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1. Introduction 

Crop production is experiencing both increases in the frequency and intensity of high 

night temperatures (HNT) (IPCC, 2007). The HNT threatens the sustainability of crop 

production both currently and in the future. Recent meteorological data indicated faster 

increases in night temperatures (NT) than day temperatures (Alward et al., 1999). 

Experimental evidence also indicated the importance of assessing the effects of NT 

separately from the day temperature, as a smaller increase in NT can show a drastic 

decrease in crop production (Peng et al., 2004). Studies have indicated decreased crop 

yields as a result of HNT (Hall, 1992; Mohammed & Tarpley, 2009a). Apart from HNT, 

climate change will also increase a variety of environmental stresses affecting crop 

production, namely heat, drought, salinity, and relative humidity, hence farming in the 

future climate will have to be better adapted to a range of abiotic and biotic stresses. A 

long-term approach to negate the effects of abiotic stress is to develop stress-tolerant 

cultivars. The short-term approach includes the use of agrochemicals, especially those 

with plant growth regulator (PGR) capabilities, for the prevention and/or amelioration of 

various environmental stresses, including heat stress. Studies focusing on day 

temperature stress and, more recently, on NT stress have increased, but, studies looking 

at the effects of PGR under heat stress are rare (Ashraf & Foolad, 2007). This chapter 

primarily focuses on the effects of HNT on crop production and the beneficial effects of 

PGR (glycine betaine [GB] and salicylic acid [SA]) application against heat stress on crop 

production with special emphasis on rice (Oryza sativa L.) production. 

2. Night temperature and its impact on crop production 

Global climate change is a dynamic process affecting global air temperature, oceanic 
temperature, rainfall, wind and quality of incoming solar radiation. Global circulation 
models predict 1.4 to 5.8 °C rise in global temperature because of projected increase in the 
concentrations of all greenhouse gases by the end of the 21st century (Intergovernmental 
Panel on Climate Change [IPCC], 2007). Much of this increase in average daily temperature 
is projected to be due to an increase in NT. Night temperatures are expected to increase at a 
faster rate than day temperatures due to less radiant heat loss because of increased 
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cloudiness (Alward et al., 1999). In some cases, increases in NT have been documented. For 
example, the scientists at the International Rice Research Institute (IRRI) reported an 
increase of 1.13 oC in NT over a period of 25 years (1979-2003) in the Philippines (Peng et al., 
2004). The HNT increased at a rate of 0.18 oC per decade over a period of 45 years (1950-
1995) in Libya (Jones et al., 1999).   
Long- and short-term episodes of heat stress are predicted to occur more frequently as a 
result of global warming, affecting many aspects of crop growth and development, reducing 
crop yield and decreasing crop quality. Many studies have reported the impacts of long- and 
short-term temperature stresses on crop production. However, most of the studies assume 
no difference in the influence of day versus night temperature (Peng et al., 2004). High night 
temperature is known to decrease yield in several crops like cereals [rice, wheat (Triticum 
aestivum L.) and corn (Zea Mays L.)], legumes [cowpea (Vigna unguiculata L. Walp.)], oil 
seeds [soybean (Glycine max L. Merr.) and sunflower (Helianthus annuus L.), vegetables 
[tomato (Solanum lycopersicum L.)], fruits [apples (Malus domestica L.) and pineapple (Ananas 
comosus L.)] and fibers [cotton (Gossypium hirsutum L.)] (Chang, 1981; Gibson & Mullen, 
1996; Izquierdo et al., 2002; Kondo & Takahashi, 1989; Loka & Oosterhuis, 2010; Mohammed 
& Tarpley, 2009a; Neales et al., 1980; Peters et al., 1971; Seddigh & Jolliff, 1984; Warrag & 
Hall, 1984; Willits & Peet, 1998). 
High night temperature decreases crop production by decreasing photosynthetic function, 
sugar and starch content (Loka & Oosterhuis, 2010; Turnbull et al., 2002), increasing 
respiration rate (Mohammed & Tarpley, 2009b), suppressing floral bud development 
(Ahmed & Hall, 1993), causing male sterility and low pollen viability and hastening crop 
maturity (Mohammed & Tarpley, 2009a; Seddigh and Jolliff, 1984). Another effect of HNT 
that can contribute to reduced crop yield is decreased antioxidant capacity of the plants. 
Under normal physiological conditions, the toxic effects of reactive oxygen species (ROS) are 
minimized by enzymatic and non-enzymatic antioxidants. Under stress conditions, oxidant 
levels can overwhelm the antioxidant levels leading to cell damage. The increased 
production of ROS [oxide radical (O2-), H2O2, and the hydroxyl radical (-OH)], or the plant’s 
decreased ability to neutralize ROS, as a result of heat stress negatively affects many 
physiological processes in plants, thus decreasing yield. 

2.1 Methodology for determining rice plant response to high night temperature stress  
Plant height and the numbers of tillers and leaves were recorded at harvest. Daily 
observations were made for the appearance of panicles. At harvest, leaves were separated 
from the stems and leaf area was measured using a CI-251 area meter (CID Inc., Camas, 
Washington, USA). During the rice plant vegetative stage, leaf photosynthetic rate, internal 
CO2 concentration and respiration rate were measured using LI-6400 portable 
photosynthesis system (LI-COR Inc., Lincoln, Nebraska, USA). Leaf nitrogen content was 
determined using a FP-528 Nitrogen/Protein analyzer (LECO Corporation, St. Joseph, 
Michigan, USA) and was expressed as percentage (%; w/w). Total chlorophyll content, 
pollen germination and spikelet fertility were determined using the procedures from 
Mohammed & Tarpley (2011a), and relative injury to the membrane and total antioxidant 
capacity were determined using procedures from Mohammed & Tarpley (2009b). 

2.2 Effects of high night temperature on plant morphology  

Plant morphology deals with plant development, form, and structure. In a narrow sense, 
plant morphology refers to the external appearance of the plant. For example plant height 
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and the numbers of tillers, leaves, panicles and grains are referred as rice morphological 
parameters. The effects of HNT on plant morphology vary from negative to positive, 
including no effect. Seddigh & Jolliff (1984) reported that HNT promoted early vegetative 
growth and hastened physiological maturity, but did not affect morphological 
characteristics such as plant height, number of auxiliary branches and number of nodes in 
soybean. The HNT has no effect on rice (cultivar Cocodrie which is a japonica cultivar) plant 
height and number of tillers but can increase number of leaves and leaf area (Fig. 1). 
However, Cheng et al. (2009) and Yoshida et al. (1981) reported reduction in plant height, 
number of tillers and total biomass for rice cultivar ‘IR 72’ (indica cultivar) as a result of 
HNT. Similar results were seen in redstem stork's bill (Erodium cicutarium L.) for which HNT  
decreased number of branches, leaf area and plant dry matter (Blackshaw & Entz, 1995). The 
decreased production of plant dry matter was directly correlated with decreased production 
of photosynthates. 
 

 

Fig. 1. Effects of high night temperature on rice morphology. Each bar represents average + 
S.E. Different letters indicate means are significantly different at the P<0.05 level. 

2.3 Effects of high night temperature on plant physiology 

Plant physiology deals with the functioning of plants and is closely related with plant 
morphology. Fundamental processes such as photosynthesis, respiration, plant water and 
nutrition status, plant hormone functions and translocation of photosynthates are 
encompassed in plant physiology. Photosynthesis is a complex process and leaf 
photosynthetic rates depend upon leaf chlorophyll and nitrogen content, photosystems, 
stomatal characteristics and enzyme activities. The environmental stresses have a direct 
effect on leaf photosynthetic rates and an indirect effect through their effects on leaf 
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chlorophyll and nitrogen content, stomatal characteristics and enzyme activities. The HNT 
had positive and negative effects, including no effect, on the following day’s photosynthetic 
rates (Frantz et al., 2004; Mohammed & Tarpley 2009a). Rice leaf photosynthetic rates 
showed negative correlation with HNT (Fig. 2). The decrease in photosynthetic rates as a 
result of HNT was accompanied with decrease in leaf chlorophyll and leaf nitrogen content 
in rice (Fig. 2). Premature loss of chlorophyll as a result of heat stress has been noticed in 
many crop species (Guo et al., 2006; Reynolds et al., 1994). Damage to the photosynthetic 
electron transport particularly at the site of photosystem II (Havaux and Tardy, 1996) and 
inhibition of photosynthetic CO2 fixation (Sayed et al., 1989; Yamane et al., 1997) as a result 
of heat stress can also reduce photosynthetic rates, thus leading to decrease in yield. Apart 
from decreases in photosynthetic rates, increased respiration rates can also decrease the crop 
yield. 
Plant respiration is one of the important processes in terms of understanding plant growth 

and development when subjected to stress. Increase in respiration from climate warming is 

of serious concern as respiratory processes can consume a larger portion of total 

photosynthates (Paembonan et al., 1992). On average, the carbon lost from respiratory 

metabolism within an individual plant ranges between 30 and 70% of the carbon gained 

through photosynthesis (Peterson & Zelitch, 1982). Respiration is typically partitioned into 

the functional components of construction (growth), maintenance and ion uptake to 

facilitate our understanding of the impact of the environment on respiratory processes 

(Amthor, 1986; Farrar, 1985; Lambers, 1985). Maintenance respiration is mainly associated 

with turnover of proteins and lipids and maintenance of ion concentrations across 

membranes (Penning de Vries, 1975). It is the most responsive to environmental changes 

among the functional components of respiration (Ryan, 1991). At high temperatures, the cost 

of maintenance increases to support protein turnover and to maintain active ion fluxes 

across the membranes (Penning de Vries, 1975), thereby increasing maintenance respiration. 

An increase in NT from 27 oC to 32 oC increased respiration rates by 40% in rice leaves (Fig. 

2). Previous studies on rice, cotton, lettuce (Lactuca sativa L.), tomato and soybean indicated 

an increase in maintenance respiration with warmer nights (Frantz et al., 2004; Loka & 

Oosterhuis, 2010, Mohammed & Tarpley, 2009b). Hence, HNT can stimulate respiration 

rates, thereby negatively affecting the yield (Zheng et al., 2002). The other consequence of 

increased respiration is increased production of ROS.  

The production of ROS is an unavoidable consequence of aerobic respiration, with the 

majority of the ROS produced in photosynthetic tissue (mostly leaves) in the dark by 

mitochondrial electron transport chain activity (miETC) (McDonald & Vanlerberghe, 2005). 

The production of ROS by mitochondria has been shown to increase in many plants as a 

result of biotic and abiotic stresses (McDonald & Vanlerberghe, 2005; Moller, 2001). An 

increase in NT increases maintenance respiration and thus increases production of ROS. 

Physiological injury due to heat stress has been associated with increases in oxidative 

damage to the membrane in plant species (Larkindale & Knight, 2002). Plants increase 

maintenance respiration to support repair mechanisms of the membranes due to oxidative 

damage (Amthor & McCree, 1990). Thus, an increase in respiration occurs 1) with an 

increase in temperature (Huang et al., 1998) and 2) to support repair mechanisms of the 

membranes due to oxidative damage (Amthor & McCree, 1990). In addition, ROS interferes 

with photosynthesis and respiration by disrupting water, ion, and organic solute movement 

across plant membranes by affecting membrane stability (Christiansen, 1978).  
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Destabilized membranes are leaky membranes, thus interpreting the amount of electrolytic 
leakage from the membrane can be used as an indicator of cell membrane stability (Sullivan 
& Ross, 1979). Many studies have examined stability loss of the membranes subjected to 
environmental stresses by measuring electrolytic leakage from the membranes (Blum & 
Ebrercon, 1981; Dexter, 1956; Ibrahim and Quick, 2001; Ismail and Hall, 1999; Sullivan, 
1972). An increase in NT from 27 oC to 32 oC increased injury to the membrane by 60% in 
rice leaves (Fig. 2). Similar results of increased injury to the membrane as a result of heat 
stress were seen in many crop species (Ibrahim & Quick, 2001; Ismail & Hall, 1999;, 
Martineau et al., 1979; Mohammed & Tarpley, 2009b). The properties of the photosynthetic 
system, including key enzymes and thylakoid membrane activities depend on the stability 
of membranes (Björkman et al., 1980). Moreover, it is well known that a functional cell-
membrane system is central to crop productivity and acclimation of plants to high 
temperature (Raison et al., 1980). Mohammed & Tarpley (2009b) and Reynolds et al. (1994) 
positively associated membrane stability with yield performance under heat-stressed 
conditions in rice and wheat.  
 

 

Fig. 2. Effects of high night temperature on rice physiology. Each bar represents average + 
S.E. Different letters indicate means are significantly different at the P<0.05 level. 
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2.4 Effects of high night temperature on yield and yield-related parameters 

The reproductive phase is relatively more sensitive than the vegetative phase to heat stress 

in many crop species (Hall, 1992). Moreover, differential temperature sensitivity for 
reproductive and vegetative growth has been reported in rice (Baker et al., 1992), soybean 
(Baker et al., 1989), wheat (Mitchell et al., 1993) and many other crops. Warrag & Hall (1984) 
reported that HNT induced male sterility and excessive floral abscissions in cowpea, 
whereas high day temperature had no adverse effect. The HNT can decrease crop yields by 
decreasing crop growth duration, suppressing floral bud development and decreasing 
pollen production and viability (Ahmed & Hall, 1993; Mohammed & Tarpley, 2009a; Prasad 
et al., 1999; Prasad et al., 2006). Increase in NT from 27 oC to 32 oC decreased crop growth 
duration by 2 days, as indicated by emergence of 1st panicle, in rice (Fig. 3). Decreased crop 
duration due to HNT decreases the time for carbohydrate accumulation, thus decreasing the 
yield (Cantarero et al., 1999). Badu-Apraku et al. (1983) attributed dramatic yield loss under 
high temperatures during the period of grain filling to sucrose availability (Afuakwa et al., 
1984) and activity levels of enzymes involved in starch and sugar metabolism (Singletary et 
al., 1994). Moreover, the suppression of floral buds and flowering under HNT was also 
attributed to a shortage of photosynthetic assimilates supplied to the floral buds (Guinn, 
1974), and/or an inability of floral buds to mobilize carbohydrates under heat stress (Dinar 
& Rudich, 1985). Decreased pollen germination due to heat stress has been noticed in many 
crop species (Hall, 1992; Matsui et al., 2001; Mohammed & Tarpley, 2009a). This decrease in 
pollen germination at high temperatures is due to poor anther dehiscence and pollen 
reception (Prasad et al., 2006), reduced pollen swelling and decreased anther pore size 
(Matsui & Kagata, 2003).  
 

 

Fig. 3. Effects of high night temperature on rice yield-related parameters. Each bar 
represents average + S.E. Different letters indicate means are significantly different at the 
P<0.05 level. 
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In most cereal crops, spikelet fertility, described as the ratio between filled grains and total 
grains, decreased with decrease in pollen germination. Increase in NT from 27 oC to 32 oC 
decreased spikelet fertility by 70% in rice (Fig. 3). Apart from pollen germination, hormonal 
balance in the sink (Micheal & Beringer, 1980) and/or availability and transportability of 
photosynthates to the sink from the source (Afuakwa et al., 1984) and/or inability of floral 
buds to mobilize carbohydrates (Dinar & Rudich, 1985) and/or altered activities of starch 
and sugar biosynthesis enzymes (Keeling et al., 1994; Singletary et al., 1994) can govern the 
spikelet fertility at high temperatures. The capacity to survive heat stress varies with plant 
species, genotype and developmental stage. The PGR provide an option to protect the plants 
from heat stress, thus providing sustainability for crop productivity. 

3. Plant growth regulators  

Genetic improvement and the modification of agronomic practices can be beneficial for crop 
adaptation to future climate conditions. However, these approaches are more applicable for 
long-term episodes of heat stress. The use of agrochemicals, especially those with PGR 
capabilities,  for the prevention and/or amelioration of various environmental stresses, such 
as those resulting from global climatic change, is a viable approach to make crop production 
more resilient to short-term episodes of heat stress. Plant growth regulators are natural or 
synthetic chemical compounds that are used to promote or inhibit plant growth and 
development or alter specific physiology or metabolic factors. Like plant hormones, small 
concentrations of PGRs are enough to influence plant growth and development. In recent 
years, numerous PGRs have been developed to promote crop production under stress 
conditions. Glycine betaine, SA, vitamin E, proline and choline are some of the 
agrochemicals which can induce stress-tolerance (thermotolerance, drought tolerance, cold 
tolerance and/or salinity tolerance) in various crop plants. In this chapter, we focus on the 
beneficial effects of GB and SA application against heat stress on crop production.  
Oxygen is potentially toxic to all organisms because metabolism and environmental stresses 
generate ROS from the oxygen. Under normal physiological conditions, the toxic effects of 
ROS are minimized by enzymatic and non-enzymatic antioxidants (Kreiner et al., 2002). 
Under stress conditions, oxidant levels overwhelm the antioxidant levels leading to cell 
damage (Kreiner et al., 2002). Plants exposed to environmental stress, such as heat, cold, 
drought and salinity produce ROS, which damage macromolecules and cell membranes 
(Zhang & Kirkham, 1996). Angiosperms possess several enzymatic and non-enzymatic 
scavenging systems to minimize deleterious effects of ROS. These include lipid-soluble 
antioxidants (e.g. ┙-tocopherol and ┚-carotene), water-soluble reactants (e.g. ascorbic acid 
and glutathione), and enzymatic antioxidants (e.g. superoxide dismutase, catalase and 
enzymes of the ascorbate and glutathione cycle) (Zhang & Kirkham, 1996). Glycine betaine 
and SA are synthesized in the plants and play important but different, roles in preventing 
oxidative damage to the membranes (Bowler et al., 1992; Demiral & Turkan, 2004) and 
inducing theromotolerance in plants subjected to stresses (Ashraf & Foolad, 2007; Caldas et 
al., 1999; Farooq et al., 2008a, 2008b; Larkindale & Huang, 2004; Mohammed & Tarpley, 
2009b; Pan et al., 2006; Raskin, 1992). The commercial availability of GB and SA provides 
potential crop-management options to reduce crop heat stress events. 
Glycine betaine, an important osmoprotectant is an amino-acid derivative that is naturally 
synthesized and accumulates under stress conditions in some plants (Bohnert & Jensen, 
1996; Demiral & Turkan, 2004). It enhances stress tolerance by protecting enzymes (Paleg et 
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al., 1981), photosystem II (Allakhverdiev et al., 1996), membrane integrity and antioxidant 
status of the plant (Mohammed & Tarpley, 2009b).  Glycine betaine may also protect plants 
from environmental stresses indirectly via its role in signal transduction and ion 
homeostasis (John, 2002; Yilmaz, 2004). It regulates signal transduction and ion homeostasis 
by affecting MAP kinases, and expression of many genes related to signal transduction 
(John, 2002). Exogenous application of GB improved growth, survival and induced stress 
tolerance in many crop species (Diaz-Zorita et al., 2001; Harinasut et al., 1996; Rajasekaran et 
al., 1997) and also increased total antioxidant capacity and antioxidant enzyme activities 
(Farooq et al., 2008a; Mohammed & Tarpley, 2009b). 
Salicylic acid is an endogenous plant growth regulator of phenolic nature and is considered 
to be a potent plant hormone because of its diverse regulatory roles in plant metabolism 
(Raskin, 1992). It plays an important role in the regulation of plant growth, development 
and responses to abiotic and biotic stresses (Raskin, 1992; Senaratna et al., 2000; Yalpani et 
al., 1994) by affecting photosynthetic rate, stomatal conductance, transpiration, ion uptake 
and transport, respiration rates, membrane stability, antioxidant capacity and antioxidant 
enzyme activities (Farooq et al., 2008a; Harper & Balke, 1981; Khan et al., 2003; Mohammed 
& Tarpley, 2009b). In addition, SA is considered to be an important signaling molecule 
involved in stress tolerance. It also promotes pathogenisis-related (PR) gene expression and 
induces systemic acquired resistance (SAR) in plants (Ryals et al., 1994). Besides providing 
disease resistance to the plants, SA can modulate plant responses to a wide range of 
oxidative stresses (Shirasu et al., 1997). It plays an essential role in preventing oxidative 
damage in plants by detoxifying superoxide radicals (Bowler et al., 1992) and by altering 
antioxidant capacity and antioxidant enzyme activities in plants (Chen et al., 1997; Dat et al., 
1998, Fodor et al., 1997; Larkindale & Huang, 2004; Mohammed & Tarpley, 2009b; Rao et al., 
1997; Wang & Li, 2006). Plants pre-treated with SA have shown increased thermotolerance 
(Larkindale & Knight, 2002). 

3.1 Effects of plant growth regulators on plant morphology and physiology under high 
night temperature  
Exogenous application of PGRs on plants under high night temperatures have shown 
positive, negative or no effect on plant morphology. Exogenous foliar application of GB or 
SA did not affect plant height in rice (Fig. 4). However, Farooq et al., (2008a, 2008b) state that 
seed priming of maize (Zea mays L.) with GB or SA increased shoot length, root length and 
biomass production. Increase in plant height as a result of SA application is due to increased 
cell enlargement, endoreduplication and/or cell division (Kang et al., 2007; Vanacker et al., 
2007). 
Glycine betaine and SA have profound effects on crop production through their effects on 
crop physiology. Foliar application of GB or SA increases leaf photosynthetic rates and 
decreases internal CO2 concentration, respiration rates and membrane injury in rice (Fig. 5). 
Similar results were seen in other crop species and growth conditions where application of 
GB or SA increased photosynthetic rates and decreased respiration rates and injury to the 
membranes (Farooq et al., 2008a; Khan et al., 2010; Zhou et al., 1999).  
In rice, application of GB or SA did not affect leaf chlorophyll or nitrogen content (Fig. 5). 
However, studies have shown that exogenous application of GB stabilizes pigments and 
prevents water oxidation and photooxidation (Cha-um et al., 2006, Sakamoto et al. 1998). 
Stabilization of pigments (chlorophyll and carotenoids) aids in light energy capture as 
required for photosynthesis. Several studies have reported that application of GB aids in 
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protecting the photosynthetic machinery of the plant organelles by stabilizing the 
ultrastructure of the chloroplast, photosystem-II reaction centers and maintaining the 
oxygen-evolving machineries (Allakhverdiev et al., 2003; Busheva & Apostolova, 1997; Lee 
et al., 1997; Makela et al., 2000; Pospisil & Dau 2000; Sakamoto & Murata, 2000). On the other 
hand SA increases photosynthetic efficiency by increasing pigment concentrations and 
protecting photosystem function via activation of antioxidant defense systems as a signaling 
molecule (Dat et al., 1998; Ervin et al., 2005; Senaratna et al., 2001). The other physiological 
parameters such as respiration rates, transpiration rate and injury to leaf membrane 
decreased with application of GB or SA (Mohammed & Tarpley, 2011b). Studies have 
reported antitranspiration effects of GB and SA applications in crop species suggesting that 
GB and SA play an important role in controlling stomatal opening and closing under stress 
conditions (Cha-um et al., 2006; Khan et al., 2010; Larque-Saavedra, 1978). The most 
important effect of PGR’s on crop production is through their ability to maintain the 
integrity of the membranes. The functional cell-membrane system is central to crop 
productivity. Stable membranes facilitate free movement of ions and water across the 
membrane and provide a favorable environment for enzymes and thylakoid membrane 
activities (Björkman et al., 1980). Several studies have reported that GB or SA application 
can maintain membrane integrity under stress conditions (Bohnert & Jensen, 1996; Farooq et 
al., 2008a, 2008b; Hussain et al., 2008; Mohammed & Tarpley, 2011b; Pan et al., 2006) by up 
regulating antioxidant enzyme activities and total antioxidant capacity (Demiral & Türkan, 
2004; Farooq et al., 2008a, 2008b; He et al., 2005; Mohammed & Tarpley, 2009b). 
 

 

Fig. 4. Effects of glycine betaine and salicylic acid on rice morphology under high night 
temperature. Each bar represents average + S.E. Different letters indicate means are 
significantly different at the P<0.05 level. 
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Fig. 5. Effects of glycine betaine and salicylic acid on rice physiology under high night 
temperature. Each bar represents average + S.E. Different letters indicate means are 
significantly different at the P<0.05 level. 

3.2 Effects of plant growth regulators on plant antioxidant enzyme activities and total 
antioxidant capacity under high night temperature 
The antioxidant status of the plant is closely associated with its stress tolerance (Smirnoff, 
1995). The severity of ROS-induced damage depends upon the antioxidant status of the 
plant and activities of antioxidant enzymes such as superoxide dismutase (SOD), ascorbate 
peroxidase (AP), catalase (CAT) and glutathione redutase (GR). Many studies have shown 
an increase in endogenous antioxidant levels as a result of exogenous application of GB or 
SA (Chen et. al., 1997; Diaz-Zorita et. al., 2001; Fang et al., 2009; Mohammed & Tarpley, 
2009b). In rice, exogenous application of GB or SA increased total antioxidant capacity 
under high night temperature (Fig. 6). These increases in the levels of endogenous 
antioxidant are due to increases in antioxidant enzyme activities (Demiral & Türkan, 2004; 
Farooq et al., 2008a, 2008b; He et al., 2005; Khan et al., 2010). 
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Fig. 6. Effects of glycine betaine and salicylic acid on total antioxidant capacity under high 
night temperature. Each bar represents average + S.E. Different letters indicate means are 
significantly different at the P<0.05 level. 

3.3 Effects of plant growth regulators on yield and yield-related parameters under 
high night temperature 

Rice phenology under high night temperature was not altered by exogenous application of 
GB or SA as indicated by 1st panicle emergence date (Fig. 7). However, previous studies by 
Oota (1975) and Datta & Nanda (1985) showed that SA application induces early flowering 
in duckweeds (Lemna gibba L.) and chenna millet (Panicum miliaceum L.). Exogenous 
application of GB or SA increased spikelet fertility in rice (Fig. 7). The increase in spikelet 
fertility was due to increased photosynthesis, and decreased respiration and injury to the 
membrane stability as a result of GB or SA application. Exogenous application of GB or SA 
increases stability of the membranes as a result of increased antioxidant capacity of the 
plants. The enhanced membrane stability is responsible for increased photosynthesis and 
decreased respiration, which in turn increases crop production. In a nutshell, exogenous 
applications of GB or SA have been shown to increase stress tolerance, and often enhance 
plant growth and final crop yield under stress conditions, including HNT.  

4. Conclusion  

Yield, the final manifestation of all the physiological processes, decreased due to high night 
temperatures. The decrease in crop yields as a result of HNT was due to increased 
respiration and decreased photosynthesis and membrane stability. The decrease in 
photosynthesis was associated with decreases in photosynthesis-governing parameters such 
as stomatal conductance, internal CO2 concentration, leaf chlorophyll content and leaf 
nitrogen, as a result of HNT. Moreover, decreased crop growth duration, pollen production 
and viability also contributed to decreased yields under HNT. Exogenous application of 
PGRs such as GB and SA increased production of photosynthates and decreased 
consumption of photosynthates and injury to the membrane, thereby increasing crop 
productivity under HNT. The exogenous application of GB and SA increases antioxidant 
levels, thereby protecting the membranes and enzymes against heat-induced ROS-mediated 
degradation, thus increasing crop productivity. However, there is a significant variation in 
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Fig. 7. Effects of glycine betaine and salicylic acid on rice yield-related parameters under 
high night temperature. Each bar represents average + S.E. Different letters indicate means 
are significantly different at the P<0.05 level. 

response to exogenous application of PGRs such as GB and SA among different plant 
species. This varied response among the plant species is due to 1) plant quantitative 
response to exogenous application of PGRs such as GB and SA at different stages of plant 
development, 2) plant exhibition of different responses to PGRs such as GB and SA at 
different stages of plant development and 3) variation in the effective concentration of a 
particular PGR among species. The PGRs such as GB and SA provide an option to protect 
the plants from different stresses like high day temperatures, high night temperature, 
drought and salinity, however, over-application of the PGRs such as GB and SA may be 
toxic to some plants resulting in growth inhibition or yield reduction.  
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