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1. Introduction  

Real magnets and Ising models have provided a rich and productive field for the interaction 
between theory and experiment over the past 86 years (Ising, 1925). In order to identify the 
real magnets with a simple microscopic Hamiltonian, one needs to understand the 
behaviour of individual magnetic ions in crystalline environment (Wolf, 2000). Spin–1/2 
Ising model and its variants such as Blume-Capel, Blume-Emery-Griffiths and mixed spin 
models were regarded as theoretical simplifications, designed to model the essential aspects 
of cooperative systems without detailed correspondence to specific materials. The 
similarities and differences between theoretical Ising models and a number of real magnetic 
materials were widely reviewed by many authors. The early experiments were focused on 
identifying Ising-like materials and characterizing the parameters of the microscopic 
Hamiltonian. Various approximate calculations were then compared with thermodynamic 
mesurements. Although both the theoretical and experimental studies concerning Ising-like 
systems have concentrated on static properties, very little has been said about its dynamic 
characteristics.  
Lyakhimets (Lyakhimets, 1992) has used a phenomenological description to study the 
magnetic dissipation in crystalline magnets with induced magnetic anisotropy. In his study, 
the components of the second-order tensor which describes the induced anisotropy of the 
magnet were taken as thermodynamic variables and the nonequilibrium linear Onsager 
thermodynamics was formulated for the system. Such an approach reflects all symmetry 
characteristics of the relaxation problem. The relaxation parameters and their angular 
denpendencies were formulated for spin waves and moving domain walls with the help of 
the dissipation function. The implications of nonequilibrium thermodynamics were also 
considered for magnetic insulators, including paramagnets, uniform and nonuniform 
ferromagnets (Saslow & Rivkin, 2008). Their work was concentrated on two topics in the 
damping of insulating ferromagnets, both studied with the methods of irreversible 
thermodynamics: (a) damping in uniform ferromagnets, where two forms of 
phenomenological damping were commonly employed, (b) damping in non-uniform 
insulating ferromagnets, which become relavent for non-monodomain nanomagnets. Using 
the essential idea behind nonequilibrium thermodynamics, the long time dynamics of these 
systems close to equilibrium was well defined by a set of linear kinetic equations for the 
magnetization of insulating paramagnets (and for ferromagnets). The dissipative properties 
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of these equations were characterized by a matrix of rate coefficients in the linear 
relationship of fluxes to appropriate thermodynamic forces.  
Investigation of the relaxation dynamics of magnetic order in Ising magnets under the effect 
of oscillating fields is now an active research area in which one can threat the sound 
propagation as well as magnetic relaxation. In most classes of magnets, a very important 
role is played by the order parameter relaxation time and it is crucial parameter determining 
the sound dynamics as well as dynamic susceptibility. As a phenomenological theory, 
nonequilibrium thermodynamics deals with approach of systems toward steady states and 
examines relaxation phenomena during the approach to equilibrium. The theory also 
encompasses detailed studies of the stability of systems far from equilibrium,  including 
oscillating systems. In this context, the notion of nonequilibrium phase transitions is gaining 
importance as a unifying theoretical concept.  
In this article, we will focus on a general theory of Ising magnets based on nonequilibrium 
thermodynamic. The basics of nonequilibrium thermodynamics is reviewed and the time-
reversal signature of thermodynamic variables with their sources and fluxes are discussed 
in Section 2. Section 3 then considers Ising spin models describing statics of ferromagnetic 
and antiferromagnetic orders in magnets. Section 4 contains a detailed description of the 
kinetic model based on coupled linear equations of motion for the order parameter(s). The 
effect of the relaxation process on critical dynamics of sound propagation and dynamic 
response magnetization is investigated in Section 5. Comparison with experiments is made 
and reasons for formulating a phenomenological theory of relaxation problem are given in 
Section 6. Finally, the open questions and future prospects in this field are outlined.  

2. Basics of nonequilibrium thermodynamics 

Nonequilibrium thermodynamics (NT), a scientific discipline of 20 th century, was invented 
in an effort to rationalize the behavior of irreversible processes. The NT is a vast field of 
scientific endeavour with roots in physics and chemistry. It was developed in the wake of 
the great success of certain symmetry relations, known as Onsager reciprocal relations in the 
phenomenological laws. These symmetry relations between irreversible phenomena have 
found a wide field of application in all branches of the physical science and engineering, and 
more recently in a number of interdisciplinary fields, including environmental research and, 
most notably, the biological sciences. Above applications can be classified according to their 
tensorial character. First one has scalar phenomena. These include chemical reactions and 
structural relaxation phenomena. Onsager relations are of help in this case, in solving the set 
of ordinary differential equations which describe the simultaneous relaxation of a great 
number of variables. Second group of phenomena is formed by vectorial processes, such as 
diffusion, heat conduction and their cross effects (e.g. thermal diffusion). Viscous 
phenomena and theory of sound propagation have been consistently developed within the 
framework of nonequilibrium thermodynamics.  
Before introducing the notion of nonequilibrium thermodynamics we shall first summarize 
briefly the linear and nonlinear laws between thermodynamic fluxes and forces. A key 
concept when describing an irreversible process is the macroscopic state parameter of an 
adiabatically isolated system. These parameters are denoted by iA . At equilibrium the state 
parameters have values 0

iA , while an arbitrary state which is near or far from the 
equilibrium may be specified by the deviations i  from the equilibrium state:  
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 0
i i iA A   .   (1) 

It is known empirically that the irreversible flows, time derivatives of deviations ( i iJ   ), 

are linear functions of the thermodynamic forces ( )iX   

 i ij j
j

J L X ,   (2) 

where the quantities ijL are called the phenomenological coefficients and the Eqs. (2) are 
referred to as the phenomenological equations. The coefficients ijL obey either Onsager’s 
reciprocal relations ij jiL L  or Casimir’s one ij jiL L  . These relations, also known as 
Onsager-Casimir reciprocal relations (Onsager, 1931; Casimir, 1945; De Groot, 1963), express 
an important consequence of microscopic time-reversal invariance for the relaxation of 
macroscopic quantities in the linear regime close to thermodynamic equilibrium. The proof 
of these relations involves the assumption that the correlation functions for the thermal 
fluctuations of macroscopic quantities decay according to the macroscopic relaxation 
equation.  
It is well known that the entropy of an isolated system reaches its maximum value at 
equilibrium: so that any fluctuation of the thermodynamic parameters results with a 
decrease in the entropy. In response to such a fluctuation, entropy-producing irreversible 
process spontaneously drive the system back to equilibrium. Consequently,  the state of 
equilibrium is stable to any perturbation that reduces the entropy. In contrast, one can state 
that if the fluctuations are groving, the system is not in equilibrium. The fluctuations in 
temperature, volume, magnetization, kuadrupole moment, etc. are quantified by their 
magnitude such as  T , V , M  and Q  the entropy of a magnetic system is a function of 
these parameters in general one can expand the entropy as power series in terms of these 
parameters:  

 2 31
( )

2eqS S S S S       ,   (3) 

In this expansion, the second term represents the first-order terms containing T , V , M , 

Q , etc., the third term indicates the second-order terms containing 2( )T , 2( )V , 2( )M , 
2( )Q , etc., and so on. On the other hand, since the entropy is maximum, the first-order 

terms vanishes wheares the leading contribution to the increment of the entroıpy originates 

from the second-order term 2S  (Kondepudi & Prigogine, 2005). 
The thermodynamic forces in Eqs. (2) are the intensive variables conjugate to the variables 

i :  

 
i

i
i

S
X







,     (4) 

where S  is the entropy of the system described by the fundamental relation 1( ,..., )nS S   . 

The Eqs. (2) could be thought of as arising from a Taylor-series expansion of the fluxes in 
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terms of the forces. Such a Taylor series will only exist if the flux is an analytic function of 
the forces at 0X  :  

 
2

3

,0 0

1
( ) (0) ( )

2!
i i

i i j i j
j j kj j kX X

J J
J X J X X X O X

X X X
 

 
   

    .   (5) 

Clearly the first term in Eq. (5) is zero as the fluxes vanish when the thermodynamic forces 
are zero. The term which is linear in the forces is evidently derivable, at least formally, from 
the equilibrium properties of the system as the functional derivative of the fluxes with 
respect to the forces computed at equilibrium, 0X  . The quadratic term is related to what 
are known as the nonlinear contributions to the linear theory of irreversible 
thermodynamics. In general, Eq. (5) may be written as nonlinear functions of the forces in 
the expanded form  

 
, , ,

( ) ...i ij j ijk j k ijkl j k l
j j k j k l

J X L X M X X N X X X      ,      (6) 

where the coefficients defined by 

 
0

i
ij

j X

J
L

X






,
2

0

1

2
i

ijk
j k

X

J
M

X X





 
,

3

0

1

6
i

ijkl
j k l

X

J
N

X X X





  
. (7) 

Here the coefficients ijL  are the cross coefficients which are scalar in character. The second 
order coefficients ijkM are vectorial. The third order coefficients ijklN  are again scalar. 
Within the linear range, there is a lot of experimental evidence of Onsager relation.  
In the nonlinear thermodynamic theory, a nonlinear generalization of Onsager’s reciprocal 
relations was obtained using statistical methods (Hurley & Garrod, 1982). Later, the same 
generalization was also proved with pure macroscopic methods (Verhas, 1983). The proof of 
the generalization is based on mathematical facts. None of these generalizations are of 
general validity. The principle of macroscopic reversibility proposed by Meixner gives a 
good insight to the structure of the Onsager-Casimir reciprocal relations and says that the 
entropy production density in invariant under time inversion if it is quadratic function of 
independent variables. Demanding its validity to higher order leads to conflict only with the 
rules of the chemical reactions (Meixner, 1972).  

3. Ising model and equilibrium properties based on the mean field 
approximation  

In this section, we consider the Ising model on a regular lattice where each interior site has 
the same number of nearest-neighbour sites. This is called the coordination number of the 
lattice and will be denoted by z . We assume that, in the thermodynamic limit, boundary 
sites can be disregarded and that, with N  sites, the number of nearest-neighbour site pairs 
is 2Nz . The standard Hamiltonian for the the simplest Ising model is given by 

i j i
ij i

J s s h s
 

     ,  
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with  

 1is   ,                (8) 

where h  is the external magnetic field at the site i  and the summation 
ij  is performed 

for nearest-neighbour sites. J is the exchange interaction between neighbouring sites ij . 

Two distinctive cases corresponding to different signs of intersite interaction is considered, 
i.e., J < 0  (ferromagnetic coupling) and J > 0  (antiferromagnetic coupling). On the other 
hand, Eq. (8) may be extended by allowing values 0,s  1, 2, ..., S for the variables. It is 

then possible to consider higher order interactions such as 2 2
i jij

K s s
   or a chemical 

potential such as 2
ii

s . These generalizations are regarded as extensions of the Blume-

Emery-Griffiths model (BEG) (Blume et al., 1971). Recently, there have been many theoretical 
studies of mixed spin Ising systems. These are of interest because they have less 
translational symmetry than their single-spin counterparts since they consist of two 
interpenetrating inequivalent sublattices. The latter property is very important to study a 
certain type of ferrimagnetism, namely molecular-based magnetic materials which are of 
current interest (Kaneyoshi & Nakamura, 1998).  
For sake of the brevity, here we will focus on the equilibrium properties of the 1 / 2S  case 
which is described by the Hamiltonian given in Eq. (8). The Gibbs free energy depends on 
the three extensive variables  , N , and V . Here  , N , and V are magnetization per site,  
the total number of Ising spins and the volume of the lattice, respectively. Using the 
definition of the entropy the configurational Gibbs free energy in the Curie-Weiss 
approximation G  ( G E TS h   ) is obtained 

 2
0

1 1 1 1 1
( ( ), , , ) ( , ) ln ln ,

2 2 2 2 2
G V a h T G V T NJz NkT h

     
                               

 (9) 

where a , k , T  are the lattice constant, the Boltzmann factor, the absolute temperature, 
respectively. 0( , )G V T  is the lattice free energy which is independent of spin configuration. 

One can see that G  is an even function of  . Thus the second derivative of G  with respect 
to   is  

 
2

2 21

G NkT
NJz

 


  
 

, (10) 

and we define the critical temperature CT  by 

 CT Jz . (11)  

From Eq. (10), it is seen that the G  vs.   curve is convex downwards for all   in the range 

( 1 , 1 ) for T > CT , as shown in Figure 1. At CT T  the curvature changes sign to becomes 

convex upwards for T < CT . The magnetic field h  is conjugate to magnetization density   

and from the fundamental relations of the thermodynamics one can write the following 
expression 
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1 1

ln
2 1

G
h NJz NkT


 
 

   
 

.               (12) 

To find the magnetization we solve Eq. (12) for   and obtain the equation of state (or self-
consistent equation): 

 tanh( ( ))Jz h    .              (13) 

Now, using the definition   

 
0

( )
h

T
h








,                           (14) 

one obtains the following expression for the susceptibility 

 
2

2

1 tanh ( )
( )

(1 tanh ( ))
1

z h
TT

z h z
TT

T





 


    
  

. (15) 

 

 

Fig. 1. Free energy-magnetization isotherms ( 6z  ) 

Among the physical systems which undergo phase transitions, the most interesting class is 
the ferromagnet-paramagnet transtions in simple magnets. The free energy in such systems 
is nonanalytical function of its arguments. This is a manifestation of very strong fluctuations 
of quantity called order parameter. Phase transformations in ferromagnets are the 
continuous phase transitions which show no latent heat, seen in Figure 2. On the other hand, 
many physical quantities such as specific heat and static susceptibility diverge to infinity or 
tend to zero when approaching the critical temperature CT . The behaviour of the static 
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susceptibility of an Ising ferromagnet on a simple cubic lattice ( 6z  ) in the neighborhood 
of the critical point is shown in Figure 3. One can see that the static susceptibility diverges at 
the critical point on both sides of the critical region (Lavis & Bell, 1998). 
 

 

Fig. 2. The spontaneous magnetization plotted against temperature ( 6z  ) 

 

 

Fig. 3. The temperature dependence of the static susceptibility for a cubic lattice ( 6z  ) 

4. Thermodynamic description of the kinetic model 

In this section, a molecular-field approximation for the magnetic Gibbs free-energy 
production is used and a generalized force and a current are defined within the irreversible 

www.intechopen.com



 
Thermodynamics – Systems in Equilibrium and Non-Equilibrium 

 

262 

thermodynamics. Then the kinetic equation for the magnetization is obtained within linear 
response theory. Finally, the temperature dependence of the relaxation time in the 
neighborhood of the phase-transition points is derived by solving the kinetic equation of the 
magnetization. For a simple kinetic model of Ising magnets, we first define the time-
dependent long-range order parameter ( )t (or magnetization), describing the 

ferromagnetic ordering, as the thermodynamic variable. In the nonequilibrium theory of the 
Ising system, the relaxation towards equilibrium is described the equation  

 
 



  ,                             (16) 

where  is the relaxation time characterizing the rate at which the magnetization 
 approaches the equilibrium ( ). Eq. (16) is the simplest equation of irreversible 
thermodynamics (De Groot & Mazur, 1962) and can also be written in the form 

 L   ,                            (17) 

where L  is the rate constant (or kinetic coefficient)  and   is the thermodynamic force 
which causes the current  . In Eq. (17)   is found from the derivative of mean-field Gibbs 

energy production ( G ) with respect to deviation of magnetization from the equilibrium:  

 
( )

( )

d G

d  


 


,        (18) 

with 

2 21
( ) 2 ( )( ) ( ) ( )( )

2
G A B h h C h h D a a                 

 2( )( ) ( ) '( )E h h a a F a a G h h         ,               (19) 

In Eq. (19), the coefficients are called as Gibbs production coefficients: 

 
2 2

2 2

( )

1
eq

G N Jz Jz kT
A


 

    
       

,               (20) 

 
2

1
eq

G
B

h
 

      
,  (21) 

 
2

2
0

eq

G
C

h

 
    

,               (22) 

 
2

eqeq

G J
D Nz

a a



             

,                         (23) 

www.intechopen.com



 
Nonequilibrium Thermodynamics of Ising Magnets 

 

263 

 
2

0
eq

G
E

h a

 
     

, (24) 

 
22 2

20
2 2 2

1

2
eq eqeq

GG J
F Nz

a a a


     
                

, '
eq

G
G

h
     

.              (25) 

The rate (or kinetic) equation is obtained using Eqs. (18)-(25) in the relaxation equation (Eq. 
(17)): 

 ( ) ( ) ( )LA LB h h DL a a        .              (26) 

In order to find the relaxation time ( ) for the single relaxation process, one considers the 

rate equation when there is no external stimulation, i.e., h h , a a . Eq. (26) then becomes  

 ( )LA    . (27) 

Assuming a solution of the form exp( / )t      for Eq. (27), one obtains 

 
1

LA

  . (28) 

Using Eq. (20) yields 

 
2

2

1

( )NL Jz Jz kT





 

  
.                           (29) 

The behaviour of the relaxation time near the phase-transition points can be derived 
analytically from the critical exponents. It is a well-known fact that various thermodynamic 
functions represents singular behavior as one approaches the critical point. Therefore, it is 
convenient to introduce an expansion parameter, which is a measure of the distance from 
the critical point ( cT T   ). Here cT  is the critical temperature given by Eq. (11). In the 
neighborhood of the transition point the relaxation time of the Ising model can be written in 
the form, 

 
2

2

1 ( ( ))
( )

( ( ( )) ( ))CNL Jz Jz k T

  
  


 
   

. (30) 

In the vicinity of the second-order transition the magnetization vanishes at cT  as  

 1/2( ) ( )   . (31) 

The critical exponent for the function ( )  is defined as 

 0
ln ( )

lim
ln
 
 . (32) 
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This description is valid for all values of  , where the negative value corresponds to the 
divergence of the variable ( )   as   goes to zero, positive value corresponding to 
relaxation time that approaches zero, and the zero value corresponding to logarithmic 
divergence, jump singularity or a cusp (the relaxation time is finite at the critical point but 
one of its derivative diverges (Reichl, 1998). On the other hand, in order to distinguish a 
cusp from a logarithmic divergence, another type of critical exponent, ' , is introduced. To 
find the exponent '   that describes the singular parts of  with a cusplike singularity, we 
first find the smallest integer m  for which the derivative  ( ) /m m m      diverge as 

0  : 

 '
0

ln ( )
lim

ln
m 

 
  .  (33) 

 

 
Fig. 4. Relaxation time vs temperature in the neighbourhood of critical point 

The behavior of the relaxation time τ as a function of temperature is given in Figure 4. One 
can see from Figure 4 that   grows rapidly with increasing temperature and diverges as the 
temperature approaches the second-order phase-transition point. In accordance with this 
behavior, the critical exponent of  is found to be 1.0   . On the other hand, the scaling 
form of the relaxation time reads 

zz
cT T
    , where  ,  and z  are the correlation 

length, critical exponent for 
 
and dynamical critical exponent, respectively (Ray et al., 

1989). According to mean-field calculations, the dynamic critical exponent of the Ising 
model is 2z   at the critical point. In addition to studies on Blume-Capel model which 
undergoes first-order phase transitions and represents rich variety of phase diagrams has 
revealed the fact that the dynamical critical exponent is also 2z 

 
at the critical endpoint, 

and double critical endpoints as well as tricritical point, whereas 0z 
 
for first-order critical 

transition points (Gulpinar & İyikanat, 2011). We should note that the analysis used in this 
article is identical to Landau-Ginzburg kinetic theory of phase transitions of a spatially 

L=-0.01
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homogenous system. As is discussed extensively by Landau and Lifshitz (Landau & 
Lifshitz, 1981), in the case of spatially inhomogeneous medium where ( , )t r     , the 
Landau-Ginzburg kinetic theory of critical phenomena reveals the fact that the relaxation 
time becomes finite for cT T  for components with 0q  . Here q  is the Fourier transform 
of the spatial variable r . On the other hand, the renormalization-group formalism has 
proved to be very useful in calculating not only the static behavior but also the dynamic 
scaling. By making use of this method, Halperin et al. (Halperin et al., 1974) found the 
critical-point singularity of the linear dynamic response of various models. The linear 
response theory, however, describes the reaction of a system to an infinitesimal external 
disturbance, while in experiments and computer simulations it is often much easier to deal 
with nonlinear-response situations, since it is much easier to investigate the response of the 
system to finite changes in the thermodynamic variables. A natural question is whether the 
critical-point singularity of the linear and nonlinear responses is the same. The answer is yes 
for ergodic systems, which reach equilibrium independently of the initial conditions (Racz, 
1976). The assumption that the initial and intermediate stages of the relaxation do not affect 
the divergence of the relaxation time (motivated by the observation that the critical 
fluctuations appear only very close to equilibrium) led to the expectation that in ergodic 
systems nl and l diverge with same critical exponent. This view seemed to be supported 
by Monte Carlo calculations (Stoll et al., 1973) and high-temperature series expansion of the 
two-dimensional one-spin flip kinetic Ising model. Later, Koch et al. (Koch et al., 1996) 

presented field-theoretic arguments by making use of the Langevin equation for the one-
component field ( , )r r  as well as numerical studies of finite-size effects on the exponential 
relaxation times 1 and 2 of the order parameter and the square of the order parameter 
near the critical point of three-dimensional Ising-like systems.  
For the ferromagnetic interaction, a short range order parameter as well as the long range 
order is introduced (Tanaka et al., 1962; Barry, 1966) while there are two long range 
sublattice magnetic orders and a short range order in the Ising antiferromagnets (Barry & 
Harrington, 1971). Similarly the number of thermodynamic variables (order parameters) 
also increases when the higher order interactions are considered (Erdem & Keskin, 2001; 
Gülpınar et al., 2007; Canko & Keskin, 2010). For a general formulation of Ising spin kinetics 
with a multiple number of spin orderings ( i ), the Gibbs free energy production is written 

as  

, 1 1 1

1
( )( ) 2 ( )( )

2

n n m

ij i i j j ik i i k k
i j i k

G h h       
  

          


    

 2 2( ) ( )( ) ( )( ) ( )k k k k k k i i ih h h h a a a a a a     
           

, (34)   

where the coefficients are defined as 

2

ij
i j eq

G
 

 
 
   

,          
2

ik
i k eq

G

h



 

     
,           

2

2k
k eq

G

h


 
    

, 

www.intechopen.com



 
Thermodynamics – Systems in Equilibrium and Non-Equilibrium 

 

266 

 
2

k
k eq

G

h a


 
     

,        
2

i
i eq

G

a



 

     
,          

2

2
eq

G

a


 
    

. (35) 

Then a set of linear rate equations may be written in terms of a matrix of phenomenological 
coefficients which satisfy the Onsager relation (Onsager, 1931): 

 

1

1

...

. . . . .

. . . . .

. . . . .

...

i i in i

n n nn n

L L X

L L X





     
     
     
     
     
     
          





,    (36) 

where the generalized forces are  

 
, 1 1 1

( )
( ) ( ) ( )

( )

n n m

j ij i i i ik k k
j j i j i k

G
a a h h    

    

  
           

   . (37) 

The matrix equation given by Eq. (36) can be written in component form using Eq. (37), 
namely a set of n  coupled, linear inhomogenous first-order rate equations. Embedding this 
relation into Eq. (36) one obtains the following matrix equation for the fluxes: 

 ˆˆ ˆ ˆ ˆ ˆˆ ˆL L h La         ,   (38) 

where the matrixes are defined by  

1

1

...

. . .

. . .

. . .

...

i in

n nn

 



 

 
 
 
 
 
 
  


,              

1

1

...

. . .
ˆ . . . ,

. . .

...

i im
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 



 

 
 
 
 
 
 
  
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. . .
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L L
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 
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
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 
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  
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

 
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 
 
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 
 
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ˆ .

.
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





 
 
 
 
 
 
  
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1 1

.
ˆ .

.

m m

h h

h

h h

 
 
 
 
 
 
 

 

  (39) 

Since the phenomenological coefficients ijL  in matrix L


 obey one of the reciprocal relations 

ij jiL L   according to microscopic time-reversal invariance of relaxing macroscopic 

quantities ( )i t , the matrix may be symmetric or antisymmetric. In order to obtain the 

relaxation times, one considers the corresponding inhomogenous equations (Eq. (38)) 

resulting when the external fields are equal to their equilibrium values, i.e., k kh h  for 

1,...,k m  and a a . In the neighbourhood of the equilibrium states, solutions of the form 
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exp( / )i i it      are assumed for the linearized kinetic equations and approaches of the 

order parameters ( )i t to their equilibrium values are described by a set of characteristic 

times, also called relaxation times i . To find each time ( i ) one must solve the secular 

equation. Critical exponents ( i  and '
i , 1,...,i n ) for the functions ( )i  are also 

calculated using Eqs. (32) and (33) to see the divergences, jumps, cusps etc. for the relaxation 
times ( )i  at the transition points.    

5. Critical behaviours of sound propagation and dynamic magnetic response 

In this section, we will discuss the effect of the relaxation process on critical dynamics of 
sound propagation and dynamic response magnetization for the Ising magnets with single 
order parameter ( ). Firstly we study the case in which the lattice is under the effect of a 
sound wave. Then the sound velocity and sound attenuation coefficient of the system are 
derived using the phenomenological formulation based on the method of thermodynamics 
of irreversible processes. The behaviors of these quantities near the phase transition 
temperatures are analyzed. Secondly, we consider case where the spin system is stimulated 
by a small uniform external magnetic field oscillating at an angular frequency. We examine 
the temperature variations of the non-equilibrium susceptibility of the system near the 
critical point. For this aim, we have made use of the free energy production and the kinetic 
equation describing the time dependency of the magnetization which are obtained in the 
previous section. In order to obtain dynamic magnetic response of the Ising system,  the 
stationary solution of the kinetic equation in the existence of sinusoidal external magnetic 
field is performed. In addition, the static and dynamical mean field critical exponents are 
calculated in order to formulate the critical behavior of the magnetic response of a magnetic 
system.  
In order to obtain the critical sound propagation of an Ising system we focus on the case in 

which the lattice is stimulated by the sound wave of frequency   for the case h h . In the 
steady state, all quantities will oscillate with the same frequency   and one can find a 
steady solution of the kinetic equation given by Eq. (26) with an oscillating external force 

1
i ta a a e   . Assuming the form of solution 1( ) i tt e      and introducing this 

expression into Eq. (26), one obtains the following inhomogenous equation for 1  

 1 1 1
i t i t i ti e LA e LDa e      (40) 

Solving Eq. (40) for  1 1/ a  gives  

 1

1 1

LD LD

a i LA i

 
 

 
 

. (41) 

The response in the pressure ( )p p  is obtained by differentiating the minimum work with 

respect to ( )V V   and using Eqs. (9) and (19)  

 ,
( ) 3 ( )

G a G
p p

V V V a a

 
   

   
 (42) 
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then  

  ( ) ( ) .
3

a
p p D F a a

V
        (43)     

Finally, the derivative of the pressure with respect to volume gives 

 
2

1

1

.
3sound

p a
F D

V V a

             
  (44) 

Here F  and D  are given by Eqs. (23) and (25). Introducing the relation (41) and the density 

/M V   into Eq. (44) one obtains 

 
22 2 2

20
2 2

1

9 2 1
sound eqeq

p Ga J LD
Nz

M ia a


 

                         
. (45) 

From the real and imaginary parts of Eq. (45) one obtains the velocity of sound and 
attenuation coefficient for a single relaxational process as  

  
2 2 2

2
0 2 2 2 2

0

( , ) Re 1
18 1

sound

Nza J
c T c c LD

Mc a

 
 

  
          

,   (46) 

 
2 2

2
2 2

( , ) Im ,
1sound

T LD
c

   
 

 
   

 
  (47) 

where 0c  is the velocity of sound at very high frequencies or at very high temperatures and 
1/2( / )soundc p    is the a complex expression for sound velocity. We perform some 

calculations for the frequency and temperature dependencies of ( , )c T  and ( , ).T   
Figures (5) and (6) show these dependencies. From the linear coupling of a sound wave with 
the order parameter fluctuations ( )   in the Ising system, the dispersion which is relative 
sound velocity change displays a frequency-dependent velocity or dispersion minimum 
(Figure 5) while the attenuation exhibits a frequency-dependent broad peak (Figure 6) in the 
ordered phase. Calculations of ( )c T and ( )T  for the simple Ising spin system reveals the 
same features as in real magnets, i.e. the shifts of the velocity minima and attenuation 
maxima to lower temperatures with increasing frequency are seen. The velocity minima at 
each frequency occur at temperatures lower than the corresponding attenuation maxima 
observed for the same parameters used. The notions of minimum in sound velocity and 
maximum in attenuation go back to Landau and Khalatnikov (Landau & Khalatnikov, 1954; 
Landau & Khalatnikov, 1965) who study a more general question of energy dissipation 
mechanism due to order parameter relaxation. Their idea was based on the slow relaxation 
of the order parameter. During this relaxation it allows internal irreversible processes to be 
switch on so as to restore local equilibrium; this increases the entropy and involves energy 
dissipation in the system. In the critical region, behaviours of both quantities are verified 
analytically from definition of critical exponents given in Eq. (32) for the functions ( )c   and 
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( ).   It is found that the dispersion just below the critical temperature is expressed as 
0( )c    while the attenuation goes to zero as ( )   . 

In the presence of many thermodynamic variables for more complex Ising-type magnets, 
there exist more than one relaxational process with relaxational times ( i ). Contribution of 
these processes to the sound propagation were treated in more recent works using the above 
technique in the general phenomenological formulation given in the previous section. 
Dispersion relation and attenuation coefficient for the sound waves of frequency   were 
derived for sevaral models with an Ising-type Hamiltonian (Keskin & Erdem, 2003; Erdem 
& Keskin, 2003; Gulpinar, 2008; Albayrak & Cengiz, 2011). In these works, various 
mechanisms of the sound propagation in Ising-type magnets were given and origin of the 
critical attenuation with its exponent was discussed.  
 

 

Fig. 5. Sound dispersion ( )c T  at different frequencies   for 10L   

Similarly, theoretical investigation of dynamic magnetic response of the Ising systems has 
been the subject of interest for quite a long time. In 1966, Barry has studied spin–1/2 Ising 
ferromagnet by a method combining statistical theory of phase transitions and irreversible 
thermodynamics (Barry, 1966). Using the same method, Barry and Harrington has focused 
on the theory of relaxation phenomena in an Ising antiferromagnet and obtained the 
temperature and frequency dependencies of the magnetic dispersion and absorption factor 
in the neighborhood of the Neel transition temperature (Barry & Harrington, 1971). Erdem 
investigated dynamic magnetic response of the spin–1 Ising system with dipolar and 
quadrupolar orders (Erdem, 2008). In this study, expressions for the real and imaginary 
parts of the complex susceptibility were found using the same phenomenological approach 
proposed by Barry. Erdem has also obtained the frequency dependence of the complex 
susceptibility for the same system (Erdem, 2009). In Ising spin systems mentioned above, 
there exist two or three relaxing quantities which cause two or three relaxation contributions 
to the dynamic magnetic susceptibility. Therefore, as in the sound dynamics case, a general 
formulation (section 4) is followed for the derivation of susceptibility expressions. In the 
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following, we use, for simplicity, the theory of relaxation with a single characteristic time to 
obtain an explicit form of complex susceptibility. 
 
 
 

 
 

Fig. 6. Sound attenuation ( )T  at different frequencies   for  10L   

If the spin system descibed by Eq. (8) is stimulated by a time dependent magnetic field 

1( ) i th t h e   oscillating at an angular frequency  , the order parameter of the system will 
oscillate near the equilibrium state at this same angular frequency at the stationary state:  

 1( ) i tt e     , (48) 

If this equation is substituted into the kinetic equation Eq. (17) we find following form: 

 1 1 1
i t i t i ti e LA e LBh e     . (49) 

Solving Eq. (49)  for 1 1/ h  gives 

 1

1

LB

h i LA







 (50) 

Eq. (50) is needed to calculate the complex initial susceptibility ( )  . The Ising system 

induced magnetization (total induced magnetic moment per unit volume) is given by  

  1( ) Re i tt e     , (51) 
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where   is the magnetization induced by a magnetic field oscillating at  . Also, by 
definition, the expression for ( )   may be written 

 1( ) Re ( ) ,i tt h e    
 

   
 

 (52) 

where ' ''( ) ( ) ( )i        is the complex susceptibility whose real and imaginary parts are 
called as magnetic dispersion and absorption factors respectively. Comparing Eqs. (38) to 
Eq. (40)  one may write 

 1

1

( )
h

   . (53) 

Finally the magnetic dispersion and absorbtion factors become   

 
2

'
2 2 2 2 2

( )
1

AL
LB

A L

 
  

 
 

. (54) 

 

 
2

''
2 2 2 2 2

( )
1

L
LB

A L

   
  

 
 

. (55) 

 

In Figures 7 and 8 we illustrate the temperature variations of the magnetic dispersion and 

absorption factor in the low frequency limit 1  . These plots illustrate that both '( )   

and ''( )   increase rapidly with temperature and tend to infinity near the phase transtion 

temperature. The divergence of '( )   does not depend on the frequency while the 

divergence of ''( )   depends on   and gets pushed away from the critical point as   
increases. When compared with the static limit ( 0 ) mentioned in section 3, a good 
agreement is achieved. Above critical behaviours of both components for the regime 

1    may be verified by calculating the critical exponents for the functions '( )   and  
''( )   using Eq. (32). Results of calculation indicates that '( )   and  

''( )   behave as 1   
and 2  , respectively.  
Finally the high frequency behavior ( 1  ) of the magnetic dispersion and absorption 

factor are given in Figures 9 and 10. The real part '( )   has two frequency-dependent local 

maxima in the ordered and disordered phase regions. When the frequency increases, the 
maximum observed in the ferromagnetic region decreases and shifts to lower temperatures. 
The peak observed in the paramagnetic region also decreases but shifts to higher 

temperatures. On the other hand, the imaginary part ''( )   shows frequency-dependent 

maxima at the ferromagnetic-paramagnetic phase transtion point. Again, from Eq. (32), one 

can show that the real part converges to zero ( '( )   ) and the imaginary part displays a 

peak at the transition ( '' 0( )   ) as 0  . 
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Fig. 7. Magnetic dispersion '( )   vs temperature for the low frequency limit ( 1   in the 

neighbourhood of critical point  
 
 
 
 

 
 

Fig. 8. Same as Figure 7 but for the magnetic absorption factor ''( )   

L=-0.01

L=-0.01
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Fig. 9. Magnetic dispersion '( )   vs temperature for the high frequency limit ( 1  ) in 

the neighbourhood of critical point 

 

 

Fig. 10. Same as Figure 9 but for the magnetic absorption factor ''( )   

6. Comparison of theory with experiments  

The diverging behavior of the relaxation time and corresponding slowing down of the 
dynamics of a system in the neighborhood of phase transitions has been a subject of 
experimental research for quite a long time. In 1958, Chase (Chase, 1958) reported that liquid 
helium exhibits a temperature dependence of the relaxation time consistent with the scaling 

relation 1( )cT T  . Later Naya and Sakai (Naya & Sakai, 1976) presented an analysis of the 

critical dynamics of the polyorientational phase transition, which is an extension of the 
statistical equilibrium theory in random phase approximation. In addition, Schuller and 

L=-0.01

L=-0.01
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Gray (Schuller & Gray, 1976) have shown that the relaxation time of the superconducting 
order parameter diverges close to the transition temperature, in accordance with the 
theoretical prediction of several authors (Lucas & Stephen, 1967; Schmid & Schon, 1975). 
Recently, Sperkach et al. (Sperkach et al, 2001) measured the temperature dependence of 
acoustical relaxation times in the vicinity of a nematic-isotropic phase-transition point in 
5CB liquid crsystal. Comparing Figures 2(a) and Fig. 5 of their work one can observe the 
similarity between the temperature-dependent behavior of the low-frequency relaxation 
time of the 5CB liquid crystal and the Blume-Capel model with random single-ion 
anisotropy (Gulpinar & İyikanat, 2011). Moreover, very recently, Ahart et al. (Ahart et al., 

2009) reported that a critical slowing down of the central peak. These results indicate that 
the relaxation time of the order parameter for an Ising magnet diverges near the critical 
point, which corresponds to a familiar critical slowing down.  
It is well known fact that measurements of sound propagation are considered useful in 
investigating the dynamics of magnetic phase transitions and therefore many experimental 
and theoretical studies have been carried out. Various aspects of ultrasonic attenuation in 
magnetic insulators (Lüthi & Pollina, 1969; Moran & Lüthi, 1971) and in magnetic metals 
(Lüthi et al., 1970; Maekawa & Tachiki, 1978) have been studied. In these works, the 
transtion temperature was associated with the experimentally determined peaks whose 
maximum shift towards the lower temperatures as the sound frequency increases. Similarly, 
acoustic studies, especially those of dispersion, have also been made on several magnetic 
systems such as transition metals (Golding & Barmatz, 1969), ferromagnetic insulators 
(Bennett, 1969) and antiferromagnetic semiconductors (Walter, 1967). It was found that the 
critical changes in sound velocity show a uniform behaviour for all substances studied, 
namely, a frequency-independent and weak temperature-dependent effect. It was also 
found that, in the ordered phase, the minima of the sound velocity shifted to lower 
temperatures with increasing frequency (Moran & Lüthi, 1971).  
Dynamic response of a spin system to a time-varying magnetic field is an important subject 
to probe all magnetic systems. It is also called AC or dynamic suceptibility for the 
magnetization. The dynamic susceptibility is commonly used to determine the electrical 
properties of superconductors (Kılıç et al, 2004) and magnetic properties of some spin 
systems such as spin glasses (Körtzler & Eiselt, 1979), cobal-based alloys (Durin et al., 1991), 
molecule-based magnets (Girtu, 2002), magnetic fluids (Fannin et al., 2005) and 
nanoparticles (Van Raap et al., 2005). The dynamic magnetic response of these materials and 
the development of methods for its modification are important for their potential 
applications. For example, cores made of cobalt-based alloys in low signal detectors of 
gravitational physics contribute as a noise source with a spectral density proportional to the 
ac susceptibility of the alloy. The knowledgement of dynamic susceptibility for 
nanocomposite particles is very important for the design of magneto-optical devices.  

7. Conclusion  

In this chapter, we have discussed a simple kinetic formulation of Ising magnets based on 
nonequilibrium thermodynamics. We start with the simplest relaxation equation of the 
irreversible thermodynamics with a characteristic time and mention a general formulation 
based on the research results in the literature for some well known dynamic problems with 
more than one relaxational processes. Recent theoretical findings provide a more precise 
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description for the experimental acoustic studies and magnetic relaxation measurements in 
real magnets.   
The kinetic formulation with single relaxation process and its generalization for more 
coupled irrevesible phenomena strongly depend on a statistical equilibrium description of 
free energy and its properties near the phase transition. The effective field theories of 
equilibrium statistical mechanics, such as the molecular mean-field approximation is used as 
this century-old description of free energy. However, because of its limitations, such as 
neglecting fluctuation correlations near the critical point and low temperature quantum 
excitatitions, these theories are invaluable tools in studies of magnetic phase transitions. To 
improve the methodology and results of mean-field analysis of order parameter relaxation, 
the equilibrium free energy should be obtained using more a reliable theory including 
correlations. This was recently given on the Bethe lattice using some recursion relations. The 
first major application of Bethe-type free energy for the relaxation process was on dipolar 
and quadrupolar interactions to study sound attenuation problem (Albayrak &  Cengiz, 
2011).   
Bethe lattice treatment of phenomenological relaxation problem mentioned above has also 
some limitations. It predicts a transition temperature higher than that of a bravais lattice. 
Also, predicting the critical exponents is not reliable. Therefore, one must consider the 
relaxation problem on the real lattices using more reliable equilibrium theories to get a 
much clear relaxation picture. In particular, renormalization group theory of relaxational 
sound dynamics and dynamic response would be of importance in future. 
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