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1. Introduction  

1.1  

Stem cell (SC) therapy is not a new concept. In the aftermath of the bombings of Hiroshima 
and Nagasaki in 1945, researchers discovered that bone marrow transplanted into irradiated 
mice produced hematopoiesis (Lorenz, 1951). Hematopoietic stem cells (HSCs) were first 
identified in 1961 and their ability to migrate and differentiate into multiple cell types was 
documented (Till, 1961).  
Distinct SC types have been established from embryos and identified in the fetal tissues and 
umbilical cord blood (UCB) as well as in specific niches in many adult mammalian tissues and 
organs such as bone marrow (BM), brain, skin, eyes, heart, kidneys, lungs, gastrointestinal 
tract, pancreas, liver, breast, ovaries, prostate and testis (Siqueira, 2010). All SCs are 
undifferentiated cells that exhibit unlimited self renewal and can generate multiple cell 
lineages or more restricted progenitor populations which can contribute to tissue homeostasis 
by replenishing the cells or to tissue regeneration after injury (Lanza, 2004; Mimeault, 2006).  
Several investigations (Mimeault, 2006; Ortiz-Gonzalez, 2004; Trounson, 2006) have been 
carried out with isolated embryonic, fetal and adult SCs in a well-defined culture 
microenvironment to define the sequential steps and intracellular pathways that are 
involved in their differentiation into the specific cell lineages. More particularly, different 
methods have been developed for the in vitro culture of SCs, including the use of cell feeder 
layers, cell-free conditions, extracellular matrix molecules such as collagen, gelatin and 
laminin and diverse growth factors and cytokines (Mimeault, 2004; Siqueira, 2010).  

1.2 Overview of the retinal anatomy 

The retina is approximately 0.5 mm thick and lines the back of the eye. The optic nerve 
contains ganglion cell axons running to the brain and incoming blood vessels that open into 
the retina to vascularize the retinal layers and neurons. A radial section of a portion of the 
retina reveals that the ganglion cells (the output neurons of the retina) lie innermost in the 
retina closest to the lens and front of the eye, and the photosensors (the rods and cones) lie 
outermost in the retina against the retinal-pigment epithelium (RPE) and choroid. Light 
must, therefore, travel through the thickness of the retina before striking and activating the 
rods and cones. Subsequently, the absorption of photons by the visual pigment of the 
photoreceptors is translated first into a biochemical message and then into an electrical 
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message that stimulates all of the succeeding neurons of the retina. The retinal message 
concerning the photic input and some preliminary organization of the visual image into 
several forms of sensation are transmitted to the brain from the spiking discharge pattern of 
the ganglion cells (Kolb, 2005). 
RPE cells support photoreceptor survival and are involved in, for example, ion and nutrient 
transport, formation of the blood-retina barrier and light absorption.  
They are also responsible for phagocytosis of the photoreceptor outer segments, which is 
important for the renewal of photoreceptor membranes. Interestingly, it has been 
demonstrated in a chicken model that, RPE in the postnatal stage of life is similar to that 
found in the embryonic retina with regard to specific gene expression.  
Furthermore, the generation and ex vivo expansion of RPE from human embryonic stem cells 
(hESCs) has been extensively studied and characterized. Moreover, hESC-derived RPE cells 
have been demonstrated to be functional in ex vivo conditions. More recently, the in vitro 
differentiation of RPE and photoreceptors from human induced pluripotent stem (iPS) cell 
cultures provid another potential tool for transplantation purposes and additionally enables 
avoidance of host immune reactions (Machalinska, 2009). 

1.3 Retinal diseases  

Age-related macular degeneration (AMD), glaucoma and diabetic retinopathy are the three 

most common causes of visual impairment and legal blindness in developed countries (Bunce, 

2006). One common denominator of these conditions is progressive loss of the neural cells of 

the eye [photoreceptors, interneurons and retinal ganglion cells (RGC)] and essential 

supporting cells such as the RPE. Retinal dystrophies [retinitis pigmentosa (RP), Stargardt’s 

disease, Best disease, Leber congenital amaurosis, etc.] all evolve with early loss of 

photoreceptors and subsequent loss of RGC. Recent years have seen enormous progress in the 

treatment options that stop the progression of AMD from a neovascular state to fibrosis, that 

slow down the progression of glaucoma by reducing intraocular pressure, and that prevent 

progression of diabetic retinopathy by optimizing glycemic control and treat retinal 

neovascularization early (Chakravarthy, 2010; Maier, 2005; O’Doherty, 2008; Mohamed, 2007). 

However, irreversible visual loss still occurs in a significant proportion of cases. Research is 

aimed at developing novel treatments using neuroprotective and regenerative strategies.  

SCs can potentially be used for both neuroprotection and cell replacement. Intravitreal 

delivery of neurotrophic factors slows down photoreceptor degeneration in rodent models 

of RP, RGC loss in glaucoma models and optic nerve and optic tract trauma, but the effect 

may be temporary. Slow-release preparations and gene therapy approaches used to induce 

retinal cells to secrete neurotrophic factors are two ways to induce longer-term effects. A 

third option is to use SC as long-term delivery agents, possibly encapsulated in a device, 

because many SC either secrete neurotrophins naturally or can be genetically engineered to 

do so (Otani, 2004; Dahlmann-Noor, 2010). 

Progress has also been made in the field of photoreceptor, RPE and RGC replacement by SC 
and progenitor cells, although long-term restoration of visual function has been confirmed. 
The recent discoveries that human fibroblasts can be ‘‘reprogrammed’’ to behave like 
embryonic SC and that adult eyes harbor retinal progenitor cells, also increase the potential 
availability of SC for transplantation, including autologous transplantation and stimulate 
intrinsic ‘‘self-regeneration, ’’ which could potentially overcome a lot of the problems 
associated with non-autologous transplantation in humans (Dahlmann-Noor, 2010).  
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2. Potential sources of stem cells for cell therapy in retinal diseases  

2.1 Bone marrow-derived stem cells 

Bone marrow-derived SCs have been proposed as a potential source of cells for regenerative 
medicine (Machalinska, 2009; Enzmann, 2009). This is based on the assumption that HSCs 
isolated from BM are plastic and are able to “transdifferentiate” into tissue-committed SCs 
for other organs (e. g., heart, liver or brain). Unfortunately, the concept of SC plasticity was 
not confirmed in recent studies and previously encouraging data demonstrating this 
phenomenon in vitro could be explained by a phenomenon of cell fusion or, as believed by 
our group, by the presence, of heterogeneous populations of SCs in BM (Müller-Sieburg, 
2002; Spangrude 1988). The identification of very small, embryonic-like SCs in BM supports 
the notion that this tissue contains a population of primitive SCs, which, if transplanted 
together with HSCs, would be able to regenerate damaged tissues in certain experimental 
settings. Cells from BM are easily and safely aspirated. After administering local anesthesia, 
about 10 mL of the BM is aspirated from the iliac crest using a sterile BM aspiration needle; 
subsequently mononuclear bone marrow SCs are separated using the Ficoll density 
separation method (Siqueira, 2010) (Figure 1).  
 
 

 

Fig. 1. Sequence of photos showing the collection of bone marrow (A) and the initial 
separation of the mononuclear cells using Ficoll-Hypaque gradient centrifugation (B) (C) (D) 
(Siqueira RC 2010) 
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SC-based therapy has been tested in animal models for several diseases including 
neurodegenerative disorders, such as Parkinson disease, spinal cord injury, and multiple 
sclerosis. The replacement of lost neurons that are not physiologically replaced is pivotal for 
therapeutic success. In the eye, degeneration of neural cells in the retina is a hallmark of 
such widespread ocular diseases as AMD and RP. In these cases the loss of photoreceptors 
that occurs as a primary event as in RP or secondary to loss of RPE, as in AMD, leads to 
blindness (Machalinska 2009; Siqueira 2010).  
BM is an ideal tissue for studying SCs because of its accessibility and because proliferative 
dose-responses of bone marrow-derived SCs can be readily investigated. Furthermore, there 
are a number of well-defined mouse models and cell surface markers that allow effective 
studies of hematopoiesis in healthy and injured mice. Because of these characteristics and the 
experience of BM transplantation in the treatment of hematological cancers, bone marrow-
derived SCs have also become an important tool in regenerative medicine. The BM harbors at 
least two distinct SC populations: HSCs and multipotent marrow stromal cells (MSC).  

2.1.1 Hematopoietic stem cells 

HSCs are multipotent SCs that give rise to all the blood cell types including myeloid 
(monocytes and macrophages, neutrophils, basophils, eosinophils, erythrocytes, 
megakaryocytes/platelets, dendritic cells), and lymphoid lineages (T-cells, B-cells, NK-cells).  
HSCs are found in the BM of adults, which includes in femurs, hips, ribs, the sternum and 
other bones. Cells can be obtained directly from the hip using a needle and syringe (Figure 
1), or from the blood following pretreatment with cytokines, such as G-CSF (granulocyte 
colony stimulating factors), that induce cells to be released from the BM compartment. 
Other sources for clinical and scientific use include UCB and placenta (Ratajczak, 2004; 
Müller-Sieburg 2002).  
In reference to phenotype, HSCs are identified by their small size, lack of lineage markers, 

low staining (side population) by vital dyes such as rhodamine 123 (rhodamine-dull, also 

called rholo) or Hoechst 33342 and presence of various surface antigenic markers, many of 

which belong to the cluster of differentiation series: CD34, CD38, CD90, CD133, CD105, 

CD45 and also c-kit and SC factor receptor (Müller-Sieburg, 2002; Nielsen, 2009; Kuçi, 2009; 

Challen 2009 ; Voltarelli 2000; Voltarelli 2003). Otani (2004) demonstrated that whenever a 

fraction of mouse or human adult bone marrow–derived SCs [lineage-negative 

hematopoietic stem cells (Lin-HSCs)] containing endothelial precursors stabilizes and 

rescues retinal blood vessels that would ordinarily completely degenerate, a dramatic 

neurotrophic rescue effect is also observed. Retinal nuclear layers are preserved in two 

mouse models of retinal degeneration, rd1 and rd10, and detectable, albeit severely 

abnormal, electroretinogram recordings are observed in rescued mice at times when they 

are never observed in control-treated or untreated eyes. The normal mouse retina consists 

predominantly of rods, but the rescued cells after treatment with Lin-HSCs are nearly all 

cones. Microarray analysis of rescued retinas demonstrates significant upregulation of many 

antiapoptotic genes, including small heat shock proteins and transcription factors.  

Some reports have demonstrated the clinical feasibility of the intravitreal administration of 

autologous bone marrow-derived mononuclear cells (ABMC) in patients with advanced 

degenerative retinopathies (Jonas, 2008 and 2010). More recently, our group conducted a 

prospective phase I trial to investigate the safety of intravitreal ABMC in patients with 

retinitis pigmentosa or cone-rod dystrophy, with promising results (Siqueira, 2011).  
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2.1.2 Multipotent Mesenchymal Stromal Cells (Mesenchymal Stem Cells) 

Mesenchymal stem cells (MSCs) are progenitors of all connective tissue cells. In adults of 
multiple vertebrate species, MSCs have been isolated from BM and other tissues, expanded 
in culture and differentiated into several tissue-forming cells such as bone, cartilage, fat, 
muscle, tendon, liver, kidney, heart, and even brain cells.  
According to the International Society for Cellular Therapy ( Horwitz, 2005), there are three 
minimum requirements for a population of cells to be classified as MSCs. The first is that 
MSCs are isolated from a population of mononuclear cells on the basis of their selective 
adherence to the surface of the plastic of culture dishes, differing in this respect to bone 
marrow hematopoietic cells, a disadvantage of this method of identification is the possible 
contamination by hematopoietic cells and cellular heterogeneity with respect to the potential 
for differentiation. The second criteria is that CD105, CD73 and CD90 are present and that 
CD34, CD45, CD14 or CD11b, CD79, or CD19 and HLA-DR are not expressed in more than 
95% of the cells in culture. Finally, the cells can be differentiated into bone, fat and cartilage 
(Phinney, 2007).  
A number of studies have shown that bone-marrow-derived MSCs can differentiate into cells 
expressing photoreceptor proteins when injected into the subretinal space (Gong, 2008; 
Castanheira, 2008). Interestingly, it has been suggested that rat MSCs can be made to express 
photopigment (rhodopsin) in vitro simply by adding epidermal growth factor to the culture 
media (Zhang, 2008). Additionally, though other retina-relevant cell types have been 
engineered, a number of studies have shown that BM or adipose tissue MSCs are converted to 
RPE (Gong, 2008; Arnhold, 2006; Vossmerbaeumer 2009). As with work on other neuronal 
phenotypes, however, there has now been a reassessment of the ability of MSCs to 
differentiate into functionally useful retinal cells. Some studies have shown that transplanted 
bone marrow MSCs do not differentiate into neural retinal cells (YU, 2006). In an in vitro rat 
retina-explant model, untreated MSCs seemed to transdifferentiate into microglia109 in a way 
reminiscent of earlier work on MSC transplants in other neurological tissue (Azizi 1998). Some 
limited improvement was seen with pre-treatment with BDNF, NGF, and bFGF in terms of 
morphological differentiation into retinal neurons and expression of NF200, GFAP, PKC-
alpha, and recoverin, but these cells did not express Rhodopsin (Erices, 2000).  
In an ischemic retina rodent model, MSCs injected into the vitreous cavity have been shown 
to mature (with expression of neuron-specific enolase and neurofilament) and secrete CNTF, 
bFGF, and BDNF for at least 4 weeks (Li, 2009). Animal studies have also demonstrated that 
subretinal transplantation of MSCs delays retinal degeneration and preserves retinal 
function through a trophic response (Inoue, 2007). UCB-derived MSCs have also been 
shown to be neuroprotective of rat ganglion cells (Zwart, 2009). Very recently, the 
intravenous administration of bone marrow-derived MSCs was shown to prevent 
photoreceptor loss and preserve visual function in the RCS rat model of RP.  
A role for genetically-modified MSCs may emerge in the treatment of subretinal 
neovascularization. It has been shown that bone-marrow-derived MSCs accumulate around 
subretinal membranes induced by retinal laser burns. 
Intravenous injection of mouse bone-marrow MSCs genetically engineered to secrete 
pigment epithelium derived factor resulted in smaller neovascular complexes (Hou, 2010).  

2.2 Induced pluripotent stem cells 

Current methods of producing SCs from adult somatic cells offer an alternative cell source 
for transplantation. Induced pluripotent stem (iPS) cells are morphologically identical to 
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embryonic SCs, display similar gene expression profiles and epigenetic status and have the 
potential to form any cell in the body (Takahashi, 2006 and 2007; Yu, 2007). These cells have 
been employed to generate cells for the treatment of various diseases including diabetes, 
cardiovascular disease, sickle cell anemia, Parkinson's disease and hemophilia (Zhang, 2009; 
Hanna, 2007; Xu, 2009; Wernig, 2008). Meyer et al. 2009 recently showed that iPS cells can 
differentiate into retinal cell types whilst a paper by Buchholz et al. 2009 showed that 
human iPS cells can be differentiated into retinal pigment epithelial cells which display 
functionality in vitro.  
Carr (2009) demonstrated that iPS cells can be differentiated into functional iPS-RPE and 
that transplantation of these cells can facilitate the short-term maintenance of 
photoreceptors through phagocytosis of photoreceptor outer segments. Long-term visual 
function is maintained in this model of retinal disease even though the xenografted cells are 
eventually lost, suggesting a secondary protective host cellular response.  
While this particular line of iPS-RPE cells cannot be used as a direct therapy due to viral 
insertions of pluripotency genes, recent advances in iPS cell reprogramming technology, 
including the use of small molecules (Huangfu, 2008; Shi, 2008; Li, 2009), piggyBac 
transposition (Woltjen, 2009; Kaji, 2009), non-integrating episomal vectors (Yu, 2009) and 
manipulation of endogenous transcription factors (Balasubramanian, 2009) should eliminate 
the risks associated with the integration of SC genes into the genome. Furthermore, the 
finding that blood cells can be used to derive iPS cells (Loh, 2009) may remove the need for 
the invasive biopsies required to collect somatic cells and accelerate the ethical production of 
SC-derived tissue for therapeutic use.  

2.3 Human Embryonic Stem Cells 

The human embryonic stem cell (hESC) is defined as a cell that can both renew itself by 
repeated division and differentiate into any one of the 200 or more adult cell types in the 
human body. An hESC cell arises from the eight-cell stage morula. Outside of normal 
development, hESCs have been differentiated in vitro into neural cell types and even 
pigmented epithelium, although controlling their differentiation has proven challenging. 
Several hESC lines exist and are supported by public research funds. The use of hESCs has 
significant limitations, including ethical issues, and a risk of teratoma formation, but the 
chief problem is that we are still struggling to understand the developmental cues that 
differentiate hESCs into the specific adult cell types required to repair damaged tissues 
(MacLaren, 2007).  
Nistor et al. (2010) showed for the first time that three-dimensional early retinal progenitor 
tissue constructs can be derived from hESCs. Three-dimensional tissue constructs were 
developed by culturing hESC-derived neural retinal progenitors in a matrix on top of hESC-
derived RPE cells in a cell culture insert. An osmolarity gradient maintained the nutrition of 
the three-dimensional cell constructs. Cross-sections through hESC-derived tissue constructs 
were characterized by immunohistochemistry for various transcription factors and cell 
markers. Tissue constructs derived from hESC expressed transcription factors characteristic 
of retinal development, such as pax6, Otx2, Chx10, retinal RAX; Brn3b (necessary for 
differentiation of retinal ganglion cells) and crx and nrl (role in photoreceptor development). 
Many cells expressed neuronal markers including nestin, beta-tubulin and microtubule-
associated protein.  
Assessments of safety and efficacy are crucial before hESC therapies can move into the 
clinic. Two important early potential hESC applications are the use of retinal pigment 
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epithelium (RPE) for the treatment of age-related macular degeneration and Stargardt’s 
disease, an untreatable form of macular dystrophy that leads to early-onset blindness. Long-
term safety and function of RPE from hESCs in preclinical models of macular degeneration 
was demonstrated by Lu et al. (2009).  
They showed long-term functional rescue using hESC-derived RPE in both RCS rats and 
Elov14 mice, which are animal models of retinal degeneration and Stargardt’s disease, 
respectively. Good manufacturing practice-compliant hESC-RPE survived subretinal 
transplantation in RCS rats for prolonged periods (> 220 days). The cells sustained visual 
function and photoreceptor integrity in a dose-dependent fashion without teratoma 
formation or untoward pathological reactions.  
Near-normal functional measurements were recorded at > 60 days survival in RCS rats. To 
further address safety concerns, a Good laboratory practice-compliant study was carried out 
in the NIH III immune-deficient mouse model. Long-term data (spanning the life of the 
animals) showed no gross or microscopic evidence of teratoma/tumor formation after 
subretinal hESC-RPE transplantation.  
These results suggest that hESCs could serve as a potentially safe and inexhaustible source 
of RPE for the efficacious treatment of a range of retinal degenerative diseases.  
In 2010, the US Food and Drug Administration (FDA) granted Orphan drug designation for 
RPE cells of Advanced Cell Technology, Inc. (ACT) to initiate its Phase 1/2 clinical trials  
 

 

Fig. 1. Intravitreal injection of autologous bone marrow–derived stem cells in a patient with 
retinitis pigmentosa (Siqueira RC, 2010) 
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using retinal pigment epithelial (RPE) cells derived from hESCs to treat patients with 
Stargardt’s Macular Dystrophy (SMD). Moreover, in 2011 the company received a positive 
opinion from the Committee for Orphan Medicinal Products (COMP) of the European 
Medicines Agency (EMA) towards designation of this product as an orphan medicinal 
product for the treatment of Stargardt’s disease.  
 
 

 Type of study Type of injury or 
illness 

Route used Type and source 
of cells 

Atsushi Otani et al. Experimental 
study in animals 

Mice with retinal 
degenerative disease 

Intravitreous 
transplantation 

Adult bone 
marrow–derived 
lineage-negative 
hematopoietic 
stem cells 

Wang S et al.  Experimental 
study in animals 

Retinitis pigmentosa Tail vein Pluripotent bone 
marrow-derived 
mesenchymal 
stem cells  

Li Na & Li Xiao-
rong & Yuan Jia-qin

Experimental 
study in animals 

Rat injured by 
ischemia/reperfusion 

Intravitreous 
transplantation 

Bone marrow 
mesenchymal 
stem cells 

Uteza Y, Rouillot JS, 
Kobetz A, et al.  

Experimental 
study in animals 

Photoreceptor cell 
degeneration in Royal 
College of Surgeon 
rats 

Intravitreous 
transplantation 

Encapsulated 
fibroblasts 

Zhang Y, Wang W Experimental 
study in animals 

Light-damaged 
retinal structure 

Subretinal 
space 

Bone marrow 
mesenchymal 
stem cells 

Tomita M Experimental 
study in animals 

Retinas mechanically 
injured using a 
hooked needle 

Intravitreous 
transplantation 

Bone marrow-
derived stem cells 

Meyer JS et al.  Experimental 
study in animals 

Retinal degeneration Intravitreous 
transplantation 

Embryonic stem 
cells 

Siqueira RC et al.  Experimental 
study in animals 

Chorioretinal injuries 
caused by laser red 
diode 670N-M 

Intravitreous 
transplantation 

Bone marrow-
derived stem cells 

Wang HC et al.  Experimental 
study in animals 

Mice with laser-
induced retinal injury

Intravitreous 
transplantation 

bone marrow-
derived stem cells 

Johnson TV et al.  Experimental 
study in animals 

Glaucoma Intravitreous 
transplantation 

Bone marrow-
derived 
mesenchymal 
stem cell  

Castanheira P et al.  Experimental 
study in animals 

Rat retinas submitted 
to laser damage 

Intravitreous 
transplantation 

Bone marrow-
derived 
mesenchymal 
stem cell  

Jonas JB et al.  Case report Patient with atrophy 
of the retina and optic 
nerve 

Intravitreous 
transplantation 

bone marrow-
derived 
mononuclear cell 
transplantation 
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 Type of study Type of injury or 
illness 

Route used Type and source 
of cells 

Jonas JB et al.  Case report Three patients with 
diabetic retinopathy, 
age related macular 
degeneration and 
optic nerve atrophy 
(glaucoma) 

Intravitreous 
transplantation 

bone marrow-
derived 
mononuclear cell 
transplantation 

Siqueira RC et al.  
gov clinical trial.  
NCT01068561 
 

Clinical Trial 
Phase I 
 

Five patients with 
retinitis pigmentosa 

Intravitreous 
transplantation 

bone marrow-
derived 
mononuclear cell 
transplantation 

Siqueira RC et al.  
Ethics committee of 
Brazil.  
Register: 16018 

Clinical trial  
Phase II 

50 patients with 
retinitis pigmentosa 

Intravitreous 
transplantation 

bone marrow-
derived 
mononuclear cell 
transplantation 

Siqueira RC et al.  
Ethics committee of 
Brazil.  
Register 15978 

Clinical trial  
Phase I/II 

Ten patients with 
macular degeneration

Intravitreous 
transplantation 

bone marrow-
derived 
mononuclear cell 
transplantation 

Advanced Cell 
Technology 
http://www. 
advancedcell. com/

Clinical trial  
Phase I/II 

12 patients with 
Stargardt’s Macular 
Dystrophy 

Subretinal 
transplantation 

retinal pigment 
epithelial (RPE) 
cells derived from 
human embryonic 
stem cells (hESCs) 

Table 1. Clinical and experimental studies using cell therapy for retinal diseases 

3. Conclusion  

Stem cells maintain the balance between somatic cell populations in various tissues and are 
responsible for organ regeneration. The remarkable progress of regenerative medicine in the 
last few years indicates promise for the use of stem cells in the treatment of ophthalmic 
disorders. Based on the above mentioned mechanisms, experimental and human studies 
with intravitreal bone marrow-derived stem cells have begun (Table 1). The history starts to 
be written in this very promising therapeutic field.  
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