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1. Introduction 

Mangrove forests are among the most productive and biologically important ecosystems of 
the world, because they provide important and unique ecosystem goods and services to 
human society and coastal and marine systems, as stabilizing shorelines and reducing the 
devastating impact of natural disasters, providing breeding and nursing grounds for marine 
species, and food, medicine, fuel and building materials (Tomlinson, 1986; Giri et al., 2011).  
Mangroves are taxonomically diverse trees and shrubs that have evolved independently 
through convergence (Hogarth, 1999). The principal genera are Avicennia (Avicenniaceae), 
Laguncularia and Lumnitzera (Combretaceae), Nypa (Palmae), Bruguiera, Ceriops, Kandelia and 
Rhizophora (Rhizophoraceae), and Sonneratia (Sonneratiaceae) (Tomlinson, 1986). These 
plants have developed complex physiological, morphological and anatomical adaptations 
allowing survival and success in the high stress habitat where they inhabit (Hogarth, 1999). 
They can tolerate the stress of waterlogging and salinity prevailing in coastal environments 
influenced by tides and have adapted to wide salinity levels, may be influenced by local 
hydrology and episodic disturbance events (Doyle, 2003). The maximum concentration of 
soil water salinity that mangrove species can tolerate is suggested up to 155 ‰ with annual 
averages of 100 ‰ (Tomlinson, 1986).   
Mangrove forests are generally distributed along tropical coastlines of America, Africa and 
Asia between 25° N and 25° S, although this range extends beyond due to the movement of 
unusually warm waters from the equator, including the east coast of Africa, Australia, and 
New Zealand (Hogarth, 1999; McLeod & Salm, 2006).  
Nevertheless, sea-level rise in the future could be the biggest threat to mangrove ecosystems 
as climate change consequence (Giri et al., 2011). In the last century, sea-level has risen 10-20 
cm mainly due to thermal expansion of the oceans and melting of glacial ice caused by 
global warming, with climate models predicting an accelerated rate of sea-level rise over 
coming decades from 0.09 to 0.88 m (McLeod & Salm, 2006). This will generate salinity 
concentration, along with rising CO2, and temperature, determining future species 
distributions, abundances, and viability (Kareiva et al., 1993; Yáñez-Arancibia et al., 1998), 
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concerning worldwide from both scientific and policy perspectives (Alongi, 2008; Gilman et 
al., 2008; Semeniuk, 1994).  
Increased surface temperature is expected to affect mangrove forests (Field, 1995). However, 
it is uncertain the effect of rising temperature when the interactive effects of changes in 
precipitation and other weather-related factors are considered (Alongi, 2008). In addition, 
temperature change in the tropics may not be as great as in boreal and temperate regions 
(Beaumont et al., 2011; Solomon et al., 2007). Responses of mangroves to rising temperature 
depend on reactions of individual plants, but such responses have not been addressed 
experimentally.  
The chapter approach involve a review of worldwide studies regarding the association of 
mangroves morphological and anatomical traits variation with local and regional 
environmental factors, analyzing their stem, leaves, roots and growth, allowing to infer the 
effect of potential impacts of sea-level rise on their structure. 

2. Morphological and anatomical adaptations of mangrove forest species to 
environmental factors  

Mangrove species anatomical and morphological adaptations are relevant from ecological 
point of view, due to the particular environment where they inhabit, frequently flooded and 
highly saline (Tomlinson, 1986) (Fig. 1).  
 

 
Fig. 1. Mangrove  Avicennia germinans (L.) Stearn (Avicenniaceae) trees in the coastal lagoon 
“La Mancha”, Veracruz, in the Gulf of Mexico (photo by Jorge López-Portillo). 

There is in addition a group of species described as mangrove associates that comprises a 
large number of species typically occurring on the landward margin of the forest or non-
mangrove habitats like salt marsh or lowland fresh water swamps that are completely or 
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partially flood tolerant (Hogarth, 1999) (Fig. 2). There is a long list of mangrove associates 
like Hibiscus and Pavonia (Malvaceae), Amoora (Meliaceae), Ardisia and Myrsine 
(Myrsinaceae), Calamus and Phoenix (Arecaeae),  Pandanus (Pandanaceae), Pouteria 
(Sapotaceae), Pachira (Bombacaceae), Ficus (Moraceae), Tabebuia (Bignoniaceae), Achrosticum 
(Pteridaceae), Annona (Annonaceae), and others (Tomlinson, 1986).  
The most typical adaptations of mangrove species are the aerial roots, stilt-roots,  
pneumatophores, root knees, and plank roots that have a higher proportion of gas space 
when waterlogged, mechanisms of salt exclusion by the roots, tolerance of high tissue salt 
concentrations and excretion of salt excess from leaves, vivipary or the development of the 
embryo in seed plants before they are dispersed, and seeds and propagules have different 
morphological adaptations that facilitate flotation (Baskin & Baskin, 2001; Hogarth, 1999; 
Tomlinson, 1986).  
 

 
Fig. 2. Mangrove associate Annona glabra L. (Annonaceae) trees showing massive root 
system in the Everglades, Florida.  

Trees vascular system has strong influence on leaves structure and function, carbon gain, 
nutrient use efficiency and growth rate. Diverse studies have revealed that mangroves show 
great plasticity in wood, bark and leaves structure as an adaptation to a wide gradient of 
water salinity, flooding level and waterlogging period. These modifications are important to 
account and understand the possible effects of the predicted sea-level rise as a consequence 
of global warming, because as all mangrove forests occur between high and low tide marks 
it is evident that they will be drastically influenced by any changes in sea-level.   
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3. Modifications of wood structure in response to environmental factors 

Several studies have demonstrated that mangroves like Bruguiera, Rhizophora, Laguncularia 
and Avicennia trees stem vascular system, particularly wood anatomical traits as vessel 
density, grouping, diameter and length, as well as fiber wall thickness, are affected by 
variations on salinity and flooding level. (Table 1).  
 

Anatomical traits Species  Environmental factors Reference 

Vessel density 
Annona glabra  
Laguncularia racemosa 
Rhizophora mangle 

Salinity 
Flooding level 
Soil texture 

Yáñez-Espinosa et al., 2001 

 
Laguncularia racemosa 
 

Salinity 
Flooding level 

Yáñez-Espinosa et al., 2004 

 Rhizophora mucronata Salinity Schmitz et al., 2006 

 
Avicennia marina 
Rhizophora mucronata 

Salinity Robert et al., 2009 

 
Avicennia germinans 
 
Bruguiera gymnorrhiza 

Salinity 
Flooding period 
Flooding period 

Yáñez-Espinosa et al., 2009 
 
Xiao et al., 2010 

Vessel diameter Rhizophora mangle 
Salinity 
Flooding level 

Yáñez-Espinosa et al., 2001 

 

Avicennia marina 
Rhizophora mucronata 
Avicennia marina 
Rhizophora mucronata 

Salinity 
 
Flooding period 
Salinity 

Robert et al., 2009 
 
Xiao et al., 2009 
Schmitz et al., 2006 

Vessel grouping 
Annona glabra  
 

Salinity 
Flooding level 
Soil texture 

Yáñez-Espinosa et al., 2001 

 
Avicennia marina 
Rhizophora mucronata 

Salinity Robert et al., 2009 

Vessel length 
Avicennia marina 
Rhizophora mucronata 

Salinity Robert et al., 2009 

 
Laguncularia racemosa 
 

Salinity 
Flooding level 

Yáñez-Espinosa et al., 2004 

Fiber wall  Laguncularia racemosa Salinity Yáñez-Espinosa et al., 2004 

thickness Avicennia germinans 
Salinity 
Flooding period 

Yáñez-Espinosa et al., 2009 

 Bruguiera gymnorrhiza Flooding period Xiao et al., 2010 

Table 1. Mangrove and mangrove associate species wood anatomical characters affected by 
different environmental variables. 

Vessel density increases from low- to high-salinity areas in all species, from high- to low-
flooding level in most of them, and from temporal- to prolonged flooding period.  
Increasing vessel density with salinity can be explained by an interference with nutrient 
uptake and auxin physiology with higher soil water salinity (Schmitz et al., 2006).  
Numerous vessels promote protection against cavitation in stressed environments, avoiding 
cavitation damage when flooding level is higher, because a sporadic drought could occur 
(Yáñez-Espinosa et al., 2004).  
The concentration of salinity effects on vessel density could be observed in the relationship 
of Rhizophora mucronata 23–30 vessels mm-2, and Avicennia marina 78-68 vessels mm-2, ranging 
from 26.4–49.2‰ in Gazi Bay, Kenya (Robert et al., 2009; Schmitz et al., 2006); Avicennia 
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germinans 30 – 52 vessels mm-2, ranging from 3.2 – 30‰ of soil water in La Mancha lagoon, 
México (Yáñez-Espinosa et al., 2009); Laguncularia racemosa 7-16 vessels mm-2, ranging from 

6–9‰ in an estuarine river in Nayarit, México (Yáñez-Espinosa et al., 2004).  
 

 
Fig. 3. Avicennia germinans (A), Laguncularia racemosa (B), and (C) Rhizophora  mangle wood of 
trees growing in sites with lower (left) and higher (right) salinity. Differences in vessel 
density and diameter are present. Light microscope micrograph. Transverse section. v = 
vessel; r = wood ray; bar = 100 µm. 

The stem water transport system consisting of a high vessel density, a high vessel grouping, 
small vessel diameters and short vessel elements in Avicennia and Laguncularia species, is 
contrasting with the water transport system of Rhizophora species, suggesting to be safer 
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based on a physiological interpretation of the observed characteristics (Fig. 3). Structure 
modifications of Bruguiera gymnorrhiza seedlings of fiber wall thickness and length, and 
vessel diameter were reduced as flooding prolonged, suggesting distinct strategies for 
maintaining a balance between growth, conductive capacity, conductive safety and 
mechanical strength (Xiao et al., 2010). Lovelock et al. (2006a) suggest that over a range of 
species and sites, hydraulic conductivity in mangroves is constrained by salinity, with a 
variable relationship due to species differences (Avicennia germinans [2.13 kg m-1 s-1 MPa-

1·10-4]; L. racemosa [0.81 kg m-1 s-1 MPa-1· 10-4]), and to variation in nutrient availability. 
 

 
Fig. 4. The mangrove associate species Annona glabra (A), Hibiscus tiliaceus (B), Pachira 
aquatica (C), and Rhabdadenia biflora (D), showing vessels with wider tangential diameter 
than mangrove species. Light microscope micrograph. Transverse section.  v = vessel; p = 
axial parenchyma; r = wood ray; bar = 100 µm. 

Numerous mangrove associate species are more susceptible to modifications in flooding 
regime and salinity concentration, increasing vessel density like Annona glabra,  from 4 to 7 
vessels mm-2.  In general, vessel tangential diameter of mangrove associates is wider than 
those of mangrove species, suggesting an increment in vulnerability based on a 
physiological interpretation (Yáñez-Espinosa & Terrazas, 2001) (Fig. 4) (Table 2). 
Nevertheless, abundant axial and radial parenchyma cells may be storing water in the stem, 
like Annona, Pachira and Hibiscus species. This mechanism would compensate the effects of 
increased axial resistance on leaf water status, extracting water from storage in the stem and 
then sap flow would increase more slowly during the morning (Stratton et al., 2000).The 
mangrove associate vine, Rhabdadenia biflora, growing on Avicennia germinans mangrove tree 
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has scarce axial and radial parenchyma cells, however fiber diameter is wider like the other 
associate mangrove species. 
 

Mangrove  
Vessel tangential 
diameter (µm) 

Mangrove associate  
Vessel tangential 
diameter (µm) 

Avicennia germinans 70 Annona glabra 93 
Laguncularia 
racemosa 

96 Hibiscus tiliaceus 122 

Rhizophora mangle 73 Pachira aquatica 130 
Conocarpus erectus 68 Phyllanthus elsiae 74 
  Rhabdadenia biflora 93 

Table 2. Comparison of average vessel tangential diameter from mangrove and mangrove 
associate species growing in Mexican mangrove forests (unpublished data). 

Analysis of wood traits plasticity in some studies has identified hydraulic properties of trees 
as more plastic than those of leaf structural and physiological characters, concluding that 
hydraulic properties explain growth control.  
The wide tolerance of mangroves wood traits to environmental gradient of salinity, soil 
texture and flooding conditions suggests that even if increases in relative sea level will 
eventually raise saturation and salinity conditions at ecotonal boundaries, mangroves are 
capable to advance or invade inland into freshwater marsh and swamp habitats (Doyle, 
2003), modifying distribution and composition of the mangrove. 

4. Modifications of bark structure in response to environmental factors 

Prolonged flooding also affects bark anatomy of mangrove species, modifying the 
secondary phloem, rhytidome and periderm tissues, suggesting that prolonged flooding 
modifies vascular cambium and phellogen differently (Yáñez-Espinosa et al., 2008). Typical 
structural responses include formation of hypertrophied lenticels and adventitious root (Fig. 
5), and increased aerenchyma development in the bark (Table 3). 
 

Species Rhytidome 
Aerenchyma in 
rhytidome 

Aerenchyma 
in collapsed 
phloem

Ray 
dilatation 

Hypertro-
phied 
lenticels

Adventitious 
roots 

Annona glabra* ++ ++ ++ ++ ++ ++ 
Hibiscus tiliaceus* ++ ++ ++ ++ ++ -- 
Phyllanthus elsiae* -- -- ++ ++ ++ ++ 
Avicennia 
germinans* 

-- -- -- -- ++ -- 

Laguncularia 
racemosa* 

++ ++ -- ±± ++ ±± 

Conocarpus 
erectus� 

++ ++ -- ±± ++ -- 

Pachira aquatica� -- -- ++ ++ ++ ++ 

Table 3. Mangrove and mangrove associate species bark anatomical characters. ++ = 
present; -- = abscent; ±± = slightly present. * Data from Yáñez-Espinosa et al., 2008; � = 
Unpublished data. 
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Fig. 5. Hypertrophied lenticels in the immersed portion of the stem of Avicennia agerminans 
(arrow) (A); and in the immersed stilt root of Rhizophora mangle (arrow) (B) macroscopic 
appearance; Light microscope micrograph. Transverse section. Phyllanthus elsieae 
hypertrophied lenticel in the immersed portion of the stem (C); Annona glabra adventitious 
root (arrow) in the immersed portion of the stem (D).  p = periderm; cph = collapsed 
phloem; f = filling tissue; bar = 100 µm. 

Mangrove species develop hypertrophied lenticels in the immersed portion of the stem, as 
well as mangrove associates tolerant to flooding, like Annona glabra (Mielke et al., 2005), 
excepting Phyllanthus elsiae (Euphorbiaceae), which develops hypertrophied lenticels above 
and below flooding level (Yáñez-Espinosa et al., 2008). Adventitious roots were present in 
the mangrove associate species Annona glabra, Hibiscus tiliaceus, Pachira aquatica and 
Phyllanthus elsiae (Mielke et al., 2005; Yáñez Espinosa et al., 2008). These species have not 
specialized roots like stilt roots or pneumatophores, then aeration depends on abundant 
hypertrophied lenticels and adventitious roots to tolerate prolonged or permanent flooding.  
The importance of aerenchyma in the development of a continuous interconnected series of 
intercellular spaces is the most important adaptation to flooding in plants (Lambers et al., 
1998). Trees without cork aerenchyma in their barks might develop larger air spaces in the 
phloem parenchyma, phelloderm or primary cortex (Roth, 1981), like Rhizophora mangle 
develops aerenchyma in phloem axial and radial parenchyma of collapsed region (Yáñez-
Espinosa, unpublished data). 
Although studies realized on bark rays show no statistical differences from short- to long-
flooding period, mangrove species Laguncularia racemosa, Avicennia germinans and Rhizophora 

mangle, present shorter phloem rays under longer flooding period, may be associated with 
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the effect of prolonged flooding similar to that of drought. But mangrove associate Annona 

glabra tend to have lower rays under short-flooding period, may be due to anoxic conditions 
caused by prolonged flooding (Yáñez- Espinosa et al., 2001). 
Increments in rays are related to enlargement of cells that could mobilize a higher oxygen 
volume and more photosynthates (Kozlowski et al., 1991). The intercellular space system of 
ray tissue is essential, because ray cells have indefinite viability and require gas exchange 
for metabolic activity (Carlquist, 1988) (Fig. 6). 
 
 
 
 

 
 
 

Fig. 6. Secondary phloem rays of Laguncularia racemosa (A) and Annona glabra (B) close to 
vascular cambium, showing a slightly dilatation. Light microscope micrograph. Tangential 
section. r = phloem ray.  

Annona glabra, Pachira aquatica and Hibiscus tiliaceus develop aerenchyma in the rhytidome, 
phelloderm, and phloem parenchyma, which suggests a greater volume for aeration, 
particularly in the immersed portion of the stem. Laguncularia racemosa and Conocarpus 

erectus (Combretaceae) axial and radial parenchyma cells in the collapsed phloem region 
dilate slightly close to periderm, but develop abundant aerenchyma in the rhytidome. 
Avicennia germinans only develops rhytidome in the immersed portion of the stem and 
presents an aerenchymatous cork that may be the path connecting the aerial atmosphere 
with the immersed tissues (Fig. 7). 
Even though aerenchyma and hypertrophy are the most common events related to 
flooding, each type of tissue responded differently, depending on the species. The 
mangrove and mangrove associate species respond to different flooding periods and then 
cohabit on a wide environmental gradient, suggesting that accelerated sea-level rise 
caused by global warming, would affect distribution of the species according to their 
particular tolerance. 
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Fig. 7. Annona glabra aerenchyma in rhytidome of immersed portion of the stem (A),  
Avicennia germinans aerenchyma in rhytidome of immersed portion of the stem (B), bar = 200 
µm; Hibiscus tiliaceus axial and radial parenchyma dilatation close to periderm (C), 
Rhizophora mangle aerenchyma close to periderm and dilatation of axial and radial 
parenchyma in collapsed phloem region (D). Light microscope micrograph. Transverse 
section. a = aerenchyma; p = periderm; cph = collapsed phloem; bar = 100 µm. 
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5. Modifications of leaf structure in response to environmental factors 

Mangroves show many xerophytic adaptations that are evident in their leaves. Leaves are 
dorsiventral (Fig. 8), excepting Lumnitzera racemosa, where they are isobilateral and 
amphistomatic; the cells of the lower epidermis are larger than those of the upper surface, 
and water storage tissue is present in all the species, except Aegialitis rotundifolia 
(Seshavatharam & Srivalli, 1989; Tomlinson, 1986). 
Experimental studies point to mangrove species-specific responses to increases in 
atmospheric CO2 concentration. Increase in atmospheric CO2 can be expected to improve 
mangrove tree growth, i.e. leaf area ratio increased with a decrease in humidity when R. 
stylosa was grown under elevated CO2 (700 cm3 m-3) (Ball et al. 1997). However, elevated 
CO2 (until 700 µll-1) did not affect leaf area of Rhizophora mangle seedlings (Farnsworth et al. 
1996). In addition, increased CO2 until 700 cm3 m-3 did not affect leaf area of Rhizophora 
apiculata limited by high salinity, but did enhance leaf area when the plants were limited by 
humidity (Ball et al. 1997).  
Responses of mangrove to sea-levels rise depend on reactions of individual plants, and 
some evidence exists on modifications of leaf structure in response to increasing flooding or 
waterlogging. Bruguiera gymnorrhiza and Rhizophora stylosa seedlings decreased leaf area 
intensely with decreasing tidal elevation (from 30-40 cm) in Yingluo Bay, a core zone within 
the Shankou Mangrove Reserve of Guangxi, China. Inversely, Aegiceras corniculatum and 
Avicennia marina seedlings increased leaf area with decreasing tidal elevation, at 10, 0, and 
- 30 cm (He et al. 2007). 
 

 
Fig. 8. Leaves with xerophytic adaptations of Avicennia germinans (A), Bruguiera sp. (B), 
Rhizophora mangle (C), Laguncularia racemosa (D). 
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In addition, leaf area of adult individuals from Laguncularia racemosa, Rhizophora mangle, R. 
racemosa, R. harrisonii, and Avicennia germinans was generally significantly larger for species 
growing in wet (dry season lesser than 1 month) than in dry sites (dry season of seven 
months) in the Caribbean coast of Venezuela (Medina & Francisco, 1997). Similarly, 
Rhizophora mangle seedlings in Belize decreased leaf area in plants under water (Ellison & 
Farnsworth, 1997). However, there are some species with leaf area unaffected by tidal 
flooding, like Xylocarpus granatum seedlings in the Federated States of Micronesia (Allen et 
al. 2003), as well as Aegiceras corniculatum and Avicenia marina seedlings in Yingluo Bay, 
China (He et al. 2007), and Annona glabra after 56 days of flooding showed no symptoms of 
stress, and there were no changes in total leaf area (2.20 m2) (Mielke et al., 2005). 
Mangrove leaf anatomy is very uniform matched by a suite of features common to most 
mangrove species, including the colorless “water storage” tissue, the short tracheids 
terminating vein endings, the marked absence of sclerotic vein sheaths, presence of 
sclereids, thickened outer epidermal wall strongly cutinized, thick mesophyll including the 
adaxial hypodermis layers, palisade parenchyma layers and spongy parenchyma 
(Tomlinson, 1986) (Fig. 9).  
 

 
Fig. 9. Conocarpus erectus L. (Combretaceae)  leaf epidermis showing  stomata (arrow) (A), and 
showing dorsiventral structure: epidermis, adaxial hypodermis with two distinct layers, 
assimilating tissue below, and a vascular bundle. Light microscope micrograph .Paradermal 
(A) and transverse (B) section, by Guillermo Angeles. e = epidermis; h = hypodermis; p = 
palisade parenchyma; s = spongy parenchyma; v = vascular bundle. 

Nevertheless, studies of modifications on leaf anatomical features under experimental 
conditions are scarce.  Changes of Avicennia marina seedlings under experimental conditions 
were expressed in the progressive increase of upper and lower epidermis thickness to leaf 
thickness ratio and mesophyll to leaf thickness ratio with prolonged waterlogging duration, 
but  prolonged waterlogging duration have negative effects on hypodermis thickness, leaf 
thickness, mesophyll thickness, palisade parenchyma thickness, palisade–spongy ratio, 
tangential vessel diameter and vessel wall thickness in leaf tissue (Xiao et al., 2009), contrary 
to Bruguiera gymnorrhiza seedlings grown under experimental conditions of simulated 
semidiurnal tides with salinities of 15‰, after 12 h treatments, that showed declination in 
leaf thickness, palisade parenchyma thickness, spongy parenchyma thickness, xylem length 
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of the vascular system and number of vessels and vessel lines, up to 67.1%, compared with 
the 0 h treatments. However, the upper and lower epidermis and stomatal density of 12 h 
treatments showed increases of up to 104.3% over the 0 h treatments. The cuticle and 
percentage of intercellular spaces in spongy tissue decreased significantly with 
waterlogging duration at first and then increased. These results suggest that modifications 
in the anatomical features of B. gymnorrhiza as a result of periods of immersion longer than 2 
h, would result in a reduction of photosynthesis and water transport (Wang et al., 2007). 
However, anatomical characters of Rhizophora mangle leaves did not differ when Ellison & 
Farnsworth (1997) simulated a 16 cm decrease and increase of sea-level.  
There are many studies indicating the importance of salinity for mangrove species as well as 
evidence that various mangroves may have different tolerances and optimal salinity (Ball et 
al., 1997; Ball, 2002). The physiology of their ability to survive in saline environment may 
shed light on the evolution of mangroves from terrestrial species (Parani et al. 1998).  
Leaf structure traits reflect the long-term adaptive strategy successfully (Cunningham et al., 
1999; Wang et al,. 2003; Wright et al., 2004). Salinity affects ion accumulation in leaves, 
thereby membrane permeability and chlorophyll synthesis (Cram et al., 2002). In addition, 
with increase in salinity, carbon allocation to roots increases at the expense of leaf area (Ball 
1988). Leaf area decreased at higher salinity concentrations (47-92‰) for Laguncularia 
racemosa in the Sontecomapan lagoon in Veracruz, Mexico (Medina et al., 1995), and for 
Sonneratia alba at 100‰ sea water and S. lanceolata seedlings at 50‰ sea water, in northern 
Australia (Ball & Pidsley 1995). The average leaf area of Rhizophora apiculata and R. stylosa 
propagules in the Northern Territory of Australia decreased with an increase in salinity 
from 125 to 350 mol m-3 NaCl, with R. apiculata being the more sensitive (Ball et al. 1997). For 
Bruguiera parviflora in Bhitarakanika mangrove forest, Orissa, India, leaf area was 
significantly less at 400 mM NaCl as compared to 0 mM NaCl (Parida et al., 2004), for 
Laguncularia racemosa in Sepetiba Bay, Rio de Janeiro, Brazil, which showed significant lower 
leaf area in salt marsh plants with high soil salinity and low nutrient input, than in riverside 
plants with daily tidal fluxes and consequently high nutrient input, that can be associated 
with environmental restrictions of their habitat (Lira-Medeiros et al., 2010), and for 
Rhizophora mucronata seedlings in the 45 PSU in South Africa (Hoppe-Speer et al., 2011).  
In some species, leaf area is unaffected by salinity concentrations, i.e. Rhizophora mangle, 
which had similar leaf area in plants from El Real (at 47-92 ‰) and from La Boca (at 0-22 ‰) 
in the Sontecomapan lagoon in Veracruz, Mexico (Medina et al., 1995), and Xylocarpus 

granatum seedlings at 0.5 and 23 ‰ salinity in the Federated States of Micronesia (Allen et 
al,. 2003). 
Increasing flood level and salinity due to sea-level rise, may result in mangrove leaves 
morphology and anatomy modifications, considering that extant studies show perceptible 
modifications, although not all species are affected (i.e. Rhizophora and Xylocarpus). 
Modifications include increasing stomatal density, reduction of leaf area and thickness, 
palisade parenchyma thickness, number of vessels and vessel diameter in leaf tissue, whose 
may generate the reduction of transpiration, photosynthesis and water transport.  

6. Modifications of root structure in response to environmental factors 

The anatomy of mangrove roots has been extensively studied in relation to development 
and function (Tomlinson, 1986). Prolonged flooding alters soil physical and chemical 
properties, as well as bacterial composition, directly affecting species roots (Rajaniemia & 
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Allison, 2009). Root vascular system affects stem vascular system and leaves structure of 
mangrove species, even when there are present modified roots like pneumatophores, cable, 
knee and stilt roots (Visser & Pierik, 2007).   
Pneumatophores arise vertically from cable roots and have evolved independently in at 
least five mangrove families and genera: Laguncularia (Combretaceae), Avicennia 
(Avicenniaceae), Bruguiera (Rhizophoraceae), Xylocarpus (Meliaceae), and Sonneratia 
(Sonneratiaceae) (Tomlinson 1986). They have abundant lenticels, and aerenchyma may 
account for up to 70% of root volume (Hogarth, 1999) (Fig. 10).  
The normal pneumatophores of Sonneratia and Avicennia are slender and cone shaped, 
standing erect and aligned on the cable root, of 1-20 m or more in length, which spread 
horizontally in the soil. Sonneratia alba trees in Ranong and Phang-nga Bay, Thailand, 
produce pneumatophores 25-35 cm long, 4–6 cm thick at the base, with a regular conical 
shape. However, pneumatophores of S. caseolaris may become 1.2 m tall and 12 cm thick at 
the base. The cable roots morphology and length are more related to soil structure and tidal 
regime than tree variables, as well as pneumatophores that may be deformed due to 
massive waves, sediments deposition, and other environmental changes (Nakamura et al., 
2004).  
Avicennia marina in Kenya has the ability to adapt its pneumatophores to micro-
topographical irregularities in the regularly sloping intertidal zone. Significantly higher 
pneumatophore densities and total pneumatophore lengths are present in the center of the 
landward depression, and significantly lower lengths in the center of the seaward 
depression (Dahdouh-Guebas et al., 2007), suggesting that cable roots and pneumatophores 
morphology, density and length may be affected by sea-level rise. Rhizophhora mangle 
underground roots are in permanently hypoxic or anoxic environment, and then vertical 
roots have the role of supplying oxygen to underground roots, reaching adequate gas 
exchange at low tide. Air passes through aerenchyma tissue, constituted by air spaces 
running longitudinally the root axis (Hogarth, 1999) (Fig. 10).  
Experiments with Avicennia marina have demonstrated that oxygen concentrations decrease 
from 16 to less than 2% within one hour after exposure to hypoxic conditions. The roots 
increased then the capacity for alcoholic fermentation, although ethanol concentration was 
low in intact and hypoxic roots, but may have diffused from the roots into the surrounding 
substrate (McKee & Mendelssohn, 1987). Avicennia germinans roots, commonly found in 
anaerobic substrate, create oxidized rhizospheres substantially larger, but when air cannot 
enter the root system through the pneumatophores, the rhizospheres become as reduced as 
nearby non-vegetated soil. Rhizophora mangle have no effect on the oxidation state of 
surrounding anaerobic soils (Thibodeau & Nickerson, 1986).  
Studies realized in Laguncularia racemosa cable roots and pneumatophores showed that cable 
roots are very efficient for water transport, and that this occurs mainly through the external 
vessels of the secondary xylem (Angeles et al., 2002). The development of a massive root 
system under soil flooding conditions in Annona glabra can be a mechanism to compensate 
for the high resistance to water flow in the roots (Mielke et al., 2005). However, more studies 
on mangrove root water transport are necessary to understand hydraulic properties of the 
whole plant system. 
Sea-level rise caused by global warming may affect mangrove roots in different ways, 
depending of different functional root types (McLeod & Salm, 2006). Lenticels in the aerial 
roots have the role of supplying oxygen to underground roots, then if a rapid increment of 
sea-level occurs, pneumatophores of Sonneratia and Avicennia may have not the capacity of 
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increase pneumatophore density and length fast enough to avoid oxygen concentration 
decrease, producing death of the plant. However, Rhizophora aerial roots could not be 
affected, because lenticels would remain above sea-level.  
 

 
Fig. 10. Rhizophora mangle stilt roots (A); Light microscope micrograph of aerenchyma tissue 
close to periderm in a R. mangle aerial root (B); Avicennia germinans pneumatophores (C); 
Light microscope micrograph of dilated parenchyma tissue in Laguncularia racemosa 
pneumatophore (D). p = periderm; a = aerenchyma; x =secondary  xylem; ph = secondary 
phloem; bar = 100 µm. 
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7. Modifications of growth in response to environmental factors  

Growth of a plant is the increment in dry mass, volume, area or length as a result of 
division, expansion and differentiation of cells, determined by the interaction of 
photosynthesis, long-distance transport, respiration, water relations, and mineral nutrition 
(Lambers et al., 1998). Total above-ground biomass varies widely being highest at low 
latitude and declining northward and southwards from the equator. Undisturbed Rhizophora 
forests in northern Australia may reach up to 700 t ha-1 dry weight, but in old mangrove 
forests of South-east Asia range from 500 to 550 t ha-1 dry weight (Hogarth, 1999). However, 
the growth rate of mangroves is critically related to the availability of water to the trees and 
this is reflected in the soil water content and soil salinity (Field, 1995). 

7.1 Biomass 
The relative growth rate of Bruguiera gymnorrhiza decreased significantly with waterlogged 
time, with the highest value found for drained plants and the lowest in plants less than 12 
weeks waterlogging. On the contrary, no significant difference was found between 
waterlogged and drained Kandelia candel plants. The shoot to root biomass ratio of K. candel 
increased when subjected to 8 or 12 weeks waterlogging but little change was recorded in B. 
gymnorrhiza, indicating a shift in biomass allocation from roots to shoots in K. candel under 
prolonged waterlogging but not in B. gymnorrhiza. Chlorophyll contents of K. candel 
increased more rapidly in response to waterlogging than B. gymnorrhiza. These physiological 
indicators supported the hypothesis that K. candel is more tolerant to waterlogging than B. 
gymnorrhiza (Ye et al., 2003). In mangrove associate Annona glabra seedlings, the high 
survival and growth rates are directly related to the capacity to develop a massive root 
system and maintain a high stomatal conductance and net photosynthesis under soil 
flooding. In most flood-tolerant species the initial decrease in stomatal conductance is 
followed by recovery, like in A. glabra seedlings under flooding treatment, where stomatal 
conductance was reduced to 65% of control levels with four days of flooding, but reached 
152% at day 56. Significant increases in root, stem and total plant biomass and in collar 
diameter were observed. These results suggest that A. glabra is highly adapted to both 
periodic and permanent flooding (Mielke et al., 2005). 
 The effect of salinity on the growth of Avicennia germinans propagules collected in Cuman´a, 
Venezuela, was experimentally determined comparing the relative growth rates (RGR) after 
27 weeks, reaching a maximum 10.4 mg g−1 d−1 in 170 mol m−3 NaCl, followed by the 0 and 
430 mol m−3 NaCl treatments (8.4 and 7.9 mg g−1 d−1 respectively). At the same period the 
RGR of plants grown in 680 and 940 mol m−3 NaCl were 47 and 44% lower than that of 
plants grown in 170 mol m−3 NaCl. Higher salt tolerance of A. germinans in relation to other 
mangrove species might be due to low relative growth rates and high water-use efficiency 
over a wide salinity range. The decline in RGR with increasing salinity was clearly 
associated with a decrease in net assimilation rate (Suárez & Medina, 2005). 
Also nutrient deficiency is relevant, when comparing dwarf and taller fringing tree forms 
of Rhizophora mangle in Belize, allow identifying trait plasticity in hydraulic properties of 
trees as more plastic than those of leaf structural and physiological characteristics, 
implying that hydraulic properties are significant in controlling growth in mangroves. 
Improvement of P deficiency reduced the structural and functional distinctions between 
dwarf and taller fringing tree forms, releasing trees from hydraulic limitations (Lovelock 
et al., 2006b). 
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Topography would be relevant if tidal effect would change. In one experiment, seven 
mangrove species Rhizophora mucronata, R. apiculata, Bruguiera cylindrica, Ceriops tagal, 
Sonneratia alba, Avicennia officinalis and Xylocarpus granatum, were planted at various 
topographic sites in an intertidal zone of Phang Nga, Thailand. The experimental plots were 
on a slope and showed a maximal elevation difference of 1.8 m, submerged with 2-3% saline 
water twice a day. Survival and growth performance of seedlings were measured differing 
and showing increasing tolerance to higher tidal inundations in the order: R. mucronata, S. 
alba, R. apiculata, A. officinalis, C. tagal, B. cylindrica and X. granatum (Kitaya et al., 2002). 

7.2 Growth rings 
Secondary growth, or secondary tissues added lateral to stems and roots increasing their 
thickness, are produced by the vascular cambium. In secondary xylem or wood, growth 
rings may be produced during one season, and usually they are delimited by growth 
boundaries (Beck, 2010) (Fig. 11). In mangroves, the highly dynamic intertidal environment 
and the overriding ecological drivers difficult the existence of growth rings. Nevertheless, 
climatic conditions that result in a range of soil water salinity experienced over the year are 
a prerequisite for the formation of growth ring (Robert et al., 2011). 
Recently, annual growth rings were discovered in Rhizophora mucronata in Kenya, but the 
ring boundaries are indistinct and growth ring consists of a low vessel density earlywood, 
produced during the rainy seasons, and a high vessel density latewood, produced during 
the dry season. Intra-annual differences in the vessel features revealed a trade-off between 
hydraulic efficiency (large vessels) during the rainy season and hydraulic safety (small 
vessels) during the dry season (Verheyden et al., 2005). 
 

 
Fig. 11. Light microscope micrograph growth boundaries (arrows) distinct in Pachira  
aquatica (A), slightly defined in Conocarpus erectus (B). bar = 100 µm. 
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Laguncularia racemosa from Rio de Janeiro, Brazil, also present distinguishable growth rings 
macroscopically, with alternating early wood formed between spring and autumn and 
consists of layers with abundant paratracheal axial parenchyma, while late wood is formed 
in winter and consists of narrower dark layers which are basically fibrous zones with scarce 
paratracheal axial parenchyma. The occurrence of a dry season in winter could be the 
seasonal factor determining the formation of annual rings (Duque Estrada et al., 2008). 
These results are relevant because a factor that may be important for the future of mangrove 
ecosystems is any change in precipitation (Field, 1995).  
Sea-level rise might reduce survival and growth performance of mangroves seedlings, 
expressed as biomass decrement due to variation in flooding and salinity. However, initial 
decrease is followed by recovery, suggesting that mangrove species are adapted to both 
periodic and permanent flooding, and high salinity levels. Secondary growth apparently is 
determined by seasonal precipitation, expressed by the formation of growth rings. 
Considering that precipitation rates are predicted to increase by about 25% by 2050 in 
response to global warming (McLeod & Salm, 2006), changes in precipitation patterns may 
affects at local scale the patterns of freshwater inflow, diminishing salinity concentration in 
consequence, and affecting mangroves growth and their distribution.  

8. Conclusions 

Modification of anatomical and morphological patterns of wood, bark, leaf and root of 
mangrove and mangrove associate species are predictable as result of sea-level rise caused 
by global warming. Sea-level rise will alter environmental conditions, increasing salinity, 
flooding level, and altering the rate of deposition of sediment. These species show a wide 
plasticity in structural and physiological patterns, allowing them to survive and prosper in 
this ecosystem exposed to a dynamic environment, and occasionally subjected to extreme 
events, like hurricanes and massive waves. General tendencies suggest a strong association 
between structure patterns and environmental gradient (salinity, flooding level and 
periodicity, and soil structure). Cell and organ size decrease while salinity and flooding or 
waterlogging increases. 
Nevertheless, each species has its specific tolerance range, allowing to success along 
different zones of the mangrove ecosystem with particular geomorphology and 
environmental conditions,  causing a change in forest species composition and dominance, 
allowing expanding distribution of more tolerant species and limiting or suppressing those 
less tolerant, particularly in places where sedimentation rates are low. Some studies suggest 
that mangroves can adapt to sea-level rise if it occurs slowly, there are sufficient space for 
distribution expansion, and the other environmental factors are tolerable. They may adapt 
growing inland on more elevated areas, probably increasing their distribution, but if these 
not occur fast, mangroves adaptation to stressing factors will result in smaller trees until 
disappearing.  
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