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1. Introduction  

There is a noteworthy analogy between the statistical mechanical systems and the digital 
image processing systems. We can make pixel gray levels of an image correspondence to a 
discrete particles under thermodynamic noise (Brownian motion) that transits between 
binary state transition from a weak- signal state to a strong-signal state whereas a noisy 
signal to the enhanced signal in digital imaging systems. One such phenomenon in the 
physical systems is stochastic resonance (SR) where the signal gets enhanced by adding a 
small amount of mean-zero Gaussian noise. A local change is made in the image based upon 
the current values of pixels and boundary elements in the immediate neighborhood. 
However, this change is random, and is generated by the sampling from a local conditional 
probability distribution. These local conditional distributions are dependent on the global 
control parameter called “temperature” in physical systems (Geman & Geman, 1984). At 
low temperature the coupling between the particles is tighter means that the images appear 
more regular and whereas at higher temperature induce a loose coupling between the 
neighboring pixels and the image appears noisy or blurred image. At particular optimum 
temperature these particles comes much closer fashion and similarly the pixels of an image 
got arranged in much closer and leads to noise degradation and further enhances the signal. 
In this chapter, we discuss the application of the physical principle of stochastic resonance in 
biomedical imaging systems. Some of the applications of stochastic resonance are signal 
detection and signal transmission, image restoration, enhancement of noisy or blurred 
images and image segmentation.  
Stochastic resonance (SR) is a phenomenon of certain nonlinear systems in which the 
synchronization between the input signal and the noise occurs when an optimal amount of 
additional noise is inserted into the system (Gammaitoni et al., 1998). Stochastic resonance is 
a ubiquitous and conspicuous phenomenon. The climatic model addressing the apparently 
periodic occurrences of the ice ages by the weak, periodic external signal was thought to be 
the first theoretical model of stochastic resonance phenomenon, from which the concept of 
stochastic resonance was put forward (Benzi et al., 1981). Since after the discovery by Benzi, 
there has been increasingly attracting applications of stochastic resonance in various fields 
like physics (Gammaitoni et al., 1998), (Anishchenko et al., 1999), chemistry (Horsthemke & 
Lefever, 2006), biology and neurophysiology (Moss et al., 2004), biomedical (Morse & Evans, 
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1996), engineering systems (Hongler et al., 2003), and signal processing applications (Badzey 
& Mohanty, 2005). Usually noise is the hindrance to any system but in some cases, a little 
extra amount of noise will help, rather than hinder, the performance improvement of the 
system by maximizing or minimizing the chosen performance measure, such as output 
signal-to-noise ratio (SNR) (Gammaitoni et al., 1998), or mutual information (Deco & 
Schrmann, 1998).  
Stochastic resonance can be characterized as a resonant synchronization phenomenon, 
resulting from the combined action of noise and forcing signals. If the noise intensity and 
the system parameters are tuned properly, synchronization will happen between the noise 
and the signal, yielding the “enhancement” of the signal (Gammaitoni et al., 1998). The basic 
components required for SR phenomenon is the input signal, threshold and the system 
outputs with different noise intensities (Marks et al., 2002). In stochastic resonance systems, 
noise can be converted into a positive fact in the improvement of system performance when 
the synchronization between the input signal and noise occurs. Usually, there are two 
approaches to realize this synchronization between the input signal and noise. The first one 
is the traditional stochastic resonance. It realizes the stochastic resonance effect by adding an 
optimal amount of additional noise into the systems. The second approach is called 
parameter-induced stochastic resonance. It is discovered that the synchronization can also 
be realized by tuning the parameters of stochastic resonance systems without adding noise 
(Xu et al., 2004). 
The plot between input noise intensity versus signal-to-noise ratio is shown in figure 1. 
From figure 1, we can notice that the output signal-to-noise ratio will be maximized or 
stochastic resonance phenomenon occurs for optimal noise intensity. It is obvious that the 
output signal will start to change at the same frequency as the input signal when an optimal 
amount of noise is inserted into the system. One way of showing the SR phenomenon is the 
frequency domain, where the information can be recovered from the response recording 
using Fourier analysis. First, we compute the discrete Fourier transform of the recording at 
discrete values of the frequency. The power spectral density (PSD) at each frequency can be 
calculated as twice the square of the Fourier transform at that frequency. The PSD provides 
the distribution of power over frequency in the recorded response. If a periodic signal is 
detected it will show as a peak in the PSD at the frequency of the signal.  

2. Types of stochastic resonance models  

2.1 Nonlinear systems 

Many kinds of nonlinear systems have demonstrated stochastic resonance phenomena, such 
as static systems (Chapeau-Blondeau & Godivier, 1997), dynamic systems (Gammaitoni et 
al., 1998), (Wellens et al., 2004), discrete systems (Zozor & Amblard, 1999), and coupled 
systems (Jung et al., 1992). The traditional stochastic resonance requires the information-
carrying signal to be weak and periodic (Gammaitoni et al., 1998). Now, aperiodic (Barbay et 
al., 2001) and suprathreshold signals can also be the input of certain stochastic resonance 
systems, in terms of aperiodic stochastic resonance (Park et al., 2004), (Sun et al., 2008) and 
suprathreshold stochastic resonance (Stocks, 2001) respectively. 
The stochastic resonance paradigm is compatible with single-neuron models or synaptic and 
channels properties and applies to neuronal assemblies activated by sensory inputs and 
perceptual processes as well. In literature, the landmark experiments including 
psychophysics, electrophysiology, functional MRI, human vision, hearing and tactile 
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functions, animal behavior, single/multiunit activity recordings have been explored. 
Models and experiments show a peculiar consistency with known neuronal and brain 
physiology (Moss et al., 2004). A number of naturally occurring ‘noise' sources in the brain 
(e.g. synaptic transmission, channel gating, ion concentrations, membrane conductance) 
possibly accounting for stochastic resonance phenomenon. 

2.2 Suprathreshold systems 
 Suprathreshold stochastic resonance can operate with signals of arbitrary amplitude and 
has been reported in the transmission of random aperiodic signals (Stocks, 2001). Noise is an 
essential part of stochastic resonance systems and will improve the system performance 
when synchronization between noise and input signals happens. The most common and 
extensively studied noise is the additive zero-mean white Gaussian noise (Wang, 2008). The 
noise, however, is no longer limited to white Gaussian noise and even it can be colored 
(Nozaki et al., 1999), or non-Gaussian noise (Kosko & Mitaim, 2001), (Rousseau, et al., 2006). 
In some cases, chaotic signals can replace the stochastic noise and generate the stochastic 
resonance effect. In order to describe SR phenomena quantitatively and reveal the 
synchronization between signals and noise, different manners to characterize stochastic 
resonance phenomena have been advanced over the years. For periodic signals, the most 
commonly used quantifier is signal-to-noise ratio (Gammaitoni et al., 1998). For aperiodic 
signals, cross-correlation measures (Collins et al., 1996), and information-based measures, 
such as mutual information (Deco & Schrmann, 1998), can be used instead. The theoretical 
analysis of stochastic resonance systems is often very difficult, because of the complexity of 
the systems. Approximation models and approaches have been adopted in these cases. 
Some of the useful tools for the theoretical analysis are two-state model (Ginzburg, & 
Pustovoit, 2002), Fokker-Planck equation (Hu et al., 1990), and linear-response theory 
(Casado-Pascual et al., 2003). The noise-enhanced feeding behavior of the paddle fish is an 
example of stochastic resonance phenomena in biological systems and Schmitt trigger in 
engineering systems (Gammaitoni et al., 1998). 

2.3 Excitable systems 
Another example of a system, often found in neuronal circuits, that exhibits SR is an 
excitable system. Unlike the double well bistable system discussed below, this system has a 
single rest state and an unstable excited state that is reached by crossing a barrier. An 
excitable system behavior of SR is shown in figure 2. The system has an inbuilt threshold 
and monitors (over time) whether an input crosses this threshold. If, when the receiver is 
looking at the input it lies above the threshold, a pulse is emitted figure 2(b) and (c). If, on 
the other hand, the input lies below the threshold, no pulse is emitted. The pattern of pulses 
can be used by the detector to determine frequency information about the signal. Again, 
when the whole signal lies below the threshold, no pulses are emitted and it will not be 
detected. If noise is added to this sub-threshold signal it may push the input above the 
threshold, this is most likely to happen at the peaks of the signal (Rousseau et al., 2005). 
Information about the signal frequency is contained in the emitted pulse train and can be 
recovered by the detector. 

2.4 Bistable systems 
Another typical example of the stochastic resonance system is the nonlinear bistable double-
well dynamic system, which describes the overdamped motion of a Brownian particle in a 
symmetric double-well potential in the presence of noise and periodic forcing as shown in 
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figure 3(a) and the particle in the double-well potential crossing the barrier from a weak-
signal state to a strong-signal state as shown in figure 3(b). The bistable double-well systems 
have found several applications in signal processing (Leng et al., 2007) and fault diagnosis 
(Tan et al., 2009). It has been used to amplify the coherent signals (Badzey & Mohanty, 2005). 
We can make pixel gray levels of an image correspondence to a discrete particles under 
Brownian motion that transits between binary state transition whereas a noisy image to an 
enhanced image in digital imaging systems. The assignment of an energy function in the 
states of atoms or molecules in the physical system is determined by its Boltzmann’s or 
Gibbs distribution. Because of the Gibbs distribution, markov random field (MRF) 
equivalence, this assignment also determines MRF image model (Geman & Geman, 1984). 
Similarly, the threshold-crossing rate of the stochastic resonator occurs only at the Kramer’s 
frequency. In physical systems, at low temperature the coupling between the particles is 
tighter means that the images appear more regular and whereas at higher temperature 
induce a loose coupling between the neighboring pixels and the image appears noisy or 
blurred image. At particular optimum temperature these particles comes much closer and 
analogous the pixels of an image got arranged in much closer and leads to noise reduction 
and enhances the signal.  
 

 

Fig. 1. Signal-to-noise ratio maximum peak occurs at an optimum level of noise intensity 

 

 

Fig. 2. An excitable system (a) A periodic signal lying below the threshold (b) If only noise is 
added to the system, threshold crossings are random and no information is contained in the 
pulse train, (c) If both the noise and signal are added to the system, the threshold crosses 
and hence the pulse train corresponds to peak of signal and information can be recovered. 
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In this chapter, we focuses on the phenomenon of stochastic resonance application in 
various medical imaging systems like computed tomography (CT) and magnetic resonance 
imaging (MRI).We investigate the applications of stochastic resonance techniques in medical 
image processing based on systematic and theoretical analysis, rather than only based on 
simulations. We develop a totally new formulation of two-dimensional parameter-induced 
stochastic resonance for nonlinear image processing. We reveal it is feasible to extend the 
concept of one-dimensional parameter-induced stochastic resonance to two-dimensional 
and use it for image processing. Compared with current SR-based methods, the current 
approach based on two-dimensional SR technique can eliminate the noise on the addition of 
noise into images, which can be used as a nonlinear filter for image processing. Here, we 
first propose a new two dimensional bistable stochastic resonance system in their respective 
integral transforms such as Radon and Fourier transforms respectively for CT and MR 
imaging.  
 

 

Fig. 3. (a) Bistable double well potential 

 

 

Fig. 3. (b) Particle in double well potential crossing the barrier when signal reaches peak 

3. Mathematical framework 

We now elaborate the bistable SR model in the theoretical form that is conventionally used 
by the physicists. We now ask how an image pixel would transform if mean-zero Gaussian 
fluctuation noise η(t)  is added, so that the pixel is transferred from a weak-signal state to a 
strong-signal state, i.e. a binary-state transition occurs. Actually, such a discrete image pixel 
under noise can be modeled by a discrete particle under Brownian motion, the particle 
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transits between two binary states L and R, separated by a threshold (figure 3b). The theory 
of stochastic Brownian model is well known in statistical physics and thermodynamics, and 
the initial investigations on stochastic transition by (Kramers, 1940) and on the bistability 
theory of stochastic resonance by (McNamara, 1989). The transition of a Brownian particle 
between two-states (Gammaitoni et al., 1998), having a bistable potential, U(x), is given by  

 2 4( )
2 4

a b
U x x x


   (1)             

where x is the particle’s normalized position in the state parameter axis centred on the origin 
at x = 0 (figure 3a). We can obtain the equation of motion of the particle by delineating that 

its velocity ( )x t  as the algebraic resultant of the two causative factors of motion, namely the 

sinusoidal signal force term and the damping force term, the latter being the (negative) first 

differential of the potential, ( )U x  and hence given by: 

 0( ) ( ) cos( )x t U x A t       (2) 

where A0,  and   are respectively the signal amplitude, modulation frequency and phase. 

In order to occur the stochastic resonance phenomenon, we need to add small amount of 
mean-zero white Gaussian noise (t) to the particle, which causes the particle to move from 
one state to the other state, jumping and crossing over the threshold that has a threshold 
potential, ∆U as shown in figure 3b. As already mentioned earlier, each particle of the 
physical system above, corresponds to a pixel of the image, from a signal processing 
perspective. Note that (t) is the stochastic noise administered, having the mean or expected 
value of zero, i.e. 

[ ( )] 0t  
  

with the autocorrelation function (t) being that of a Gaussian white noise, given by 

( ) (0) 2  ( )t D t  
  

Here  and D are the delta function and noise intensity respectively.  
Mathematically, one can represent the random motion of the particle in a bistable potential 
in the presence of noise and periodic forcing can be given by:  

 0( ) ( ) cos( ) ( )x t U x A t t        (3a)                          

where 3( )U x ax bx    .  

Since our aim is to obtain a maximal signal, we let the cosine term attain its maximum value 

i.e. unity, and substitute ( )U x as obtained by differentiating eq. (1), we get from eq. (3a): 

 3
0( ) ( ) ( ) ( )x t ax t bx t A t     (3b)  

The threshold-crossing rate of the stochastic resonator occurs at the Kramer’s frequency 

 exp
2

k

a U
r

D
   

 
 (4) 
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Being reciprocal of Kramer’s frequency, the periodicity or waiting time of the stochastic 

transition between two noise-induced inter-well transition which is given by ( ) 1k kT D r .  

If we input a small periodic forcing term to the particle, stochastic switching and jumping 
occurs between the potential wells and the switching may become synchronized with the 
input. This stochastic synchronization happens if the mean waiting time satisfies the time-
scale matching requirement (Gammaitoni et al., 1998)  

2 ( )kT T D 
 

where T is the period of the input periodic forcing term.  

Stochastic resonance occurs if the signal-to-noise level of a system increases with the values 
of noise intensity. For lower noise intensities, the signal does not affect the system to cross 
threshold, so little signal is passed through it. For large noise intensities, the output is 
dominated by the noise, also leading to a low signal-to-noise ratio. For moderate optimal 
intensity level, the noise allows the signal to reach threshold, and increases the signal-to-
noise ratio of a system. SR occurs at the maximum response of the signal i.e. signal-to-noise 
ratio. (SNR) and the alteration of the response of the signal due to stochastic resonator is 
given by 

 
2 2

0 1 0

4
exp

2( ) 2

a a
SNR

  

 
   

 
 (5) 

With respect to figure 3a, the potential minima are located at  s a b  , while the height of 

the threshold potential barrier between the two states is  2 4U a b  . Considering the 

image enhancement scenario, one can posit that the x-axis corresponds to the normalized 
pixel intensity value with respect to the detector threshold value that is defined as x = 0, 
where it is analogous to noisy image to enhanced image.  
Based on the power spectral density of a one dimensional signal or the coefficient of 

variance (CV) of an image, which is the contrast enhancement index defined as the 

performance measure of nonlinear bistable dynamic systems with fluctuating potential 

functions can be further enhanced by adding noise and tuning system parameters at the 

same time, if the input signal is Gaussian-distributed. Then, we extend these results to hazy 

or noisy images. The relative enhancement of the contrast of an image means the ratio of the 

coefficient of variance between the input noisy image and the output SR enhanced image. 

Therefore, we suggest a potential application of this mechanism in the recovery of weak 

signals corrupted by noise to biomedical imaging. 

4. Application of stochastic resonance in biomedical imaging 

4.1 SR-based Integral transform 

In this section, we discuss the application of the bistability stochastic resonance model for 

the enhancement of commonly used medical images such as computed tomography and 

magnetic resonance imaging. Due to the fact that CT image reconstructed using Radom 

transform (Deans, 1983), whereas MR image formation corresponds to the Fourier transform 

(Lauterbur & Liang, 2001), we propose a bistable SR system operating in the spatial domain 

www.intechopen.com



 
Thermodynamics – Systems in Equilibrium and Non-Equilibrium 

 

222 

of the two-dimensional integral transforms. Let us consider the 2D spatial representation of 

an object as a function (x,y), which can be the image intensity or a 2D projection of a CT 

image, pixel gray value in T1-weighted MR image where the pixel brightness respectively 

depend on the tissue relaxation rate or the spin density. The generalized MR or CT imaging 

equation in projective imaging case can be given by  

( , ) ( , , )
z

I x y x y z dz




   

Since we consider a single slice of 3-D volume, and the 2-D image ˆ( , )I x y  can be formed 

using respective Fourier integral transform (eq. 6a) and Radon transform (eq. 6b) which is 

given by (Rallabandi & Roy, 2008): 

 
2 ( )ˆ( , ) ( , ). x y

x y x y

x y

i k x k y
I k k I x y e dk dk

 

 

 
    (6a)  

 ˆ( , ) ( , ). ( cos sin )
x y

I I x y x y d d       
 

 

     (6b)   

where δ(.) is a dirac-delta function given for the plane of projection which is equal to 1 if x=0 

and 0 otherwise.  

We now derive a transformed image ( , )x yI k k  by subtracting the mean-zero noise image 

( , )x yI k k image from the original image ˆ( , )x yI k k  such that 

 
ˆ( , ) ( , ) ( , )x y x y x yI k k I k k I k k    

           (7) 

where < > denotes the spatial average value of pixel intensity of the original image 
ˆ( , )x yI k k .Now convoluting  the stochastic resonator SR on the transformed image ( , )x yI k k , 

thereby obtaining the stochastically enhanced image ( , )x yI k k which is given by: 

 
2 ( )

( , )  ( , ). x y
x y x y x y

x y

i k x k y
I k k SR I k k e dk dk

 

 

    
 

   (8) 

Here SR is operated on the magnetic resonance image I as given in eq.3 (b) such that SR 

phenomenon occurs at maximum SNR given in eq.(5).  

Now we need to solve the stochastic differential equation given in eq. (3b) using stochastic 

version of Euler-Maruyama’s method using the iterative method as follows [Gard, 1998]: 

 3
1 ( )n n n n nx x k ax bx s      (9)  

in which 0n ns A w  , denotes the sequence of input signal and noise with the initial 

condition being x0 = x (0), i.e. the initial value of x being 0. Observe that the zero-mean 

stochastic noise sequence {wn} has unit variance, w2 = 1. We discretize the stochastic 
simulation in terms of ‘k’ steps as shown in eq. (9).  
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4.2 Selection of optimal parameters 

Note that it is necessary to select the optimal bistability parameters of ‘a’ and ‘b’, we 
consider the output SNR as a function of noise intensity given in eq. (5) such that the pixel 

maps 0 0( , )  and 1 1( , )  have the relationship (Ye et al., 2003):  

 
2

1
2

0

a

b




 
   
 

                            (10) 

where 0 1( , )  are respectively the signal frequencies of the input image and SR-enhanced 

image, while 0 1( , )  are respectively the standard deviation of noise in the input image and 

SR-enhanced image. Our approach has been adapted and modified from the usual 
methodology of using the bistability-based stochastic resonance effect to enhance input 
noisy image based on the integral transform of the input image (Rallabandi & Roy, 2010). In 
our case, we fix one of the bistability parameters ‘a’ at a particular value, and estimate the 
other parameter ‘b’ according to the relation given in eq.(10). However, the choice of 
parameters ‘a’ and ‘b’ are selected for CT and MRI using the relationship given in eq. (10).  
To furnish a readily obtainable quantitative index of image upgradation, we plot the gray-
level histograms of the input image and the optimal enhanced image. As a ready 
approximation, it is known that as an image is enhanced and there is more finer or clearer 
heterogenous structuration obtained, this enhancement can be characterized by an increase 
in the image quality contrast parameter, which is the coefficient of variance (CV) of an 

image, that is, the ratio of variance to the mean of the image histogram given by  2Q   . 

Further, we can estimate the relative image enhancement factor due to SR by means of the 
ratio of the pre-enhancement (QA) and post-enhancement (QB), values of image quality 
index given by (Rallabandi & Roy, 2010) 

  2 2
B A A BF      (11)  

The general illustration of using SR approach for CT/MRI images is shown in figure 4. We 
consider the noisy CT axial image so that the image became indistinct, which caused the 
obliteration of the lesion and its edema, and the midline falx cerebri (figure 5a). To this 
indistinct image, the SR-based Radon transform is applied (the resultant output image is 
shown in Figure 5b). Note that the noise in the image has been reduced, whereas clearer 
visibility has been attained by the representation of the edema, falx, and lesion, with an 
inner central core reminiscent of a calcified scolex blob inside (arrow; figure 5b). 
We consider the T1-weighted MR image of the malignant brain tumor, glioblastoma 
multiforme having mass effect in both the hemispheres, contraction of the ventricles and 
involvement of the splenium of the corpus callosum. Noise was added to this image so that 
it becomes indistinct; the gray matter, white matter and the lesion region cannot be 
distinguished and the sulci and gyri become obliterated (figure 6a). We then apply the SR 
enhancement process in Fourier domain and the resultant enhanced image is given in figure 
6b. One may easily observe that the noise in the image has reduced, while the representation 
of the lesion, sulci, gyri, white and gray matter has appreciably restored with clearer 
demarcation. To enable a quantitative comparison, the image histograms are constructed, 
and are displayed to the right of the respective images. Figures 6c and 6d are the image 
histograms of figures 6a and 6b respectively. 
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The stochastic resonance imaging approach has advantages like that it can recover the image 
from noise and also enhance the selected region of tumor image. The proposed method can 
be used to distinguish boundaries between gray matter, white matter, and CSF and also 
delineate edematous zones, vascular lesions and proliferative tumor regions. This method 
would be of considerable use to clinicians since SR enhanced images, under a suitable choice 
of ‘a’ and ‘b’ parameters. One can reiterate that the advantage of SR procedure is that the 
process can adapt to the local image texture by altering these stochastic bistability 
parameters, so that the enhancement process is suitably optimized.        

4.3 Contrast sensitivity    
Stochastic resonance inherently is a process that is well tuned to enhance the contrast 
sensitivity and decrease the neurophysiological threshold of the human visual system, 
which have been well demonstrated experimentally when stochastic fluctuation of pixel 
intensity is administered to visual images on a computer screen observed by a subject 
(Simonotto et al; 1997). In other words, it may be emphasized that the development of a high 
performance contrast enhancement algorithm must hence attempt to enhance the contrast in 
the image, based not only on the local characteristics of the image but also on some basic 
human visual characteristics, especially those properties related to contrast. The 
development of a high-performance contrast enhancement algorithm must thus attempt to 
enhance the contrast in the image based not only on the local characteristics of the image but 
also on some basic human visual characteristics, especially those properties related to 
 
 
 

 

 

 

 

 

Fig. 4. Illustration of Stochastic Resonance in Radon/Fourier integral domain 

 

      
(a)                                              (b) 

Fig. 5. (a) Noisy or hazy CT image (b) SR-enhanced output image using Radon transform 

Image reconstruction 
based on transform 

CT/ MRI image Spatial encoding Mean- zero transformed 
image  

Applying SR in 
respective integral 
space(Radon/Fourier) 

SR-based 
enhanced image 
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contrast (Piana et al., 2000). Nevertheless, the majority of enhancement procedures are 
neither tissue-selective nor tissue-adaptive, since in general the various texture properties in 
the image are enhanced evenly together. From an ergonomics perspective, the SR approach 
can be taken to enhance the performance of both aspects of the image visualization process, 
the radiological image processing device, and the human neurophysiological visual 
characteristics. 
 

                  
(a)                                                      (b) 

 
            (c)                  (d)  

Fig. 6. (a) Noisy MR image (b) SR-enhanced image where the lesion, sulci and gyri are 
visible (c) & (d) Image histograms of input image of fig.6a and SR-enhanced image of fig.6b. 

5. Conclusion 

In this chapter, we discuss the phenomenon of stochastic resonance applicable to biomedical 
image processing, where the discrete image pixels are treated as discrete particles, whereby 
the gray value of an image pixel corresponds to a specific kinetic parameter of a physical 
particle in Brownian motion. For real-time applications, we can extend our approach for 
enhancing images which are poor in spatial resolution like positron emission tomography 
images and low signal-to-noise ratio images like functional MRI. Additionally, we aver that 
much appreciable scope exists in utilizing the stochastic resonance technique for enhancing 
higher order noisy images due to various operational conditions during scanning such as 
electronic device noise, thermal noise or nyquist frequency noise.  
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