L a L  , which would happen if the 

fluid penetrated fully the whole tissue layer, and in this case the effective hydraulic 

conductivity of distributed system would be equal to the total hydraulic conductance for the 

whole capillary bed in the tissue (Waniewski, Stachowska-Pietka, and Flessner 2009). 
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Parameter Range of values 

Assumed/adjusted:  

K 104 , cm2min-1mmHg-1 0.139 

PL a 104 , ml·min-1mmHg-1g-1 1.48 – 3.66 

Derived:  

F , cm 0.19 – 0.31 

PmemL a , ml·min-1mmHg-1 0.27 – 0.43 

Table 1. Theoretical values of transport parameters assumed in computer simulations and 
the corresponding values of effective transport parameters of PTS estimated for A = 6000 

cm2: K  – tissue hydraulic conductivity, PL a  - capillary wall hydraulic conductance, A – 

effective peritoneal surface area, F  - fluid penetration depth, PmemL a  - effective hydraulic 

conductivity of PTS (Waniewski, Stachowska-Pietka, and Flessner 2009). 

3.2 Effective reflection coefficient and osmotic conductance 
In this section a model with a single osmotic agent that induces osmotic fluid flow between 
blood and the peritoneal cavity is discussed. The hydrostatic pressure gradient in the tissue 
also contributes to the fluid flow, but the hydrostatic pressure difference across the capillary 
wall is neglected by assuming, for example, that it is approximately balanced by oncotic 
pressure difference. This approximation may be used only for the description of osmotic 
ultrafiltration induced by a high concentration of a crystalloid osmotic agent. Therefore, in 
the case of a single osmotic agent (as glucose), equation (3) for fluid flux across the tissue is  

T
V

P C
j K

x x
       

, and equation (5) is  cap cap
V P Bq L a RT C C   . Note, that for the 

sake of simplicity, in the case of single solute, the bottom index S for solute can be omitted. 
If the solute (e.g., glucose) concentration profile in the tissue may be approximately 

described by the exponential function with the solute penetration depth  , i.e. as 

   exp /B D BC C C C x     , the steady state fluid flow across the peritoneal surface can 

approximated by the following formula (Waniewski, Stachowska-Pietka, and Flessner 2009):  

  perit eff eq
V P DJ memL a RT C C      (14) 

where PmemL a  is the effective hydraulic conductivity of the peritoneal transport system, 

DC  and eqC  are solute concentrations in dialysate and tissue, respectively, and eff  is the 

effective reflection coefficient for solute transport between peritoneal cavity and blood given 

by (Waniewski, Stachowska-Pietka, and Flessner 2009): 

  1 /
cap

eff Le



    (15) 

where /F     is the ratio of fluid to solute penetration depth, cap  is the capillary wall 

reflection coefficient to solute S. Moreover, assuming that the tissue width is much higher than 

the solute penetration depth, i.e. L   , one can get the following simplified formula for the 

effective reflection coefficient of PTS (Waniewski, Stachowska-Pietka, and Flessner 2009): 
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cap

eff 


  (16) 

Remark 1. The value of the effective reflection coefficient for particular solute transport 

between peritoneal cavity and blood, eff , can not exceed the value of the capillary wall 

reflection coefficient for this solute, cap , i.e. eff cap  .  

Remark 2. The effective reflection coefficient can be calculated from the capillary wall reflection 

coefficient, after dividing by the ratio of fluid to solute penetration depth. Moreover, if 

necessary, this value should be additionally decreased by the formula  1 /Le  . As the 

result, the distributed geometry of the capillary bed yields a substantial decrease in the 

effective reflection coefficient for crystalloid osmotic agents compared with their reflection 

coefficient in the capillary wall. Numerical simulations suggest 7-20 times lower values of eff  

if compared to cap  (see, Table 2 and (Waniewski, Stachowska-Pietka, and Flessner 2009)). 
Remark 3. The effective reflection coefficient for the transport between peritoneal cavity and 
blood depends not only on the sieving properties of the capillary wall, but is also related to 
the tissue transport properties, since both fluid and solute penetration depths depends on 
the local tissue and capillary wall permeabilities.  
Remark 4. The effective osmotic conductance for the transport between peritoneal cavity and 
blood depends on both tissue and capillary wall transport characteristics and can be 
calculated as the effective hydraulic conductivity described by equation (13), multiplied by 
the effective reflection coefficient, described by equation (15), c.f. equation (14) (Waniewski, 
Stachowska-Pietka, and Flessner 2009): 

 eff
pmemOsmCond memL a  (17) 

In Table 2, some typical values of effective reflection coefficient and osmotic conductance of 
PTS are derived for glucose in the case of clinical dialysis. 
 

Parameter Range of values 

Assumed/adjusted:  
cap  0.16 – 0.46 

Derived:  

 , cm 0.015 – 0.017 
  11.40 – 20.86 

eff  0.014 – 0.022 

memOsmCond, (ml/min)/(mmol/l) 0.116 

Table 2. Theoretical values of glucose transport parameters assumed in computer 

simulations and the corresponding values of effective transport parameters of PTS  

(Waniewski, Stachowska-Pietka, and Flessner 2009): cap  - capillary wall reflection 

coefficient,   - solute penetration depth,   - ratio of fluid to solute penetration depth, eff  

- effective reflection coefficient of PTS, memOsmCond – effective osmotic conductance of PTS. 

4. Modelling of solute transport 

During peritoneal dialysis solutes, such as osmotic agents, buffer solutes, additives and 
drugs, are transported from dialysis fluid to the tissue, and inside the tissue are absorbed to 
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blood and lymph. On the other hand, solutes, which are to be removed with peritoneal 
dialysis, are transported first from blood to the tissue and there they are partly absorbed 
with lymph and partly transported to dialysis fluid. The contribution of blood and lymph 
flows to the solute gradient, created within the tissue due to the presence of dialysis fluid at 
the tissue surface, results in characteristic solute concentration profiles within the tissue. For 
some solutes, diffusive transport prevails (as for small molecules), but the role of convective 
transport through the capillary wall and (convective) absorption with lymph increases with 
the increased molecular weight. In particular, in the case of macromolecules, both types of 
convective transport should be considered.  
Therefore, for small molecules such as urea, creatinine, the simplified version of the 
distributed model with pure diffusive transport can be considered. In this case, simple 
relationships between net solute transport characteristics such as effective diffusivity across 
PTS, solute penetration depth and effective blood flow, and corresponding local distributed 
parameters are presented. The impact of combined diffusive and convective transport on 
derived effective characteristics is analysed in Section 4.2. In particular, the comparison 
between diffusive and convective penetration depth, as well as the analysis of effective 
sieving coefficient for macromolecules is analysed.  

Note, that all results presented in this section were derived for the steady state conditions. 

Moreover, to compare the effective solute transport parameters with the experimental one, 

the solute flux from the peritoneal cavity is multiplied by the effective peritoneal surface 

area, A. This transforms the equation for solute flux, Sj , into the equation for solute flow,  

S SJ A j  , expressed in mmol/min. More details concerning models and the derivation of 

the expressions for effective transport parameters can be found in  (Waniewski 2002, 2001). 

The bottom index S, which denotes solute, was omitted in this section for the sake of 

simplicity. 

4.1 Diffusive solute transport between blood and the peritoneal cavity  
In this section the relationships between the net diffusive mass transport coefficients for the 

solute transport between blood and dialysis fluid and the local physiology based transport 

parameters of distributed models are analyzed. Moreover, the formulas for the solute 

diffusive penetration depth and effective peritoneal blood flow are derived. Therefore, a 

simplified model of pure diffusive transport across the tissue is analysed at the steady state 

with the solute flux across the tissue given by T
S

C
j D

x


 


 and solute transport across 

capillary wall described by equation (10).  Note, that equation (10) can be grouped in the 

following way: cap cap T
S Bq k C k C  , where  cap cap cap

S Vk p a s q f  is a unidirectional clearance 

for transport between blood and tissue, and    cap capT
S Vk p a s q f1  is a unidirectional 

clearance for transport from tissue to blood (Waniewski 2002). 

4.1.1 Effective diffusive mass transport parameter  
At the steady state, the solute flow from the peritoneal cavity to the tissue can be presented 
in analogy to the membrane models in the following way (Waniewski 2002):  

  perit
S S D BJ memKBD C C   (18) 
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where DC  and BC  are solute concentrations in dialysate and blood, respectively, SmemKBD  

is the effective diffusive mass transport parameter for solute S, and   describes the ratio of 

the equilibrium concentration of solute in the tissue over its concentration in blood and can 

be calculated as  /cap T
Lk k q   . In this case, the effective diffusive mass transport 

parameter for solute S can be approximated from the formula (Waniewski 2002, 2001): 

  T T
S LmemKBD A D k q   (19) 

Theoretical values of effective diffusive mass transport parameter derived from the 
distributed model compared with the experimental values are presented in Figure 4 and in 
Tables 3 and 4. 
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Fig. 4. Theoretical values of effective diffusive mass transport parameter derived from the 
distributed model (solid line, assuming A=1 m2) and the experimental values: * (Rippe and 
Stelin 1989), + (Kagan et al. 1990),▲ (Imholz et al. 1993), ♦ (Pannekeet et al. 1995), after 
(Waniewski 2001).  

Remark 1. If one neglects convective transport across the capillary wall and the tissue 
lymphatic absorption, the effective diffusive mass transport parameter for solute S can be 
calculated from a simplified formula (Dedrick et al. 1982):  

 T
S SmemKBD A D p a   (20) 

Remark 2. The important difference between equations (18) and the corresponding equation 
for diffusive solute transport according to the phenomenological membrane approach is the 
presence of coefficient   in equation (18). Therefore, according to the distributed model 
(equation (18)), the equilibration level for a solute in dialysate is not its concentration in 

blood, BC , as it is in the membrane model, but its equilibrium concentration in the tissue 

eq
BC C . In typical physiological conditions of the transport through the capillary wall,   

www.intechopen.com



 
Distributed Models of Peritoneal Transport 

 

37 

is close to 1 for small and middle molecules, but substantially lower than 1 for 
macromolecules (Waniewski 2002, 2001). Therefore, the correction for   is practically 
important only for macromolecules.  In this case, the membrane model may underestimate 
the effective diffusive mass transport parameter. In fact, the equilibrium level for total 
protein five times lower than blood concentration was observed in experiments in dogs with 
prolonged accumulation of the lost protein in dialysate (Rubin et al. 1985). The typical 
values of   for proteins are presented in Table 3. 
 

Solute MW Dif , mm   SmemKBD , ml/min 

ǃ2-microglobulin 11 800 0.385 0.986 1.091 

myoglobin 17 000 0.465 0.961 0.704 

ǂ-globulin 45 000 0.652 0.811 0.348 

albumin 68 000 0.731 0.656 0.262 

transferin 90 000 0.746 0.475 0.212 

haptoglobin 100 000 0.732 0.430 0.202 

IgG 150 000 0.667 0.351 0.182 

ǂ2-macroglobin 820 000 0.529 0.277 0.144 

IgM 900 000 0.456 0.212 0.124 

Table 3. Solute diffusive penetration depth, Dif , the ratio of the equilibrium concentration 

of solute in the tissue over its concentration in blood,  , and effective diffusive transport 

parameter, SmemKBD , estimated from the distributed model assuming A=1 m2 (Waniewski 

2002).  

4.1.2 Diffusive solute penetration depth 
The solute concentration distribution within the tissue (assuming only diffusive transport 
across the tissue) is described in the steady state by the following equation: 

  
2

2

2
/eq

B Dif

C
C C

x


  


 (21) 

where eqC  is the solute concentration in the tissue at equilibrium, and Dif  is diffusive 

penetration depth given by (Waniewski 2001): 

  /T T
Dif LD k q    (22) 

where TD  is tissue diffusivity, Tk  is unidirectional clearance for transport from tissue to 

blood, and Lq  is tissue lymphatic absorption. The penetration depth for solutes with 

different molecular weight is presented in Tables 3 and 4. 
Remark 1. In the case of purely diffusive transport across the capillary wall and the tissue, 
and neglected lymphatic absorption from the tissue, one can get a simplified formula 

/T
Dif SD p a   (Dedrick et al. 1982), which shows that purely diffusive penetration depth 

for solutes depends on the square root of their diffusivity in the tissue divided by their 
diffusivity across capillary wall.  
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Remark 2. The diffusive solute penetration depth depends not only on the diffusive 

properties of both transport barriers. The additional correction for the lymphatic absorption 

from the tissue, Lq , fluid transport across the capillary wall, cap
Vq , and sieving properties of 

the capillary wall, caps , should be additionally taken into account resulting in further 

decrease of the solute penetration depth. 

Remark 3. Formula (19) can be transformed to   1
T

S LmemKBD A k q   , which means that 

the effective diffusive mass transport parameter for solute transport may be considered, 
according to the distributed model, as proceeding directly between blood and dialysis fluid 
across the total capillary wall surface within the tissue layer of the width 

 1 tanh /Dif DifL     (where L is tissue width) with the transport parameter equal to 

T
Lk q , and these capillaries can be considered as immersed directly in dialysis fluid 

(Waniewski 2002; Waniewski, Werynski, and Lindholm 1999). For small solutes, T
Lk q  is 

approximately equal to Sp a  (Waniewski, Werynski, and Lindholm 1999). 

Remark 4. Formula (19) can be alternatively transformed to   T
SmemKBD A D / 2  

indicating that the same solute transport may be considered also as proceeding between 

blood and dialysis fluid across the tissue layer with solute tissue diffusivity TD  and width 

 2 / tanh /Dif DifL     without any interference from blood flow in the capillaries 

(Waniewski 2002; Waniewski, Werynski, and Lindholm 1999). 

Remark 5. Note, that for DifL   , 1 2 Dif     . 

4.1.3 Effective peritoneal blood flow 
In the context of peritoneal dialysis it is usually assumed that only a relatively thin layer of 
the tissue that is adjacent to the peritoneal surface participates effectively in the exchange of 
solutes between dialysate and blood. The rate of blood flow in this layer is called the 
effective peritoneal blood flow (EPBF). Some investigators attempted to evaluate EPBF using 
quickly diffusing gases, others considered the gas clearances as an overestimation of EPBF 
and pointed out the possibility of much lower values for EPBF as well as different EPBF 
values for solutes of different transport characteristics (Nolph and Twardowski 1989).  
The effective peritoneal blood flow, EPBF, can be defined according to the distributed model 
as the blood flow in a tissue layer of the depth equal to the solute penetration depth, that is  
(Waniewski, Werynski, and Lindholm 1999): 

 B DifEPBF A q     (23) 

where A  is effective peritoneal surface area, Bq  is perfusion rate (in ml/min/g), and Dif  

is solute diffusive penetration depth. An alternative approach to the definition of EPBF can 

be found in (Waniewski, Werynski, and Lindholm 1999; Waniewski 2002). 

4.2 Combined diffusive and convective solute transport  
In this section the relationships between the net diffusive mass transport coefficients for the 
solute transport between blood and dialysis fluid and the local physiology based transport 
parameters of distributed models are analyzed for combine diffusive and convective solute 
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transport. Inclusion of convective solute transport across the tissue is especially important in 
the case of macromolecules. In this section, the impact of the convective flow on the solute 
penetration depth as well on the effective reflection coefficient of peritoneal transport 
system is analyzed. 
Remark 1. The effective peritoneal blood flow is different for different solutes, see Table 4. 
 

Solute 
Dif ,  

mm 

SmemKBD ,  

ml/min 

EPBF , 
ml/min 

H2 0.68 269.6 269.6 

CO2 0.39 154.6 154.6 

Urea 0.18 19.8 52.7 

Creatinine 0.18 14.7 53.8 

Glucose 0.19 11.6 55.1 

Sucrose 0.19 7.9 57.7 

Vitamin B12 0.21 4.1 63.4 

Inulin 0.24 1.9 71.2 

Table 4. Theoretical values of solute penetration depth, diffusive mass transport coefficient, 
and perfusion rate calculated according to the distributed model assuming perfusion rate 

0 3.Bq   ml/min/g (Waniewski, Werynski, and Lindholm 1999). 

In the commonly applied phenomenological membrane models, the solute flow from 
dialysate to blood is typically evaluated using the following equation (Waniewski 2006, 
2001): 

 1( ) [( ) ]S S D B V D BJ KBD C C SJ F C FC     , (24) 

where SKBD  is membrane diffusive mass transport coefficient, S  is membrane sieving 

coefficient, Vj  is fluid flow between blood and dialysate, BC  and DC  are solute 

concentrations in blood and dialysate, respectively, and F  is a weighing factor for the 

mean concentration (Waniewski 2001). In order to compare both approaches, one may 

derive fro distributed model the following expression for solute flow from the peritoneal 

cavity to the tissue at the steady state (Waniewski 2001):  

     1
perit T

S S D B V D BJ memKBD C C s J f C f C      . (25) 

where ( )T T
S LmemKBD D k q   is the effective diffusive transport parameter (see previous 

section),  /cap T
Lk k q    describes the ratio of the equilibrium concentration of solute in 

the tissue over its concentration in blood (see previous section), 0 5.f   , 

21 4 1/ /Pe Pe    , and /T
V SPe s J memKBD  (Waniewski 2001).  

4.2.1 Effective sieving coefficient for macromolecules 
The important difference between phenomenological versus distributed approach 
(equations (24) and (25)) is the presence of coefficient   in equation (25). As it was 
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discussed in previous section, this parameter is typically close to 1 for small and middle 
molecules, whereas its values remain substantially lower than 1 for macromolecules (c.f. 
Table 3). In consequence, the concentration of macromolecules in dialysate equilibrates with 
their concentration in the tissue equal to BC , instead of that in blood.  

Equation (25) indicates relationship between effective sieving coefficient for 
macromolecules and fluid flow direction, which is not present in the membrane model. In 
general, the sieving coefficient may be measured directly if convective transport is 
prevailing, i.e. with very high fluid flow, or in isochratic conditions, i.e. during diffusive 
equilibrium at both sides of the membrane. If the measurement is done using solute 
concentration in blood as the reference, then the obtained value depends on the direction 
of fluid flow.  

Remark 1. For 0
perit

Vj   (i.e. in the direction from peritoneal cavity to the tissue) and 1Pe   

(i.e. with convective transport prevailing over diffusive one), then the measured value of 

sieving coefficient is equal to the  sieving coefficient of solute in the tissue, Ts , whereas for 

fluid flux across the tissue in the opposite direction (i.e. 0
perit

Vj  ) and 1Pe    this value 

is equal to C . 

4.2.2 Diffusive vs. convective penetration depth  
Let us consider the combine diffusive and convective solute transport at the steady state. It 
can be shown that the solute penetration depth can be calculated in this case as (Waniewski 
2001): 

 

2

2 2 4 2/ /

Dif

Dif Conv Dif


 

    
 (26) 

where Dif  is diffusive penetration depth, equation (22). The convective penetration depth 

for purely convective solute transport across the tissue, Conv ,  is defined as: 

  /T T
Conv V Ls j k q    (27) 

The comparison between the overall penetration depth  , and its diffusive and convective 

components, Dif  and Conv , calculated for 1
perit

VJ  ml/min is presented in Table 5. 

1
perit

VJ  ml/min is a typical value for the rate of fluid absorption from the peritoneal 

cavity. 

Remark 1. For small molecules with prevailing diffusive transport (i.e. 1/Conv Dif   ) the 

overall solute formula for the penetration depth can be simplified to 2/Dif Conv      

(Waniewski 2001). 

Remark 2. In the case of solutes that are transported mainly by convection Conv    (for 

1/Conv Dif   ) or, if they cannot penetrate the tissue, 0   (for 1/Conv Dif    ). 

Remark 3. That penetration depth for small solutes (creatinine) is dominated by the process 
of diffusion, for middle molecules (inulin, ǃ2-microglobulin) both processes contribute to the 
depth of solute penetration, and for macromolecules (albumin, IgM) the convective 
transport prevails, see Table 5. 
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Solute Dif , mm Conv , mm  , mm 

Creatinine 0.25 0.03 0.26 
Inulin 0.29 0.19 0.40 

2-microglobulin 0.60 0.85 1.15 

Albumin 0.71 2.63 2.81 
IgM 0.44 3.40 3.46 

Table 5. Penetration depth for different transport processes and for different solutes for 

1
perit

VJ  ml/min (Waniewski 2001). 

5. Kinetics of peritoneal dialysis  

The phenomenological models of the peritoneal transport such as the three-pore model or 
the membrane model, describe the kinetic of solute and fluid in the peritoneal cavity 
(Stachowska-Pietka 2010; Waniewski 2006). Complementary to them, the distributed 
approach allows for modeling the changes in the tissue, such as space distribution of 
interstitial hydrostatic pressure, tissue hydration and solute concentration in the tissue 
(Flessner, Dedrick, and Schultz 1985; Stachowska-Pietka et al. 2006; Waniewski, Stachowska-
Pietka, and Flessner 2009; Flessner 2001). However, due to the complexity of the peritoneal 
phenomena as well as its high nonlinearity, distributed models are solved numerically for 
most applications. For example, numerical simulations of a peritoneal distributed model can 
be performed for a single exchange with hypertonic glucose solution 3.86%, see Figure 5 
(Stachowska-Pietka and Waniewski 2011). The infusion of hypertonic solution induces 
water inflow into adjacent tissue. In consequence, increase of interstitial hydrostatic 
pressure and tissue hydration (as assessed by fluid void volume) can be observed in the 
tissue layer close to the peritoneal cavity (about 2.5 mm from the peritoneal surface, Figure 
5, left panel) during next minutes and hours whereas the hydration of deeper tissue layers 
remains unchanged. Glucose diffuses from the peritoneal cavity into the tissue causing 
increase of glucose concentration in a thin layer of the tissue close to the peritoneal cavity 
(less than 0.01 cm width), c.f. Figure 5, right panel. 
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Fig. 5. Interstitial fluid void volume ratio,   (left panel), and glucose concentration in 

interstitial fluid, CG (right panel) at t=1, 60, 120, and 360 min. as a function of distance from 
the peritoneal cavity, X (Stachowska-Pietka and Waniewski 2011). 
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Concomitantly to the changes in the tissue hydration and solute concentration, the 
intraperitoneal fluid volume and glucose concentration change with dwell time, Figure 6 
(Stachowska-Pietka and Waniewski 2011). The fluid absorption from the peritoneal cavity 
and ultrafiltration to the cavity results in the changes of intraperitoneal volume, as observed 
in clinical studies (Figure 6, left panel). Moreover, due to glucose diffusion into adjacent 
tissue, its intraperitoneal concentration decreases during the dwell time (Figure 6, right 
panel). Other results on the kinetics of dialysis according to distributed approach can be 
found elsewhere (Seames, Moncrief, and Popovich 1990; Flessner, Dedrick, and Schultz 
1985, 1984; Flessner 2001; Stachowska-Pietka 2010; Stachowska-Pietka et al. 2005; 
Stachowska-Pietka, Waniewski, and Lindholm 2010, 2010). 
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Fig. 6. Intraperitoneal volume, VD, (left panel), and glucose concentration in dialysis fluid,  
CD, (right panel) as function of dwell time T (Stachowska-Pietka and Waniewski 2011). 

6. Conclusions  

Distributed modeling allows for a detailed description of the peritoneal transport system 
with its real geometry and different characteristics for the main transport barriers of the 
capillary wall and the tissue (for most solutes of interest: the interstitium). Lymphatic 
absorption from the tissue, so important for the protein turnover, can also be taken into 
account. The models are based on the macroscopic approach with continuous distribution of 
the capillary and lymphatic vessels in the tissue instead of the real discrete system of these 
vessels. However, they can adequately describe the available data about solute 
concentrations and hydrostatic pressure inside the tissue during experimental studies on 
peritoneal dialysis (Stachowska-Pietka et al. 2006; Waniewski, Stachowska-Pietka, and 
Flessner 2009; Flessner 2001).  
The distributed approach yields important relationships between the measurable transport 
parameters that are defined by the membrane models, as the diffusive mass transport 
parameter, hydraulic conductivity, sieving coefficient, etc., for the description of the net 
transport between blood and dialysis fluid in the peritoneal cavity, and the fundamental 
parameters for the description of the transport across the capillary wall, the tissue and 
lymphatic absorption from the tissue, see Figure 7. These basic local transport parameters 
are subject to interpatient variability and they can change with time on dialysis that may 

www.intechopen.com



 
Distributed Models of Peritoneal Transport 

 

43 

result in serious complications in the treatment. Unfortunately, these local transport 
characteristics cannot be directly measured in clinical setting and one has to derive their 
values using mathematical models and the information from animal studies. Some of the 
basic questions about peritoneal transport, as the width of the tissue layer involved in the 
exchange of fluid and solutes during peritoneal dialysis and rate of the blood flow that 
participates in this exchange can be correctly answered only if the local transport coefficients 
are known. The formulas for the effective transport parameters, penetration depth, effective 
blood flow, etc., are derived from the model for the steady state transport assuming spatial 
homogeneity of the transport system, and therefore their application for the real dialysis 
may be limited for some solutes and dialysis conditions. 
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Fig. 7. Simple relationships between the effective peritoneal transport parameters and 

penetration depths and the local tissue and capillary wall transport parameters: PmemL a  - 

effective hydraulic conductivity, A – effective peritoneal surface area, K – tissue hydraulic 

conductivity, PL a  - capillary wall hydraulic conductance, eff  - effective reflection 

coefficient,  cap  - capillary wall reflection coefficient. F  - fluid penetration depth,   - 

solute penetration depth, SmemKBD  - effective diffusive transport parameters, TD  - solute 

diffusivity in the tissue, Tk  - a unidirectional clearance for transport from tissue to blood, Lq  

- tissue lymphatic absorption.  

Any realistic description of peritoneal dialysis must take into account that the conditions in 

the peritoneal cavity and in the tissue continuously change with dwell time due to, for 

example, vasodilatation induced by hyperosmolality of dialysis fluid and overhydration of 

the tissue induced by increased hydrostatic pressure in the peritoneal cavity. Therefore, 

computer modeling is necessary for such a theory as shown in Section 5, see also 

(Stachowska-Pietka 2010). 

The distributed modeling can be applied for many problems of clinical and experimental 
interest, and further extensions are possible. For example, the contribution of a cellular 
compartment in the tissue to the transport of small ions (sodium, potassium) should be 
taken into account (Coester et al. 2007), and a more detailed structure of the interstitium 
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need to be proposed to solve the problems with bidirectional transport of macromolecules 
(Stachowska-Pietka 2010). Nevertheless, the current understanding and quantification of the 
peritoneal transport obtained using the distributed approach is already a helpful tool in 
clinical and experimental research. 
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8. Nomenclature 
 

Symbols Parameter 
A effective peritoneal surface area, cm2 

C or CS solute concentration in the tissue, mmol/l 
CB  or CB,S  solute concentration in blood, mmol/l 

CD or CD,S  solute concentration in dialysate, mmol/l 
TD  or T

SD  solute diffusivity in the tissue, cm2/min 

K tissue hydraulic conductivity, cm2/min/mmHg 
kT unidirectional clearance for transport from tissue to blood, 1/min 
L tissue width, cm 

PL a  hydraulic conductance of the capillary wall, 1/min/mmHg 

memKBDS effective diffusive mass transport coefficient of the PTS, mL/min 
memLPa effective hydraulic conductivity of the PTS, mL/min/mmHg 
memOsmCond effective osmotic conductance of PTS, (ml/min)/(mmol/l) 
P  interstitial hydrostatic pressure, mmHg  
PB  blood hydrostatic pressure, mmHg 
PD  intraperitoneal hydrostatic pressure, mmHg 

Sp a  diffusive permeability of solute across the capillary wall, 1/min  

Lq  tissue lymphatic absorption, 1/min 

caps  or cap
Ss  sieving coefficient for solute across the capillary wall 

Ts  or T
Ss  sieving coefficient of solute in the tissue 

  

  interstitial fluid void volume 

S  solute void volume 

  ratio of the equilibrium concentration of solute in the tissue over 
its concentration in blood 

  solute overall penetration depth, cm 

Conv  solute convective penetration depth, cm 

Dif  solute diffusive penetration depth, cm 

F  fluid penetration depth, cm 

cap  or cap
S  capillary wall reflection coefficient for solute S 
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eff  effective reflection coefficient for PTS 

T  or T
S  tissue reflection coefficient for solute S 
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