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1. Introduction 

1.1 α-synuclein: A “leading act” in the synapse 

α-Synuclein is a relatively abundant 140-residue neuronal protein physiologically found in 
presynaptic neuronal terminals (Abeliovich et al., 2000; Spillantini, Crowther, Jakes, 

Hasegawa, & Goedert, 1998; Wacker, Zareie, Fong, Sarikaya, & Muchowski, 2004). α- 

synuclein belongs to a highly conserved family of proteins which includes β- and γ-synucleins. 
It is an intrinsically unfolded, or natively unfolded, protein, meaning that in its purified form 
at neutral pH it lacks an ordered secondary or tertiary structure (Trojanowski & Lee, 1998). 
Three missense point mutations (A53T, A30P and E46K) have been identified in families with 
autosomal dominant Parkinson’s disease (PD) (Figure 1) (Chartier-Harlin et al., 2004; Kruger et 
al., 1998; Polymeropoulos et al., 1997). In addition, duplications and triplications in the gene 

encoding for α-synuclein have been shown to cause rare familial forms of PD, suggesting that 
the levels of the protein are critical in the pathogenesis of the disease (Singleton et al., 2003; 

Zarranz et al., 2004). Over-expression of mutant α-synuclein in transgenic mice under various 
promoters presents only certain aspects of PD and some have been shown to lead to 

neurodegeneration (reviewed in Sulzer, 2010). Knockout mice for α-synuclein do not exhibit 
severe neuropathological alterations but, at least in the nigrostriatal dopaminergic system, 

they show an enhancement of response to paired electrical stimuli, suggesting that α-
synuclein, normally, negatively controls neurotransmitter release. 
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Fig. 1. Schematic representation of α-synuclein showing the basic regions of the protein and 
the point mutations that have been linked with familial PD. 

With respect to neurotransmission, it has been recently reported that excessive α-
synuclein induces a series of pathologic changes, including deficits in neurotransmitter 
release. In a recent study, Nemani et al. (2010) showed that following only modest 
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increases in α-synuclein, an inhibition of neurotransmitter release was observed in 
glutamatergic hippocampal pyramidal neurons and mesencephalic dopaminergic 
neurons (Nemani et al., 2010). This inhibition appeared to be a consequence of the failure 
to get recycling vesicles clustered near synaptic release sites. In a different study, Scott et 

al. (2010) demonstrated that α-synuclein can reduce the levels of several critical 
presynaptic proteins involved in exocytosis and endocytosis (Scott et al., 2010). The 
group further observed significant reductions in miniEPSC frequency, diminished 

presynaptic exocytosis and altered vesicle size by EM in α-synuclein-overexpressing 
neurons. 

A role of α-synuclein in the integrity of the SNARE complex was also reported by Darios et al., 

(2010) who showed that α-synuclein sequesters arachidonic acid and thereby blocks the 

activation of SNARE protein interactions (Darios et al., 2010). Precisely how increased α-

synuclein expression impairs clustering of vesicles near the synapse remains to be elucidated. 

However, α-synuclein has been found to rescue the disassembly of the SNARE complex and 

the degeneration of neuritic terminals associated with lack of the presynaptic protein Cystein 

String Protein-α (CSP- α), by facilitating the assembly of SNARE complexes that mediate 

vesicle fusion at presynaptic terminals. By directly examining SNARE assembly, Burré et al 

(2010) showed that this facilitating process depends on synaptic activity and propose that the 

association of α-synuclein with VAMP may ultimately mediate the process (Burré et al., 2010). 

Furthermore, the same group generated α-, β-, and γ-synuclein triple knockout mice, which as 

they aged, made SNARE complexes less, displayed a significant age-dependent decrease in 

synaptobrevin-2 and perished prematurely. The role of synucleins was fully dispensable in 

young animals but became essential in aged ones, which suggests that α-synuclein maintains 

normal synaptic function during aging. Moreover, the authors found that restoring expression 

of α-synuclein in cultured neurons from the triple knockout mice helped re-establish SNARE 

complexes, and did so in a dose-dependent way. 

Further arguing for a physiological role of synucleins in synaptic transmission, synuclein 

null mice lacking α-, β-, and γ-synucleins generated by Greten–Harison et al. (2010), 

exhibited prominent age-dependent changes in synaptic protein composition and axonal 

structure that led to severe neuronal dysfunction in the central nervous system and 

neuronal death (Greten-Harrison et al., 2010). Importantly, in the hippocampus, young 

synuclein null mice exhibited increased basic transmission which could be rescued with 

both mouse and human α-synuclein transgenes, confirming that synucleins affect basal 

neurotransmission. In agreement with a role for α-synuclein in synaptic function, Keri et al. 

(2010) reported impaired learning in people who have two copies of the α-synuclein gene 

but lack PD-like symptoms (Keri, Moustafa, Myers, Benedek, & Gluck, 2010). Compared to 

age-matched volunteers whose α-synuclein was normal, the group reported that the gene 

duplication carriers showed defects in learning. α-Synuclein also binds and inactivates 

phospholipase D2, and could thus influence synaptic membrane biogenesis through 

phosphatidic acid metabolism. 

Overall, distinct α-synuclein concentration thresholds seem to be permissive for synapse 

function, raising the question of whether early signs of neurodegenerative pathology reflect 

a disturbance in synaptic density homeostasis. Targeting synaptic membrane proteins that 

tend to interact with α-synuclein and affect membrane trafficking under physiological 

conditions, could present a pool of potential molecular therapeutic targets. 
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1.2 α-Synuclein toxic species: The search goes on 

The feature of α-synuclein that has attracted the most attention is its distinctive propensity 
to aggregate in vitro, through a sequence of conversion from a natively unfolded monomeric 
form to a fibrillar form; a phenomenon associated with a conformational change from 

random coil to β-pleeted sheet. Aggregated insoluble α-synuclein is the major constituent of 
cytoplasmic inclusions termed Lewy bodies and Lewy neurites, which are the pathological 
hallmarks of inherited and sporadic PD (Spillantini et al., 1998). The presence of Lewy 

Bodies in the substantia nigra is diagnostic for PD, but α-synuclein pathology is also 
encountered in other brain regions and may account for the wide range of non-motor 
symptoms observed (Bate, Gentleman, & Williams, 2010). 

Although the exact aberrant function of α-synuclein that links it to neurodegeneration is not 
known, the weight of the evidence suggests that the process of its conversion to toxic 
oligomers is involved, hence has been the subject of extensive research. Similar to amyloid 

beta (Aβ), attention has recently shifted from the insoluble amyloid fibrils to the soluble 

oligomeric intermediates, or protofibrils, in the α-synuclein aggregation process. There is 
evidence that the soluble oligomeric protofibrils, and not the mature fibrils, are the toxic 
species. Although the question is still open (Waxman & Giasson, 2009), data obtained in 
three established model systems for PD, such as primary neurons, C. elegans, and 

Drosophila, show a strong correlation between α-synuclein oligomers, neuronal toxicity, 

and behavioral defects (Karpinar et al., 2009), further sustaining a pathogenic role for α-

synuclein oligomers in PD. The A30P and A53T mutations of α-synuclein associated with 

familial forms of PD both promote protofibril formation relative to wild type α-synuclein (J. 
Li, Uversky, & Fink, 2001; Rochet, Conway, & Lansbury, 2000). The A30P mutation was also 
shown to delay the formation of amyloid fibrils relative to the wild type protein, suggesting 

that α-synuclein protofibrils rather than fibrils may be the pathogenic species (Conway et 
al., 2000). In addition, the presence of soluble protofibrilar species, when compared to frank 
fibrillar inclusions or monomers, correlates better temporally with death in cellular and in 
vivo models (Danzer et al., 2007; Emmanouilidou, Stefanis, & Vekrellis, 2010; Kayed et al., 
2003).  

Several α-synuclein post-translational modifications lead to the formation of stable 

oligomers. These include nitration, oxidation, phosphorylation, and interaction with iron. 

Oxidative modification of α-synuclein via dopamine adducts may facilitate aggregation 

(Conway, Rochet, Bieganski, & Lansbury, 2001). Dopamine and its metabolites modulate 

differently the stability of soluble oligomers and mature fibrils and act as inhibitors of the 

conversion of protofibrils to fibrils, thus favouring protofibril accumulation (Follmer et al., 

2007; Sultzer, Gray, Gunay, Wheatley, & Mahler, 2001). In a recent report Tsika et al. (2010) 

showed that, despite similarities in basic biochemical properties, α-synuclein oligomeric 

intermediates obtained from different neural regions demonstrated unexpected divergence 

in promoting α-synuclein amyloid fibril formation and toxicity (Tsika et al., 2010). This is in 

agreement with the fact that despite the ubiquitous expression of α-synuclein throughout 

the CNS, Lewy bodies are found in certain susceptible neuronal subtypes of specific brain 

nuclei (Braak, Rub, & Del Tredici, 2003). 

A possible mechanism by which oligomers could be toxic is through the disruption and 
permeabilization of cellular membranes (Lashuel et al., 2002; Volles et al., 2001). Oligomeric 

α-synuclein has been shown to permeabilize negatively charged synthetic phospholipid 
vesicles (Volles et al., 2001; Zhu, Li, & Fink, 2003). Soluble oligomers are considered to be 
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cytotoxic and to disrupt cellular membranes, by forming pore-like complexes in the bilayer 
in a manner similar to bacterial pore forming toxins (Lashuel & Hirling, 2006). The pore 
formation, inducing disruption of cellular ion homeostasis, may be responsible for the 

neurotoxic effect (Volles et al., 2001). So far, it has been demonstrated that α-synuclein 

regulates calcium entry pathways and, consequently, that abnormal α-synuclein levels may 
promote neuronal damage through disregulation of calcium homeostasis. However, to date, 

there has been very limited evidence that supports the pore formation by cell-produced α-
synuclein oligomers.   
Studies aiming to identify the potential toxic species are also based primarily on 

experiments in which oligomerization of the protein is forced in vitro (Danzer et al., 2007; 

Goldberg & Lansbury, 2000). Recently, a study by the Masliah group in UCSD (2011) using a 

rat lentiviral system showed that only those mutations of α-synuclein that could cause the 

formation of soluble oligomers could also confer toxicity to dopaminergic neurons by 

disturbing the plasma membrane (Winner et al., 2011). Other proposed mechanisms through 

which these oligomers can confer cell death include alterations in the lysosomal-dependent 

autophagy pathway (Xilouri, Vogiatzi, Vekrellis, & Stefanis, 2008) and mitochondrial 

dysfunction (Martin et al., 2006). Evidence on a role of phosphorylation in the 

oligomerization and neurotoxicity of α-synuclein has also been provided (Cavallarin, 

Vicario, & Negro 2010). It has been shown that α-synuclein is heavily phosphorylated in 

Lewy bodies found in patients with synucleinopathies but studies have disagreed about 

whether this phosphorylation promotes or prevents neurotoxicity (Azeredo da Silveira et 

al., 2009) because α-synuclein carries a number of potential phosphorylation sites. 

Phosphorylation of α-synuclein at Ser129 strongly modulates interactions between α-

synuclein and synphilin-1 and the formation of inclusions. Soluble α-synuclein oligomeric 

species are increased by phosphorylation at Ser129 (Chen et al., 2009). Recently, Paleologou 

et al., (2010) demonstrated that phosphorylation of α-synuclein at Ser87 is elevated in brain 

extracts from cases of dementia with Lewy bodies (DLB), multiple system atrophy, and from 

several mouse models of synucleinopathy where most of the modified protein was 

associated with membranes (Paleologou et al., 2010). The authors also showed that 

modifications at Ser87 affect both α-synuclein’s pathological aggregation and its normal 

interaction with cell membranes. 

Finally, oligomeric α-synuclein can induce microglia activation (Zhang et al., 2005) and 

cause subsequent neuro-inflammation which aggravates DA neuronal loss (Koprich, Reske-

Nielsen, Mithal, & Isacson, 2008).  

2. Effects of intracellular α-synuclein on cellular homeostasis 

Physiologic function of the cell requires proper and continuous functioning of cellular 
surveillance mechanisms that identify and clear unwanted adducts in the cell interior. 
Intracellular buildup of aberrant components disturbs cellular homeostasis ultimately 
leading to cell death. Chaperones and proteolytic systems are responsible for cellular quality 
control, and defects in both systems have been involved in PD pathogenesis. Molecular 
chaperones is a highly conserved class of proteins that are responsible for the proper folding 
of macromolecules and the refolding of proteins that have become misfolded as a result of 
cellular stress (Muchowski & Wacker, 2005). As mentioned above, PD is characterized by 

the accumulation of misfolded α-synuclein in intraneuronal inclusions called Lewy bodies, 
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and several studies have suggested that failure of chaperone-mediated protection may 

enhance α-synuclein aggregation and neurotoxicity (Ali, Kitay, & Zhai; Muchowski & 
Wacker, 2005). Changes in the two major intracellular proteolytic systems, the ubiquitin-
proteasome system (UPS) and the lysosome-autophagy system, are widely considered to 

contribute to the accumulation of aggregated α-synuclein species that in turn affect vital 
cellular pathways and lead to cell death. Dysfunctions in macroautophagy and chaperone-
mediated autophagy, the two main lysosomal degradation systems, have been linked with 

intracellular α-synuclein accumulation in several studies using both cellular and animal 
models (Cuervo, Wong, & Martinez-Vicente, 2010; Xilouri & Stefanis, 2011). In this 

manuscript, we will preferentially focus on the impact of α-synuclein burden on the UPS as 
a potential pathway to neurodegeneration. 

2.1 The proteasome: Structure, regulation and proteolytic function 
The ubiquitin-proteasome system (UPS) is a major system for intracellular protein 

degradation, a complex and tightly regulated process (Goldberg et al., 2003). Protein 

degradation through the UPS pathway consists of two discrete and successive steps. The 

first step is ubiquitylation, a process through which the small protein ubiquitin is covalently 

attached to surface-exposed lysine residues of the target protein to be degradated (Glickman 

& Ciechanover, 2002). Ubiquitin is a highly evolutionarily conserved 76-residue polypeptide 

that is abundantly found in the cell cytoplasm. Ubiquitylation is accomblished via a three-

step cascade mechanism where each step is catalyzed by ubiquitin-activating (E1), 

ubiquitin-conjugating (E2) and ubiquitin-ligase (E3) enzymes. Once the initial ubiquitin is 

conjugated, polyubiquitylation of the substrate occurs through the sequential transfer of 

ubiquitin molecules, thus forming an ubiquitin chain. The minimum signal for UPS-

mediated proteolytic degradation is a chain of four ubiquitin moieties (Gallastegui & Groll; 

Glickman & Ciechanover, 2002; Layfield et al., 2001). In the second step of the degradation 

process, this poly-ubiquitin chain is recognized by the proteolytic core engine of the UPS, 

the 26S proteasome complex, which in turn degrades the substrate protein into defined 

oligopeptides with release of free and reusable ubiquitin. The removal of the ubiquitin tag is 

mediated by ubiquitin recycling enzymes (Ardley & Robinson, 2005; Glickman & 

Ciechanover, 2002).  

The 26S proteasome is a 2-2.5 MDa proteolytic enzyme that is highly conserved among 
eukaryotes (Besche, Haas, Gygi, & Goldberg, 2009). It comprises two multimeric protein 
complexes, the 20S core particle, where actual proteolysis occurs, and two 19S regulatory 
particles, that regulate the function of the 20S (Benaroudj, Zwickl, Seemuller, Baumeister, & 
Goldberg, 2003; Crews, 2003; Goldberg et al., 2003). Each one of the two regulatory units 
attach to the outer surface of the core particle. The 20S core complex is a ~700 kDa barrel-
shaped structure made up of four stacked hetero-heptameric rings: two identical outer rings 

consisting of α-type subunits and two identical inner rings consisting of β-type subunits. 

Each of the β-rings possesses three different catalytic activities for cleavage after specific 
amino acids. The 19S regulatory particle, also known as the PA700 particle, caps one or both 
ends of the 20S cylinder and is itself composed of two subcomplexes, the lid and the base, 
that have distinct regulatory functions. The base complex is thought to mediate the ATP-
dependent unfolding of protein substrates and their translocation to the 20S chamber 
through a narrow gated pore channel. This gate is formed by the interlacing N-termini of the 

α subunits thereby preventing nonspecific degradation of cellular proteins. The lid complex 
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is responsible for the initial recognition, binding and de-ubiquitination of the ubiquitin-
tagged polypeptides (Benaroudj et al., 2003; Besche et al., 2009; Glickman & Ciechanover, 
2002).  
Perhaps the most intriguing question is how the proteasome achieves its high specificity 
and selectivity. Collective data suggest that two distinct groups of proteins, the E3 
ligases and the proteasome ancillary proteins, determine the proteasome specificity 
through control of the substrate recognition process (Glickman & Ciechanover, 2002). As 
already mentioned, E3s catalyze substrate recognition prior to their ubiquitination. Such 
recognition can be accomplished by direct binding of substrates to the appropriate E3 
enzyme via their NH2-terminal residue (the N-end rule pathway). However, in most 
cases indirect pathways facilitate protein recognition. Alternative modes of recognition 
include post-translational modifications or allosteric activation of the E3 enzyme, 
phosphorylation of the substrate and/or E3s, or changes in the conformation state of the 
substrate protein. Ancillary proteins, such as chaperone proteins or transcription factors, 
also facilitate substrate recognition through a variety of mechanisms (Glickman & 
Ciechanover, 2002). 
Proteasome regulation is tightly controlled by the 19S complex. The base subcomplex of the 
19S particle consists of six different ATPase subunits (Rpts1-6) that promote gate opening 
upon ATP binding (Demartino & Gillette, 2007). This process also requires binding of the C-
terminal tails of Rpt1, Rpt3 and Rpt5 to the 20S through a specific conserved sequence motif 
(HbYX motif). Interestingly, binding of the C-terminus of Rpt2 acts as a potent repressor of 
substrate accessibility into the 20S particle. The ATPases Rpt4 and Rpt6 are not involved in 
gate opening; rather they are thought to regulate the ordered assembly of the 19S complex 
via binding of their C-terminus tail with external chaperone proteins. Finally, the UPS 
system can also be regulated at the level of proteasomal activity either by enhancing the 
catalytic activities or by altering the specificity of the cleavage sites (Gallastegui & Groll, 
2010). Alternatively, regulator non-ATPase complexes, such as the PA28 activator, can 
interact with the one end of the 20S enhancing the overall proteolytic activity of the 
proteasome, possibly by removing the occlusion at the chamber pore. Since these activators 
do not bind to polyubiquitin chains, their assembly into the 19S/20S complex results in 
ubiquitin-independent proteolysis (Demartino & Gillette, 2007). 

2.2 The impact of protein aggregation on the UPS 
Neurodegenerative diseases like Parkinson's disease, Alzheimer's disease, Huntington's 
disease and others share a common neuropathological characteristic which is the 
aggregation of abnormal proteins that fold improperly and impair neuronal function. 
Accumulation of aberrant proteins could be achieved by several mechanisms including 
mutations, overproduction or impairment of their clearance. Clearly, such accumulations 
are indicative of a malfunction of the process of protein turnover since they are not found in 
healthy individuals. Proteolysis is an important cellular process which involves the tightly 
regulated removal of unwanted proteins. The ubiquitin-proteasome system (UPS) eliminates 
mutated or abnormally folded proteins by degradation to prevent their accumulation in the 
cell and the subsequent formation of inclusion bodies. Most likely, dysfunction of the UPS 
contributes to the neuropathogenesis of various types of conformational diseases such as the 
ones mentioned above. It is plausible that failure of protein degradation from the UPS can 
lead to imbalance in protein homeostasis that could in turn promote the toxic accumulation 
of proteins which is detrimental for neuronal viability (Sherman & Goldberg, 2001). It is 
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interesting that in postmortem studies proteasomal activity was significantly reduced in the 
brain of PD patients (McNaught, Perl, Brownell, & Olanow, 2004). 
A rather important question still under investigation is why protein quality control 
mechanisms, such as the UPS, fail to keep cells free from misfolded proteins. Recent 
evidence clearly suggests that there is a reciprocal relationship between protein 
aggregation and the UPS, meaning that one can influence the other. The selective 
accumulation of oligomeric-prone proteins could be explained by the inability of the UPS 
to cope with these proteins once their levels have been increased as a consequence of 
cellular stress. In an elegant study, Bence, et al. reported that protein aggregation directly 
impaired the function of the UPS (Bence, Sampat, & Kopito, 2001). They demonstrated 
that expression of two aggregation-prone proteins, the DF508 mutant of cystic fibrosis 
conductance regulator (CFTR) and an N-terminal fragment of Huntingtin with an 
expanded polyglutamine repeat (Q103), in Human Embruonic Kidney (HEK) cells was 
associated with accumulation of the artificial fluorescent proteasome substrate GFPu. 
Moreover, the authors reported that fluorescence was proportional to the inclusion size, 
indicating that larger inclusions were associated with more intense proteasome 
dysfunction. Transient expression of two unrelated aggregation-prone proteins, a 
huntingtin fragment containing a pathogenic polyglutamine repeat and a folding mutant 
of cystic fibrosis transmembrane conductance regulator, caused nearly complete 
inhibition of the UPS. 
Because of the central role of ubiquitin-dependent proteolysis in regulating fundamental 
cellular events such as cell division and apoptosis, these data suggest a potential mechanism 
linking protein aggregation to cellular disregulation and cell death. The exact species of the 
aggregate-prone proteins responsible for the dysfunction of the proteasome are unknown. 

For example, we have not found evidence for accumulation of total α-synuclein after 
proteasomal inhibition following either pharmacologic treatment or overexpression of the 
protein, in the cellular systems that we have used (Emmanouilidou, Stefanis et al., 2010; 

Rideout, Larsen, Sulzer, & Stefanis, 2001; Rideout & Stefanis, 2002). However, α-synuclein 
does seem to be turned over by the proteasome in other experimental settings (Tofaris, 
Razzaq, Ghetti, Lilley, & Spillantini, 2003; Webb, Ravikumar, Atkins, Skepper, & 
Rubinsztein, 2003). Similarly, studies suggest that expanded polyglutamine  regions are by 
themselves intrinsically resistant to degradation by purified proteasomes (Venkatraman, 
Wetzel, Tanaka, Nukina, & Goldberg, 2004), although not all studies agree to that (Michalik 
& Van Broeckhoven, 2004). 
Although these results suggest that inclusions are the primary deleterious species causing 
proteasomal dysfunction, it is also possible that other species of the aggregation process, 
rather than the inclusions themselves, are responsible for inhibition especially if 
proteasome inhibition itself accelerates inclusion formation. In this respect, in vitro studies 

show that α-synuclein, especially the oligomeric-aggregated conformation, can directly 
inhibit proteasomal function (Lindersson et al., 2004). These data suggest that the 

inhibition of proteasomal function observed in the cellular systems with mutant α-
synuclein overexpression, are likely due to soluble oligomeric forms of the protein. 
Clearly, well-formed inclusions are unlikely to interact with the proteasome as substrates.  
They may, however, sequester chaperones and proteasomes that are recruited during the 
increased effort of the cell to degrade the misfolded proteins. This may eventually lead to 
the depletion of the proteasome and of other UPS components from their usual site of 
action and subsequent UPS dysfunction. Consistent with this idea, Jana NR., et al. 2001 
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showed that expression of N-terminal Huntingtin with expanded polyglutamine repeats 
in cells and in transgenic animals led to the incorporation of the 20S proteasome in 
inclusions (Jana, Zemskov, Wang, & Nukina, 2001). Although the UPS appears as a very 
attractive option for therapeutic intervention in neurodegenerative diseases, the 
confirmation of the identity of the toxic proteins species involved remain unresolved. 
Importantly, as yet there are no strong in vivo data linking proteasome inhibition to 
cellular toxicity. 

2.3 α-synuclein impairs UPS function 
Several lines of evidence suggest that dysfunction of protein degradation through the UPS 
may be involved in PD-related neurodegeneration (Lang-Rollin, Rideout, & Stefanis, 2003). 
In vivo, data from studies using the gad mouse model directly support this statement. The 
gad mouse lacks expression of murine UCH-L1, a deubiquitinating E3 ligase that is highly 
abundant in neuronal cells. UCH-L1 has been found in Lewy inclusions which characterize 
the PD pathology (Lowe, McDermott, Landon, Mayer, & Wilkinson, 1990). These mice 
display neuronal degeneration with progressive accumulation of ubiquitin-positive 
inclusions into sensory and motor neurons (Saigoh et al., 1999). The two components of the 
UPS, UCH-L1 and parkin, are genetically implicated with familial PD (Kitada et al., 1998). 

Additionally, α-synuclein and DJ-1, two key proteins in PD pathogenesis, have been shown 
to be degraded by the UPS (Ardley & Robinson, 2005; Miller & Wilson, 2003; Snyder et al., 
2003).  

A great number of studies propose a link between α-synuclein and the UPS system, 
although it remains controversial whether the proteasome is responsible for the degradation 
of this protein (Bennett et al., 1999; Rideout et al., 2001). In vitro work has demonstrated that 

the expression of mutant or wild type α-synuclein is sufficient to cause proteasomal 
inhibition in neuronal cell culture systems (Petrucelli et al., 2002; Smith et al., 2005; Snyder et 
al., 2003; Stefanis, Larsen, Rideout, Sulzer, & Greene, 2001; Tanaka et al., 2001). In 

accordance with these data, α-synuclein can directly bind to Rpt5 in vitro, a subunit of the 
19S regulatory particle (Ghee, Melki, Michot, & Mallet, 2005). In most of the cases, 

aggregated or oligomeric α-synuclein had a stronger effect on proteasome function 
compared with the monomeric form of the protein (Lindersson et al., 2004; Snyder et al., 
2003). However, Martin-Clemente et al. failed to show UPS inhibition in PC12 cells 

overexpressing mutant α-synuclein or in α-synuclein transgenic mice (Martin-Clemente et 
al., 2004).  

Given the complexity of the mechanism through which α-synuclein affects proteasome 

function, we have addressed, in a cellular context, the identity of α-synuclein species that 
are implicated in UPS dysfunction (Emmanouilidou, Stefanis et al., 2010). We have shown 

that stable overexpression of wild type or A53T mutant α-synuclein in PC12 cells 
significantly reduces all proteasome activities (chymotrypsin-like, trypsin-like and caspase-
like activities). In this study, the assessment of proteasome activity was performed in 
functional 26S proteasomes isolated by size exclusion chromatography (SEC) from cell 
extracts rather than analysing crude cell lysates. This method provides increased accuracy in 
the measurement of enzymatic activity since it precludes any interference from other 
common proteinases present in the cell lysate (Rodgers & Dean, 2003). The observed 
proteasome inhibition was not due to decreased levels of proteasome subunits or abnormal 
assembly of the complex. Separation of cytosolic proteins by SEC showed that a small 
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amount of α-synuclein (corresponding only to 0.5% of the total α-synuclein contained in the 
lysate) co-eluted in the 26S proteasome-containing fractions. Ultrafiltration experiments 

verified the presence of α-synuclein in these high MW fractions. This co-elution was shown 

to be specific for α-synuclein and not an artifact of mere protein overexpression or the result 
of producing high levels of an aggregation-prone protein in the cell model used 
(Emmanouilidou, Stefanis et al., 2010).  

Non-denaturing gel electrophoresis revealed that the α-synuclein co-eluting with the 26S 

proteasome was oligomeric in nature, migrating between 150 and 450 kDa 

(Emmanouilidou, Stefanis et al., 2010). Importantly, these species were detected in the 

cortex homogenates of homozygous transgenic mice which express the human A53T α-

synuclein under the control of the prion promoter (Giasson et al., 2002). Further proving 

the oligomeric state of these specific species, treatment of the cell lysates with Congo Red 

(CR), a compound known to disrupt preformed oligomeric/aggregated forms of various 

proteins (Carter & Chou, 1998), significantly reduced α-synuclein burden in the 26S 

proteasome fractions. In doing so, CR treatment restored the proteasome activity without 

interfering with the assembly of the 26S complex. In another approach, treatment with the 

heat shock protein inducer, geldanamycin, resulted in the reduction of α-synuclein 

species from the proteasome fractions. Again, removal of the proteasome-associated 

oligomeric α-synuclein led to restoration of proteasome activity (Emmanouilidou, Stefanis 

et al., 2010). Application of selective proteasomal and lysosomal inhibitors further 

demonstrated that these specific α-synuclein oligomers are indeed degraded by the 

proteasome but not the lysosome. Overall, these data indicated that specific oligomeric α-

synuclein species of intermediate size are targeted to, and impair the 26S proteasome 

possibly through a functional interaction. 

What this interaction involves is still unclear (Figure 2). One possibility could be the direct 

binding of α-synuclein oligomers to the active sites of the 20S β-subunits. However, this 

mechanism would require translocation of the oligomers into the catalytic cylinder through 

a narrow open-gated channel (Pickart & Cohen, 2004). Alternatively, α-synuclein oligomers 

may interfere with processes controlled by the 19S complex. Our data (Emmanouilidou, 

Stefanis et al., 2010) show that proteasome assembly is not affected by the presence of such 

species. 19S inhibition may involve a physical interaction between α-synuclein and a 19S 

subunit (Ghee et al., 2005). It is possible that α-synuclein oligomers are targeted to the 26S 

proteasome by means of their aberrant conformation. In line with this notion, α-synuclein 

present in the proteasome-enriched fractions lacks ubiquitylation, the targeting signal for 

degradation via the UPS system (Emmanouilidou, Stefanis et al.). As reported previously, 

misfolded polypeptides are recognized by the 26S proteasome by the help of certain 

molecular chaperones (Benaroudj et al., 2003; Glickman & Ciechanover, 2002). In this 

context, the bulky α-synuclein oligomers may prevent 19S-mediated protein unfolding and 

translocation due to steric hindrance preventing further interactions of other substrates with 

the proteasome. Such an idea has also been suggested in the case of oligomeric PrP 

(Kristiansen et al., 2007). Recently, Machiya Y et al. (2010) showed that Ser-129-

phosphorylated α-synuclein is targeted to the proteasome pathway in an ubiquitin-

independent manner, in addition to undergoing dephosphorylation (Machiya et al., 2010). 

Thus, the proteasome pathway may also have a role in the biogenesis of Ser-129-

phosphorylated α-synuclein-rich LBs. 
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Fig. 2. Schematic illustration of the possible interaction between α-synuclein and the 26S 

proteasome. α-synuclein can gain access into the interior of the 20S champer and bind to one 

or more of the catalytic β-subunits. Such changes would interfere with the active site(s) thus 

decreasing the overall proteolytic activity of the proteasome (I). Alternatively, oligomeric α-

synuclein can directly bind to a subunit of the 19S complex thereby inhibiting substrate 

recognition or gate opening (II).  Finally, α-synuclein oligomers can transiently interact with 

the 19S particle and its function possibly by preventing 19S subunits from obtaining the 

appropriate conformation. This “clogging” of the 19S cap would result in the cytoplasmic 

accumulation of other proteins due to their deficient degradation (III). 

3. Effects of extracellular α-synuclein on cellular homeostasis 

3.1 α-synuclein is detected in biological fluids 

Since α-synuclein lacks a signal peptide targeting the protein for ER-mediated exocytosis, it 
was considered to be primarily localized in the cytoplasm where it would exert its 

pathogenic effects. However, a number of studies suggest that α-synuclein can be secreted 
in the medium of cultured cells and is detectable in human biological fluids such as CSF and 

plasma of PD patients and controls. The first studies to demonstrate detection of α-synuclein 
in the CSF and plasma utilized biochemical techniques such as immunoprecipitation and 
western blotting in a small number of human samples (Borghi et al., 2000; El-Agnaf et al., 

2003). However, these initial studies failed to show a significant difference in the levels of α-
synuclein between PD and healthy subjects. 
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In an attempt to assess the applicability of α-synuclein concentration in biological fluids as a 

biomarker for PD, α-synuclein was measured by specific ELISAs that provide higher 
sensitivity and accuracy. Some of these studies (Mollenhauer et al., 2008; Tokuda et al., 

2006), but not all (Ohrfelt et al., 2009), reported significant differences in the levels of α-

synuclein in PD and control samples. Since there is substantial evidence indicating that α-
synuclein aggregation is central in PD pathogenesis, some other studies focus on the 

quantification of α-synuclein oligomers in CSF (Tokuda et al., 2010) or plasma (El-Agnaf et 
al., 2006) using oligomer-specific ELISAs. Overall, there is great variability in the amount of 

α-synuclein quantified in either blood plasma or CSF. Two basic reasons could account for 

this discrepancy. First, the ELISA system employed for the measurement of α-synuclein 
varies between groups in terms of both the antibodies and the detection method used. This 
results in differences in the specificity and the sensitivity of the measurement. Second, each 
group does not follow similar protocols for sample collection and processing. Protein 
integrity and erythrocyte contamination are important parameters related to sample 
acquisition and processing and should be carefully monitored to assure valid assessment of 

α-synuclein in biological fluids. While future work is required to establish a correlation 

between disease and α-synuclein levels in biological fluids, α-synuclein remains an 
appealing protein to be used as a diagnostic marker for PD. 

3.2 Mechanism of α-synuclein release 
Numerous studies employing a variety of cell systems reveal a dynamic network of 
molecular communication between cells, involving secretion. Deciphering the components 
of this network as well as their biological significance represents a major challenge in the 
field of neurodegeneration in particular. 

In this respect, α-synuclein has been shown to be released from neuronal cells in culture 
independently of the expression method used; stable overexpression (El-Agnaf et al., 2003), 
inducible overexpression (Emmanouilidou, Melachroinou et al., 2010), transient transfection 
(Sung et al., 2005) or viral-mediated expression (H. J. Lee, Patel, & Lee, 2005). The presence 

of α-synuclein in the conditioned media (CM) of the α-synuclein-expressing cells reflects 
physiologic secretion of the protein and not an artifact of membrane leakage, since other 

abundant cytoplasmic proteins are not detected in the CM. The secretion of α-synuclein has 
been reported to be insensitive to brefeldin A (H. J. Lee et al., 2005), suggesting that it is 
secreted via an ER/Golgi-independent pathway. In accordance with a vesicular mechanism 

of secretion, a portion of intracellular α-synuclein has been found in the lumen of vesicles 
from rat brain homogenates, rat embryonic cortical neurons and human neuroblastoma cells 
(H. J. Lee et al., 2005). Electron microscopy and density gradient ultracentrifugation 

suggested that the vesicles containing α-synuclein have morphologies and sedimentation 
properties similar to the dense core vesicles (H. J. Lee et al., 2005), but their exact identities 
remain unknown. 

In a recent study, treatment of MES cells in culture with aggregated recombinant α-
synuclein results in the internalization of the protein which is subsequently released in the 
extracellular space by rab11a/HSP90-mediated exocytosis (Liu et al., 2009). The mechanism 
of exocytosis was found to be temperature-sensitive and time-dependent. Part of this 
internalized protein is also degraded through the lysosomal-endosomal pathway (Liu et al., 
2009). Indeed, we recently demonstrated that a non-classical secretory pathway is involved 

in the physiological and constitutive release of ฀฀α-synuclein in the extracellular space 

www.intechopen.com



  
Etiology and Pathophysiology of Parkinson's Disease 

 

178 

(Emmanouilidou, Melachroinou et al., 2010). In this study, α-synuclein was exported in a 
calcium-dependent manner in association with externalized membrane vesicles that 
involved in the endocytic pathway (Figure 3).  
 

 

Fig. 3. α-Synuclein transportation through the endocytic pathway. Along with membrane 

proteins, secreted α-synuclein can enter the cell via endocytosis of clathrin-coated vesicles 
which fuse with early endosomes. In early endosomes, protein material is either recycled 

back to the plasma membrane or sorted to MVBs. Cytoplasmic α-synuclein can also enter 
MVBs at this point via inward budding of the limiting membrane of these vesicles. For 
protein degradation, MVBs fuse with lysosomes. Alternatively, MVBs can fuse with the 
plasma membrane releasing their content in the extracellular space as exosomes. 

In the first step of the endocytic pathway (Figure 3) internalized proteins via clathrin-coated 
vesicles are delivered to early endosomes. Proteins are then either recycled back to the 
plasma membrane or accumulate in multivesicular endosomes, commonly called 
multivesicular bodies (MVBs). Proteins destined for degradation are sorted into small (40-
100 nm in diameter) intraluminal vesicles (ILVs) that are generated by inward budding from 
the limiting membrane of MVBs (Fevrier & Raposo, 2004; Keller, Sanderson, Stoeck, & 
Altevogt, 2006). Degradation of the vesicle-associated proteins and lipids is achieved upon 
fusion of the MVBs with lysosomes. This process allows the cell to remove certain 
transmembrane proteins and excessive membranes. Alternatively, MVBs can fuse with the 
plasma membrane releasing ILVs in the extracellular environment as exosomes (Fevrier & 
Raposo, 2004; Keller et al., 2006). 
Exosomal protein content includes cytosolic proteins, heat shock proteins, tetraspanins and 
transmembrane proteins; proteins originating from mitochondria, ER or nucleus are excluded 
(Thery, Zitvogel, & Amigorena, 2002). Exosomes share common characteristics, most 
important of which is that they are delimited in a cholesterol-rich lipid bi-layer containing 
cytosolic compounds. Most secreted exosomes contain lipid rafts, a characteristic which 
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signifies selectivity of protein sequestration (Vella, Sharples, Nisbet, Cappai, & Hill, 2008). 
Interestingly, this bi-layer also carries transmembrane cell adhesion molecules such as 
integrins, which enable the dynamic communication of the cytoskeleton with the extracellular 
matrix (ECM) and neighboring cells. The origin of exosomes led to the suggestion that this 
mechanism was an alternative to autophagic degradation, another means of “discarding” 
unwanted cytosolic material. Recently, it was found that under certain conditions, exosomes 
can be biologically active entities, important for intercellular communication (Valadi et al., 
2007) and key players in significant biological processes. They are secreted by most cells that 
have been examined so far including primary neurons (Lachenal et al., 2010). Furthermore, 
exosomal release by neurons was shown to be dependent on synaptic activity. It is suggested 
that exosomes could be a mechanism of releasing proteins in the extracellular space in order to 
be proteolytically processed. Alternatively, exosomes can mediate cell-to-cell communication 
since they can attach and fuse with membranes of neighbouring target cells transferring 
exosomal molecules from one cell to another (Thery et al., 2002; Vella et al., 2008). The 
exosomal pathway thus seems to represent a well-designed mechanism for local and systemic 
inter-neuronal transfer of information (Smalheiser, 2007). 
Several groups have reported that exosomes contain pathological proteins. Biochemical 

studies from L. Rajendran et al. in 2006 reported that Aβ peptides were indeed found on 

vesicles positive for specific markers of exosomal identity (Rajendran et al., 2006). This 

suggested that toxic species of processed Amyloid beta Precursor Protein (APP) are also 

excreted via exosomes. Most importantly, neuritic plaques are co-localized with exosomal 

markers, indicating that exosomes are able to act at a distance from their source of 

generation like amyloidogenic fragments of the APP (Rajendran et al., 2006). Similarly, 

Fevrier and Raposo demonstrated association of prion protein with exosomes (Fevrier & 

Raposo, 2004). In this sense, exosomes are the central component of a theory that is starting 

to gain scientific traction over the past few years. The “Trojan horse” hypothesis is an 

appealing hypothesis according to which, toxic protein contents of a cell are packed into 

exosomes, shipped extracellularly and are subsequently received by neighboring cells in the 

context of cell-to-cell communication (Ghidoni, Benussi, & Binetti, 2008). Upon membrane 

fusion, exosomal cargo is released and causes spread of disease. Up-regulation of exosome 

secretion is correlated with conditions that promote protein misfolding and impair 

proteolysis (Alvarez-Erviti et al.; Eldh et al.; Jang et al.), hence, increase cytosolic cargo of a 

particular protein. In our study, α-synuclein was shown to be associated with both the 

exosomal membrane and lumen. Importantly, not only monomeric α-synuclein but also 

oligomeric forms of the protein were found in our exosomal preparations (Emmanouilidou, 

Melachroinou et al., 2010), further suggesting that exosomes can indeed carry “potentially 

toxic” cargo. The finding that α-synuclein can be partly externalized via the exosomal 

pathway provides a common mechanism for the delivery of a potentially cytotoxic protein 

in the extracellular space (Figure 3). 

Undoubtedly, deciphering networks of intercellular communication is a fascinating field of 
research. Understanding the physiological mechanisms of exchanging information between 
cells will allow the identification of new, effective therapeutic targets for late-onset 
neurodegenerative diseases, including Parkinson’s disease. The dynamic nature of neuron-
to-neuron interactions leads us to the thought that more enlightening answers are to come 
from the field of synaptic plasticity and function. So far, data interpretation in most studies 
focuses on cell-autonomous effects and networks. Perhaps, data interpretation should be 
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realized under the scope of a three-dimensional neuronal interface in order to uncover the 
moving forces underlying cell content alterations and communication at a systemic level. 
The exact role and contribution of exosomes in this dynamic interplay remains to be 
elucidated. 

3.3 Pathologic neuronal interplay mediated by α-synuclein? 

Recent studies by Desplats et al. demonstrated that neurons overexpressing α-synuclein can 
transmit the protein to neural precursor cells in tissue culture and in transgenic animals 
(Desplats et al., 2009). Interestingly, the precursors were shown to readily uptake and 

propagate α-synuclein oligomers leading to cellular dysfunction as well as to inflammatory 

responses. Therapeutic strategies directed at reducing the formation and propagation of α-
synuclein oligomers might be critical in developing new treatments for PD and DLB. 
Among them, considerable effort has been devoted in the last few years to promoting the 
clearance. This can be achieved by increasing lysosomal activity (autophagy) or degradation 

with immunotherapy or by pharmacologically blocking α-synuclein aggregation with small 
organic molecules. 

Host-to-graft propagation of α-synuclein pathology has recently been demonstrated with 
the discovery that fetal dopaminergic neurons (derived from multiple, genetically unrelated 
donors) that had been implanted into PD patients 11–14 years earlier developed Lewy body 

pathology immunopositive for α-synuclein and thioflavin-S (Kordower, Chu, Hauser, 
Freeman, & Olanow, 2008; J. Y. Li et al., 2008). It is possible that these inclusions were 
formed as a result of the “disease environment” of the PD brain. One plausible explanation 

is that oligomeric α-synuclein was transmitted from the already affected host neurons to 

healthy implanted fetal neurons, and induced endogenous α-synuclein to misfold. Such an 
infective process mechanism is supported by the Desplats et al., data and could be an 
explanation of the step-wise progression of the disease pathology and the involvement of 
specific neural pathways as suggested by the Braak staging of PD progression (Braak, Del 
Tredici et al., 2003). Importantly, Patric Brundin and his group recently demonstrated that 
this process may be indeed involved in the spread of aggregated synuclein in a manner 
similar to that suggested for prion diseases (J. Y. Li et al., 2008). The group showed in vivo 

and in vitro that α-synuclein not only can transfer from one cell to another, but also that the 

transferred protein can seed aggregation of α-synuclein in recipient cells. Alternatively, the 

source of “seeding” might be microparticles, like exosomes containing α-synuclein, which 

following uptake by healthy “acceptors” accelerate aggregation of endogenous α-synuclein. 

Collectively, recent data provide good evidence to speculate that α-synuclein exhibits prion-

like behaviour. For example, oligomers from both misfolded prion and α-synuclein can 
“instruct” the misfolding of the normal proteins (Ferreon, Gambin, Lemke, & Deniz, 2009). 

Therefore it is possible, that α-synuclein is a prion itself that in a misfolded oligomeric 
conformation can be transmitted to neighbouring healthy neurons, thus extending the 
disease process. However, the cause of such an infectious spread has to be more 

multifactorial. The parkinsonian milieu that causes α-synuclein accumulation and extension 
of pathology is not yet known and could be the result, of a combination of factors. For 
example, aging, oxidative stress, and inflammation, may contribute to altered metabolism of 

α-synuclein, resulting in the pathogenesis of sporadic PD. Furthermore, continuous 
accumulation of misfolded proteins ,which is a common pathological phenomenon in 
various neurodegenerative disorders, compromises the ability of the cell’s proteolytic 
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systems. Impairement of lysosomal and proteasomal protein degradation increases the 
burden of uncleared, unwanted proteins thus promoting their further accumulation and the 
development of a self-propagating cycle that eventually leads to cell death. Lysosomal 
function has been reported to decrease in PD patients (Alvarez-Erviti et al.; Chu, Dodiya, 

Aebischer, Olanow, & Kordower, 2009) and α-synuclein has been shown to be degraded by 
the lysosome specific mechanism of chaperone mediated autophagy (Cuervo, Stefanis, 
Fredenburg, Lansbury, & Sulzer, 2004; Xilouri et al., 2008). 
Interestingly, Alvarez-Erviti et al. (2010), recently demonstrated that lysosomal inhibition in 

cells dramatically increased the intracellular and secreted pools of α-synuclein (Alvarez-
Erviti et al.). The group further demonstrated a neuron-to-neuron exchange of cytosolic 
content via exosomes. It could be that under conditions which promote the intracellular 
accumulation of misfolded proteins, such as lysosomal and proteasomal dysfunction, the 

homeostatic mechanisms favor the secretion of aggregated forms of α-synuclein. Although 

the evidence for extracellular α-synuclein internalization in Emmanouilidou (2010) and 
Alvarez-Erviti (2010) studies are slightly debatable, there are strong indications at both that 
exosomes are an important mediator of intercellular communication. Exosome exchange 
between neurons might also represent a way for propagating pathological alterations 
throughout the brain during neurodegenerative diseases (Aguzzi & Rajendran, 2009; 
Smalheiser, 2007). 
A demonstration that exosomes allow exchange of proteinaceaous or genetic material within 

the nervous system would provide an an explanation of how pathologies like Alzheimer’s 
Creuzfeld Jacob or Parkinson’s diseases, which begin in discrete regions spread overtime to 

connected regions of the central nervous system. This idea proposes that drugs directed 

toward reducing the formation and/or facilitating the clearance of misfolded α-synuclein, in 

order to arrest or reverse the self-propagation process, might represent novel therapeutic 
interventions for the treatment of PD. In addition, understanding how the neuropathology 

spreads throughout the nervous system in Parkinson's disease, will open up avenues for 
new treatments. 

3.4 Effects of extracellular α-synuclein on cellular homeostasis 

There are several studies addressing the role of extracellular α-synuclein especially in the 

context of PD pathology. The first indications that high levels of extracellular α-synuclein 
can impact cell viability came from studies using the recombinant protein. Exogenous 

addition of recombinant α-synuclein to the cultured medium of neuronal cells significantly 
decreased the viability of the recipient cells. Cell death was linearly correlated with the 

concentration of exogenous α-synuclein and was amplified when the applied protein also 
contained soluble oligomers (Albani et al., 2004; Du et al., 2003; Sung et al., 2001; Zhang et 

al., 2005). Application of recombinant monomeric or aggregated α-synuclein also revealed 
that this protein can be readily be uptaken by neuronal cells or even neural stem cells in 
culture (Ahn, Kim, Kang, Ryu, & Kim, 2006; Desplats et al., 2009; H. J. Lee et al., 2008; Luk et 

al., 2009; Sung et al., 2001). It has been suggested that the mechanism for α-synuclein 
internalization involves receptor-mediated endocytosis of the protein (Desplats et al., 2009; 
H. J. Lee et al., 2008; Sung et al., 2001). It has been proposed that this mechanism specifically 

mediates the uptake of oligomeric and fibrillar α-synuclein whereas monomeric α-synuclein 
enters cells via simple diffusion across the plasma membrane. Following internalization, 

extracellular α-synuclein was shown to move through the endosomal compartment and 

www.intechopen.com



  
Etiology and Pathophysiology of Parkinson's Disease 

 

182 

finally, to be degraded by lysosomes (H. J. Lee et al., 2008). However, these results were 

obtained by using very high concentrations of recombinant α-synuclein and cationic 
liposomes to assist the uptake. 

Importantly, recent data using cell-secreted α-synuclein have verified its impact on 

neuronal survival. Application of conditioned medium containing cell-secreted α-
synuclein to neuronal cells induced cell death to the recipient cells (Emmanouilidou, 
Melachroinou et al., 2010). This toxic effect was concentration-dependent and was 

conferred synergistically by both oligomeric and monomeric α-synuclein species present 
in the conditioned medium. In this study, however, there was evidence of very low, if 

any, α-synuclein uptake by neuronal cells (Emmanouilidou, Melachroinou et al., 2010). 
Similarly, apoptotic death of neurons, both in vitro and in vivo, was observed upon their 

exposure to cell-derived extracellular α-synuclein (Desplats et al., 2009). Secreted α-
synuclein, that was readily endocytosed by neurons, was transmitted from one cell to 
another thereby supporting the idea of a mechanism of pathological propagation in PD 

(Desplats et al., 2009). Cell-to-cell transfer of α-synuclein was also demonstrated using co-
culture systems (Hansen et al., 2010). In fact, this transfer did not require cell contact and 
was independent of the aggregation state of the protein. Fluorescently-labeled 

recombinant α-synuclein was uptaken by neuronal cells in vitro and in vivo via an 
endocytic mechanism. Altogether, these data demonstrated that endocytosed extracellular 

α-synuclein can be internalized by recipient cells, interact with the pool of intracellular α-
synuclein and seed aggregation (Hansen et al., 2010). 

An alternative mechanism of neurodegeneration induced by extracellular α-synuclein 
may involve the initiation of neuroinflammatory responses. Microglia are resident 
immune cells that are sensitive to even minor disturbances in the homeostasis of the 
central nervous system (Soulet & Rivest, 2008). Activation of microglia results in a change 
in cell morphology (from a ramified to amoeboid shape) accompanied by alterations in 
surface receptor expression, production of reactive oxygen species (ROS) and release of 
chemokines and cytokines (Kim & Joh, 2006; Soulet & Rivest, 2008). There is increasing 

evidence suggesting that extracellularly added recombinant α-synuclein can trigger 

microglia activation which induces the production of various cytokines, such as IL1β and 
IL6, and inflammation-related enzymes (Su et al., 2008; Zhang et al., 2005). In fact, 

microglia activation has been shown to be one of the mechanisms by which α-synuclein 
induces dopaminergic neurodegeneration, rather than being an epiphenomenon following 
cell death (Zhang et al., 2007). Further dissection of the pathway of microglia activation, 

suggested that α-synuclein potentially binds to Mac-1 receptors which subsequently 
activate PHOX, a ROS-generating enzyme, to produce O2� ultimately leading to 
neurotoxicity. Importantly, microglia activation did not require 

internalization/phagocytosis of α-synuclein by microglial cells (Zhang et al., 2007).To this 

end, microglial prostaglandin E2 receptor subtype 2 (EP2) plays a critical role in α-
synuclein-induced neurotoxicity partly by decreasing PHOX activation (Jin et al., 2007). 

Cell-produced α-synuclein also resulted in the activation of primary microglia, leading to 
the induction of inflammatory signaling pathways (E. J. Lee et al., 2010). It was suggested 

that α-synuclein-induced microglia activation involves the secretion of MMPs which in 
turn activate PAR-1 receptor (E. J. Lee et al.). Alternatively, recent data indicate that cell-

released α-synuclein can also be internalized by astrocytes thereby producing 
inflammatory responses both in vitro and in vivo (E. J. Lee et al., 2010). 
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4. Conclusion 

α-Synuclein is genetically linked to PD. Maintenance of intracellular steady-state 
concentration of α-synuclein is considered to be a key challenge for neuronal homeostasis 
and total levels of the protein have been directly linked with PD pathogenesis. Importantly, 

Genome-Wide association Studies (GWAS) have provided a strong genetic link between α-

synuclein and sporadic PD, and clearly point to α-synuclein as being one of the very few 
genetic loci consistently associated with disease progression. The physiological and aberrant 

functions of α-synuclein are still under investigation. However, cytoplasmic soluble 
oligomers/protofibrils of the protein appear to be one of the primary “suspects” in the 

pathogenesis of PD. Therefore, prevention of α-synuclein aggregation and intervention in 
the mechanisms of abnormal protein turnover appears to be a highly promising therapeutic 
target for the treatment of PD as well as other synucleinopathies. 

From a therapeutic standpoint, it follows that enhancement of α-synuclein clearance via 
proteasomal or lysosomal degradation may represent a valid therapeutic intervention for 

PD. New evidence, suggests that α-synuclein is also physiologically secreted, and as such, it 
can exert as yet unknown paracrine effects in the brain. Still, the presence and exact levels of 

α-synuclein in the interstitial fluid in the brain remain to be clarified. Recent clinical 

observations have suggested that secreted α-synuclein may aggravate PD pathology via a 
mechanism that underlies cell-to-cell propagation of the protein. It is possible that a 

dynamic equilibrium between intracellular and extracellular α-synuclein exists, ensuring 
normal function of neuronal cells. In this respect, dysfunctions in the mechanism(s) 

regulating extracellular α-synuclein levels, such as mechanisms of secretion or extracellular 

clearance, may affect neuronal survival. Increases in extracellular α-synuclein may trigger 
the formation of toxic oligomers in neighbouring neurons and in the extracellular space, and 
result in inflammatory glia activation, utterly leading to a vicious cycle of 
neurodegeneration. Along these lines, compounds which block other signalling pathways -
switched on as a consequence of microglial activation which may ultimately lead to 
neuronal death- might also represent new targets for therapeutic intervention. Under this 

scope, manipulation of regulatory mechanisms that alleviate the extracellular α-synuclein 
“burden” represents a potential target for the development of novel treatment strategies for 

PD. It is obvious that α-synuclein can affect neuronal cell homeostasis in numerous ways 
and at multiple levels. The intrinsic complexity of the neuronal interface may suggest that 
its actions be considered within the context of non cell-autonomous models and thus be 
interpreted by taking into account that the nature of communication between brain cells is 
indeed very dynamic.  
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