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The Evolution of Biocompatibility: 
From Microinflammation to Microvesiscles 

Ciro Tetta1,2, Stefano Maffei3, Barbara Cisterna4, Valentina Fonsato4,  
Giorgio Triolo3, Giuseppe Paolo Segoloni5, Giovanni Camussi4,5,   

Maria Chiara Deregibus4 and Emanuele Gatti1,6* 

1. Introduction 

Haemodialysis (HD) is a life-saving treatment for patients with chronic kidney disease 

(CKD) stage 5. CKD persists as a chronic worldwide epidemic and HD is the more 

frequently (70%) adopted treatment modality. Exponential growth trend continues on a 

global scale. The HD population becomes every year increasingly older (average age: 75 yrs) 

and sicker due to the associated co-morbidities such as cardiovascular disease (heart failure, 

coronary heart disease, and peripheral vascular disease), diabetes, hypertension, and 

peripheral vascular disease. Most of the complications associated with HD involve the 

cardiovascular system (Go et al., 2004; Culleton et al., 1999, Goodkin et al., 2003, Foley 2004; 

Barret, 2002). The evolution in the history of HD technology has greatly helped to make the 

HD procedure a safe and more biocompatible extracorporeal therapy. However, it must be 

admitted that despite significant improvements in HD technology and in the management 

of patients due to a better understanding of uremia toxicity, improvements in dialysis 

technology, better correction of anaemia and metabolic abnormalities, implementation of 

best practice guidelines, no significant improvement has been achieved in patient survival 

over the last decade (Rayner et al., 2004). The extracorporeal circuit offers a large surface of 

contact of the blood with foreign materials, namely the dialysis membrane, the tubings and 

the large volumes of the dialysate. The concept of biocompatibility has greatly evolved in 

the last two decades. Initially, numerous studies focused on the blood-dialyzer membrane 

interaction, leading to the activation of plasma systems (complement, coagulation, 

fibrinolysis). These studies helped in the understanding of some unknown effects occurring 

in the early stages of the HD session leading to pulmonary sequestration of leukocytes 

(mainly neutrophils) that explained the profound neutropenia associated with the 

cuproammonium membranes. The availability of reliable testing of complement-activated 
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products (C3a and C5a and their desarginated products) guided the development of less 

neutropenia-inducing membranes and ultimately to the final development of fully synthetic 

membranes which have very low if at all capacity to induce complement activation. At that 

time, coagulation was an important reason for frequent interruptions and delays in the HD 

sessions. Due to the complex interplay known to occur between the activation of the 

complement and coagulation systems, it became of great interest to try to reduce the 

propensity for intravascular coagulation. The development of high-flux membranes and 

growing awareness of the benefits of convective and convective/diffusive under several 

contexts (intradialytic cardiovascular stability, better control or the uremic status and fluid 

control) gave impetus to a large number of enlightening studies on another mechanism of 

HD bioINcompatibility. The contamination by bacterial products, particularly with the 

widespread use of bicarbonate-based dialysates opened a new era in the field of 

biocompatibility. The formulation of the “interleukin hypothesis” was a posteriori not only 

the basis for further studies on the monocyte stimulation during HD, but also provided a 

link between biocompatibility and chronic inflammation. Basically, the evolution of 

biocompatibility has led us to consider two sides of the same coin: on one side, the biological 

responses at the blood-membrane interface; on the other hand, the consequences derived 

from the contact on the membrane performances (e.g. hydraulic permeability and sieving 

coefficients). 

In this review, we will summarize the most important steps in the evolution from the 

concept of the blood-dialyzer membrane interaction to that of the whole HD system 

compatibility. In face of very recent developments of cell-to-cell communication and signal 

transduction, we will also discuss the new hypothesis for a role of microvesicles (MVs) in 

cell activation, as well as in tissue and vascular repair. We will not deal with other important 

aspects of biocompatibility such as the oxidant stress, the relevant role of additives in 

dialyzer manufacturing, and of leachables and the effects of different sterilization modes.  

2. Blood-membrane interaction: the role of complement, coagulation, kinin-
kallikrein systems and soluble mediators 

2.1 Activation of the complement alternative  pathway  

Early studies on biocompatibility focused on acute hypersensitivity-like reactions which 
in some cases were fatal. Various mechanisms were elucidated. Activation of complement 
was shown by Craddock et al in 1977 (Craddock et al, 1977). Hydroxyl radicals, present on 
the surface of cellulosic membranes, bind with the C3b in the blood and activate the 
alternative pathway leading to the release of potent anaphylatoxins, C3a and C5a. Both 
C3a and C5a and their relative desarginated products induce prompt activation and 
aggregation of polymorphonuclear neutrophils (PMNs) and leukopenia. This is a very 
rapid process reaching a nadir from 15 to 30 min after initiation of dialysis. Aggregates of 
PMNs are sequestered particularly in the lung capillaries. Although the extent of the 
anaphylatoxin generation and of the neutropenia is also patient-dependent, these studies 
failed to find a relationship with chronic clinical trade-offs despite the hypothesis that 
recurrent pulmonary sequestration could induce pulmonary fibrosis. Reduction of the 
hydroxyl groups on the membrane surface or new synthetic polymers reduced the 
activation of the alternative pathway of the complement cascade. Temperature could also 
reduce complement activation (Maggiore Q, personal communication, 1988). Testing 

www.intechopen.com



 
The Evolution of Biocompatibility: From Microinflammation to Microvesiscles 

 

95 

complement activation (C3a or C5a plasma levels) by highly sensitive ELISA tests has 
become a standard requirement for the evaluation of biocompatibility ever since along 
with the precise characterization of the polymer structure (Krieter et al, 2008). It also 
became clear that synthetic polymers had a very low neutropenia-inducing effect. In some 
cases such as the polyacrylonitrile membrane, this was also due to the capacity of the 
membrane to adsorb C3b and the anaphylytoxins thus masking in fact complement 
activation (Pascual et al 1993) (Figure 1).  
 

 

Fig. 1. Pathways involved in blood-membrane interactions. LTB4 denotes leukotriene B4, 

PAF, platelet-activating factor, IL-1, interleukin-1, TNF-, tumor necrosis factor. 

2.2 Activation of the coagulation system 

Numerous acquired hemostatic abnormalities have been identified in chronic renal failure. 

HD adds to these disturbances as it repetitively implies turbulent blood flow, high shear 

stress, and contact of blood to artificial surfaces. Anticoagulation in HD is targeted to 

prevent activation of coagulation during the procedure. Most anticoagulant agents inhibit 

the plasmatic coagulation cascade. Still commonly used is unfractionated heparin, followed 

by low-molecular-weight heparin preparations with distinct advantages. Immune-mediated 

heparin-induced thrombocytopenia constitutes a potentially life-threatening complication of 
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heparin therapy requiring immediate switch to nonheparin alternative anticoagulants. 

Danaparoid, lepirudin, and argatroban are currently being used for alternative 

anticoagulation, all of which possess both advantages and limitations. Recently citrate has 

been proposed as anticoagulant in maintenance HD (Wright et al, 2010). In the past, 

empirical strategies reducing or avoiding heparin were applied for patients at bleeding risk, 

whereas nowadays regional citrate anticoagulation is increasingly used to prevent bleeding 

by allowing procedures without any systemic anticoagulation. Avoidance of clotting within 

the whole hemodialyzer circuit is not granted. Specific knowledge of the mechanisms of 

coagulation, the targets of the anticoagulants in use, and their respective characteristics 

constitutes the basis for individualized anticoagulation aimed at achieving full patency of 

the circuit throughout the procedure. Patency of the circuit is an important prerequisite for 

optimal HD quality. Intrinsic coagulation Hageman factor XII as well as other coagulation 

factors are also activated (Fischer, 2007). However, the activation of the coagulation is a very 

complex phenomenon that may be enhanced by different independent factors other than the 

membrane surface per se such as: the dynamics at the dialyzer heads, defects in the hollow 

fibre cutting of the polyurethane, any condition that predisposes for blood to be stagnant. 

The activation of coagulation by a membrane in a dialyzer is difficult to assess given the 

above-mentioned factors and the host's response to the anticoagulation regime put in place 

(Figure 1). 

2.3 Activation of the kinin-kallikrein system 

Surface activation of Factor XII induces the kinin-kallikrein that ensues in the generation of 

bradykinin (Figure 2). 

Bradykinin is physiologically under the tight control of very potent kinases that are able to 

promptly lyse the molecule and inactivate its potent vasodilator activity. In certain 

conditions, however, the lytic effect of this kinase is deficient. This occurs in patients under 

therapy with angiotensin converting enzyme enzyme (ACE) inhibitors. However, there are 

patients who experience hypersensitivity-like phenomena, that can be reconducted to 

bradykinin generation, even in the absence of concomitant therapy with ACE inhibitors. The 

explanation of this phenomenon came from pioneering studies on angio-edema, a rare but 

potentially fatal condition (Adam et al., 2002). These reactions are mainly associated to 

defects in the enzymatic activity of the aminopeptidase P (Figure 2). Bradykinin acts 

through two types of tissue receptors: R1 are mostly located in the skin and respiratory 

tissues (lungs and bronchi), while R2 are mostly found in the gastrointestinal tract. The 

overproduction of bradykinin may lead to two different clinical presentations: the first is 

mainly characterized by a rapid developing skin flushing, hypotension, and dyspnoea. 

These reactions may be mild but very severe, fatal episodes of shock have been described. In 

the second instance, these reactions, which were for some time unexplained, occur after 1 h-

2 hr of HD treatment, may but may be not associated with the use of ACE inhibitors. The 

patient has severe diarrhoea which requires immediate interruption of the extracorporeal 

treatment. This manifestation may unpredictably recur and disappears upon disconnection. 

Bradykinin-induced reaction, may in principle occur following the contact with any foreign 

surface. Their potential, unpredictable severity should call for immediate action even in 

patients with mild forms. The commonest causes have been the use of strongly negative 

surfaces such as AN-69 membranes (Tielemans et al., 1990), or adsorbents used in LDL 
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apheresis (Owen et al., 1994) or in Hemodiafiltration (HDF) with regeneration of the 

ultrafiltrate (Tetta C, Wratten ML, unpublished observation, 2001). The appearance of signs 

and symptoms of a hypersensitivity-related event can be dramatic in the practice of HD. The 

complexity of the causal factors and the underlying mechanisms are often difficult to unveil 

(Arenas et al., 2006). The majority of reported cases have been due to ethylene oxide (ETO) 

(Poothullil et al., 1975), triggered by both immunoglobulin E (IgE) and non-IgE factors 

(Johansson et al., 2001). However, a considerable number of publications have focused on 

other HD substances and materials such as heparins, different dialyser membranes, iron, 

erythropoietin, polyacrylonitrile AN69® high flux membranes, latex, antiseptic or 

formaldehyde (Ebo et al, 2006). Many different underlying mechanisms have been 

postulated. Hypersensitivity reactions have been estimated to occur in ~4/100000 dialysis 

treatments. A postal survey of all HD centres in the UK suggested that 1/20 to 1/50 patients 

may be susceptible to anaphylactoid reaction to a new hemodialyser at some time in 

between, while the risk of reaction occurring with any single HD session is~1/1000 to 

1/5000. Although it is likely that many reactions are unrecognized or unreported, the scale 

of the problem is larger than many nephrologists have suspected (Nicholls et al., 1987). 

 
 
 

 

Fig. 2. Activation of the kinin-kallikrein system and generation of bradykinin (BK) 
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2.3.1 Soluble mediators   

Many soluble mediators are produced and released following the blood-membrane 
interaction. Products of the phospholipase A2 such as platelet-activating factor (PAF) and 
leukotrienes are released by the direct interaction of PMNs and platelets with complement-
activating membranes. Although in the presence of blood, the mechanisms of production of 
PAF and leukotrienes can not be readily differentiated from the activation, as they follow 
the same kinetics, we could show that for PAF for example, its production and release could 
be observed in complement-independent conditions such as in the absence of plasma by 
purified cells incubated with flat HD membranes (Tetta et al., 1996). A large number of 
studies have also suggested the occurrence in the plasma of lytic enzymes normally present 
in the vacuoles of inflammatory cells such as elastases, and metalloenzymes. The release of 
these lytic enzymes is caused by a phenomenon named by cell physiologists as "frustrated 
phagocytosis".  

3. The effect of blood on dialyzer performances 

When blood enters the HD system via the arterial line, a complex interplay of factors alters 
membrane performances e.g. clearances, ultrafiltration rates and sieving coefficients. These 
factors are patient- and system- dependent.  

3.1 Patient-dependent factors 

3.1.1 Albumin: Relevant amount of albumin fragments are detectable in the serum of 
patients undergoing HD. Uremia appears to facilitate the fragmentation of albumin 
and/or the retention of albumin fragments in blood (Donadio et al., 2009). Depending 
on their molecular weight, albumin fragments may be either lost in the dialysate or 
remain trapped in the wall of the hollow fibre. More in general, plasma proteins may 
cause a phenomenon names as “protein fouling”. 

3.1.2 Plasma viscosity which is related (but not exclusively) to albumin, fibrinogen and lipids.  
3.1.3 Free hemoglobin: In vitro data have shown that blood circulation produces an increase 

of up to 280% in free hemoglobin levels and an increase of 320% in electronegative LDL 

(LDL(-) subfraction, a highly atherogenic form of oxidized LDL. The significant 

correlation between LDL(-) and free hemoglobin levels shows the oxidative activity of 

free hemoglobin (Ziouzenkova et al., 1999) (Figure 3).  
3.1.4 System-dependent factors 
3.1.4.1 Several factors are here involved such as the vascular access flow rate, and the pump 

rate and the response of the dialyzer depending on the membrane resistance and 

geometry. As seen from a kinetic perspective, the blood flow, and pressures are on-off 

events which are reflected in a “push-pull” effect on the dialyzer hollow fibre. Although 

these effects are still not completely known, they seem to be relevant on the shear rates, the 

erythrocyte orientation, leading in the worst conditions to predispose to their agglutination 

and clogging of the hollow fibre. Calculating clearances, ultrafiltration rates and sieving 

coefficient using aqueous solution can lead to an overestimate of 30%and is therefore 

hardly informative of the dialyzer behaviour in vivo. Finally, it was shown that sieving 

coefficients may change over the time of treatment rendering the calculation of clearances 

on the basis of the quantization of urea on the ultrafiltrate may also lead to an 

overestimation of the dialyzer performances (Claure-Del Granado et al., 2010).  
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Fig. 3. Microhemolysis is the release of small quantities of hemoglobin (micro- or 
nanomolar) from erythrocytes. The tyrosine of a hemoglobin molecule can undergo a 
transition to a reactive free radical. This can react with other protein tyrosine residues to 
form a dityrosine molecule. Microhemolysis occurs during the HD procedure in which the 
erythrocytes are slightly damaged and tend to „leak“ very small quantities of hemoglobin. 
This is a very common phenomena in HD and should not be confused with gross hemolysis. 

4. The evolution of treatment biocompatibility 

4.1 From system biocompatibility to systemic chronic inflammation 

The concept that inflammation underlines many diseases once considered to be linked to 
degenerative processes has revolutionized the approach to the research into the 
pathogenesis and new therapeutics alike. In the field of cardiovascular disease, the process 
of endothelial dysfunction, vascular damage and atherosclerosis is now seen as a continuum 
(Libby et al., 2002). Cardiovascular disease is among the leading cause of morbidity and 
mortality in CKD patients on maintenance HD (US Renal Data System, 1997; Parfey & Foley, 
1999). Even before reaching the state of chronic kidney disease Stage 5, patients with chronic 
renal failure present signs of chronic inflammation. Once patients are on HD, the risk of 
cardiovascular death is approximately 30 times higher than in the general population, and 
still remains 10 to 20 times higher after stratification for age, gender, and presence of 
diabetes. Traditional risk factors seem inadequate to explain the remarkable prevalence of 
cardiovascular disease observed in the uremic population (Foley et al 1998).  

4.1.1.1 Systemic Chronic Inflammation  

Inflammatory mechanisms play a relevant role in the development and progression of 
atherosclerosis (Ross, 1999) and heart failure (Vasan et al., 2003). Epidemiological studies in 
the general population have shown that even minor elevations of C-reactive protein (CRP), 
an acute phase reactant that markedly increases during an inflammatory response (Ridker 
PM, et al., 1997) predict the development of coronary heart disease and cardiac failure 
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(Liuzzo et al 1994, Lagrand et al., 1999, Badht et al, 2002). C-reactive protein may directly 
promote the development of atherosclerosis, through complement activation, tissue damage 
and activation of endothelial cells. Recent studies performed in CKD patients have shown 
that CRP is a strong predictor of cardiovascular death (Stenvinkel, 2001, Kaysen, 2005). The 
link between CRP and cardiovascular risk was initially thought to be indirect, reflecting 
circulating CRP only to the extent of the acute phase reaction in response to nonspecific 
stimuli such as confounding risk factors, atherosclerosis, vascular injury, ischemia and 
necrosis. (Figure 4). 
 

 

Fig. 4. Acute phase response is a defence response which occurs as a consequence of an 
inflammatory stimulus occurring in the blood or at tissue level. The enhanced production of 
interleukin-6 (IL-6), the most potent inducer of this reaction at the level of the liver, triggers 
the synthesis of newly synthesized proteins, e.g., C-reactive protein (which plasma levels 
may increase up to 50-to 100-fold the normal levels) as well as to the shut-down of the 
translation of genes coding for proteins, e.g., albumin. 

Stenvinkel et al (1999) first convincingly showed that the malnutrition-inflammation 
complex syndrome described as MIA syndrome is associated with the highest mortality 
rates in ESRD. Their results were confirmed and extended (Panichi et al. 2008). As reviewed 
by Stenvinkel & Barany (2002), there is consensus on a link between CKD and inflammation. 
A number of studies have highlighted the association between increased inflammatory 
indexes and a reduced response to Erythropoietin-stimulating agents (ESAs), in particular, 
high CRP levels were found in HD patients requiring higher ESAs doses (Singh et al., 2007; 
Bradbury et al. 2009). However, the association between ESAs resistance and increased CRP 
levels (Barany et al. 1997; Gunnell et al. 1999) is unclear. Plasma IL-6 rather than CRP seem 
to better predict outcomes in CKD patients (Panichi et al., 2004). Various possible 
explanations may underline the advantage of IL-6 over CRP as a predictor of ESAs 
resistance. One possibility is that IL-6, being located upstream in the cascade of events 
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which lead to the synthesis of many acute-phase reactants, is a better marker for the 
inflammatory burden affecting the development of CVD (Panichi et al., 2011). A frequently 
asked question is what is the contribution of HD bioincompatibility to the chronic 
inflammatory state. In this context, the evolution of HD technology has moved the focus 
from membrane bioincompatibility only to a more complex and integrated view of the HD 
system. The possibility that HD may be shift to a “cardioprotective’’ therapy is inherent to 
new technologies in machines, water treatment, dialysis fluids and blood tubings. 

4.1.1.2 The Interleukin Hypothesis  

Originally introduced as an elegant concept in 1986 (Bingel et al., 1986), the “interleukin 
hypothesis” was first coined to indicate the production of interleukin-1, the endogenous 
pyrogen as produced by the result of complement-activated mononuclear cells. Indeed, 
the interleukin hypothesis explained much more than was initially predictable. Several 
studies have ever since reported an increased cytokine production secondary to blood 
interaction with contaminated dialysate. Interleukin-1 (IL-1), tumor necrosis factor-a 
(TNF-a) and mainly IL-6 are the 3 proinflammatory cytokines that are involved in the 
pathogenetic aspects of HD-related disease (as reviewed by Lonnemann, 2004, Panichi et 
al., 2000 (Figure 5).  
 

 

Fig. 5. Here are schematically depicted the mechanisms related to the 
backdiffusion/backfiltration of bacteria-derived contaminants from the dialysate into the 
blood. Their interaction with circulating monocytes/macrophages leads to the activation of 
innate immunity and to the attendant triggering of proinflammatory cytokines (interleukin-

1 (IL-1), tumor necrosis factor-. Abbreviations: CIS, cytokine-inducing substances; LAL, 
Limulus amoebocyte lysate, UF, ultrafiltrate. 
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The proposed mechanisms include blood interaction with endotoxins from the 

contaminated dialysate through HD membranes. A large number of studies have greatly 

contributed to increasing our knowledge in the mechanisms of endotoxin transfer across the 

membrane In fact, when using high permeability membranes, backfiltration and 

backdiffusion occur and have ebeen extensively described (Fiore & Ronco, 2007, Ronco, 

2007). Thus, the transmembrane passage of endotoxins or other cytokine stimulating 

substances (CIS) occurs during HD (Schindler et al., 2004, Tetta et al., 2006). The reduction of 

backfiltration of standard dialysate may reduce the plasma concentration of IL-1ra, a 

sensitive indicator of inflammation in HD patients (Dinarello personal communication, 2004), 

and IL-1 (Panichi et al., 1998). Studies on large groups of patients have shown that high-

volume exchange HDF, a treatment in which dialysate backfiltration is minimal, if any, is 

associated with significantly lower CRP plasma values (Panichi et. 1998). Comparing in a 

double cross-over study patients treated with high-flux and on line HDF using ultrapure 

dialysate and infusate, it was shown that a significant reduction of pro-inflammatory 

CD14+/CD16+ mononuclear subset (Carracedo et al., 2006) occurs in on line HDF. These 

studies emphasize that the convective component has an additional anti-inflammatory 

effects (Ramirez et al., 2007). 

The new technology of pyrogen-adsorbing, non-complement activating, high-permeability 

synthetic membrane and dedicated machines (Tetta et al., 2011), as well as the awareness of 

the deleterious effects derived from contamination of dialysis fluids has reduced the clinical 

impact to a periodic microinflammatory stimulus. Undoubtedly, the availability of monitors 

for on-line HDF and its increased popularity have spurred more restrictive measures on 

safety issues and monitoring. Water quality is a mandatory issue. The safety of online HDF 

has been shown repeatedly in several monocenter  (Canaud et al., 1998, Pizzarelli et al., 1998 

and multicenter studies (Canaud et al., 2001,Vaslaki  et al., 2000). 

Nowadays, the philosophy of ‘‘ultrapure dialysate’’is in common practice (Kessler et  

al., 2002). The clinical, consolidated experience on line HDF warrants well-defined 

procedures and leaves no space for ‘‘experiments’’ in what is now routine (Canaud et al, 

2011). The ‘‘hemocompatibility network’’ should eventually prevent the periodic 

microinflammation induction through the implementation of rigid protocols of disinfection 

and maintenance of water-treatment systems and HD monitors (Cappelli et al., 2006; Kessler 

et al. 2002).  

5. Microvesicles: their nature, release and pathophysiological relevance  

A chronic inflammatory state has been widely documented since the early stages of CKD 

and becomes more pronounced in those with CKD stage V undergoing HD. Oxidant stress 

(Wratten et al., 2000, Morena et al. 2011), endothelial dysfunction (Recio-Mayoral et al., 

2011), high circulating cytokine-producing monocyte subpopulation (Ramirez et al., 2006), 

reduced number and/or impaired function of endothelial progenitor cells (Krenning et al., 

2009), are today considered as hallmarks of vascular damage and defective repair. Uremia 

also causes telomere shortening and premature cellular senescence of immunocompetent 

cells (Jimenez et al, 2005). In recent years, increasing attention has been drawn by the 

awareness of the pathophysiologic role of small, circular membrane fragments named as 

Microvesiscles (MVs) (Ratajczak  et al., 2006) (Figure 6). 
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Fig. 6. 

For long time MVs were considered to be inert cellular debris. The frequently observed 
vesicles by electron microscopy in the interstitial space of tissues or in blood were 
considered as the consequence of cell damage or the result of dynamic plasma membrane 
turnover (Siekevitz et al., 1972). As the vesicle population detectable both in vitro and in vivo 
is a mixed population of exosomes and shedding vesicles, we will refer to  them collectively 
as MVs. Released MVs may remain in the extracellular space in proximity of the place of 
origin or may enter into the biological fluids reaching distant sites. This may explain the 
presence of MVs in plasma, urine, milk and cerebrospinal fluid. The bulk of MVs present in 
the circulation is derived from platelets (George, 1982), and in less extent from other blood 
cells and endothelial cells (Martinez et al., 2005). The MVs derived from platelets are also 
designed as microparticles while those derived from polymorphonuclear leukocytes are also 
named ectosomes (Hess et al., 1999). Finally, MVs released during morphogenesis of 
multicellular organisms are indicated as argosomes (Greco et al., 2001). Besides normal cells, 
also tumor cells may release MVs and in patients suffering for neoplastic diseases tumor-
derived MVs may be detected within the biological fluids (Kim et al, 2003, Iero et al., 2008). 
Therefore, MVs are an assorted population, differing in cellular origin, number, size and 
antigenic composition (Diamant et al., 2004) shed by various cell types in physiological and 
pathological conditions. The release of MVs may be constitutive or consequent to cell 
activation by soluble agonists, by physical or chemical stress such as the oxidative stress and 
hypoxia, and by shear stress (Ratajczak et al., 2006). Exosomes have an endosome origin and 
are a rather homogenous population with a size ranging from 30 to 120nm (7). They are 
stored as intraluminal vesicles within multivesicular bodies of the late-endosome and are 
released when these multivesicular bodies fuse with the cell membrane. Our knowledge on 
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the mechanism of assembly and sorting of the exosomes is only partial, due to the fact that a 
common sorting signal for all cell types has not so far been identified (Johnstone et al., 2006).  

Shedding vesicles are usually larger than exosomes with size ranging from 100nm to 1m. 
Formation of shedding vesicles takes place from the budding of small cytoplasmic 
protrusions followed by their detachment from the cell surface. This process is dependent 
on calcium influx, calpain and cytoskeleton reorganization. 

5.1 MV biological activities 

It is now recognized that MVs are an integral part of the intercellular microenvironment and 

may act as regulators of cell-to-cell communication. This concept is based on the observation 

that MVs released from a given cell type may interact through specific receptor-ligands with 

other cells leading to target cell stimulation directly or by transferring surface receptors 

(Janowska-Wieczorek et al., 2001,  Morel et al., 2004). This interaction may either be limited 

to a receptor-mediated binding to the surface of target cells forming a platform for assembly 

of multimolecular complexes or leading to cell signaling, either be followed by 

internalization as result of direct fusion or endocytic uptake by target cells (Cocucci et al., 

2008). Once internalized, MVs can fuse their membranes with those of endosomes, thus 

leading to a horizontal transfer of their content in the cytosol of target cells. Alternatively, 

they may remain segregated within endosomes and be transferred to lysosomes or 

dismissed by the cells following the fusion with the plasmamembrane, thus leading to a 

process of transcytosis. It was proposed that MV-mediated cell-to-cell communication 

emerged very early during evolution as a template for the development of further more 

refined mechanisms of cell communication (Ratajczak et al., 2006). MVs may influence the 

behavior of target cells in multiple ways.  

5.1.1 MVs may act as signaling complexes by direct stimulation of target cells (Ratajczak 
et al., 2006, Cocucci et al., 2008). MVs derived from platelets, for instance, play an 
important role in coagulation as their phosphatidylserine-enriched membranes provide 
a surface for assembly of clotting factors (Zwaal et al., 2004). After activation, platelets 
shed MVs coated with tissue factor which may interact with macrophages, neutrophils 
and other platelets by ligation with molecules expressed on the surface of these cells 
such as P-selectin (Polgar et al., 2005). On the other hand, MVs released from 
neutrophils express activated Mac-1 able to induce platelet activation (Andrews & 
Berndt, 2004). Moreover, platelet-derived MVs, besides coagulation, trigger various cell 
responses as they activate endothelial cells (Barry et al., 1997), polymorphonuclear 
neutrophils (Miyhamoto et al., 1988) and monocytes (Barry et al., 1999). . 

5.1.2 MVs may act by transferring receptors between cells. The transferring of receptors 
between cells is supported by the observation that bystander B cells rapidly acquire 
antigen receptors from activated B cells by a membrane transfer (Quah et al., 2008). 

5.1.3 MVs may deliver proteins within the target cells. An example of this mechanism is 
the recently reported MV-mediated transfer of a cell death message via encapsulated 
caspase-1 (Sarkar et al., 2009). It has been found that endotoxin stimulated monocytes 
induce the cell death of vascular smooth muscle cells by releasing MVs containing 
caspase-1. This trans-cellular apoptosis induction pathway depends on the function of 
the delivered caspase-1 within the target cells. It has been also suggested that MVs may 
contribute to dissemination of certain infective agents, such as HIV or prions (Facler & 
Peterlin, 2000, Fevrier et al., 2004).  
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5.1.4 MVs may mediate a horizontal transfer of genetic information. The occurrence of 
epigenetic changes has been frequently reported in co-culture conditions. An 
explanation of this phenomenon is the transfer of genetic information between cells. We 
demonstrated that MVs derived from human endothelial progenitors (EPC) can also act 
as a vehicle for mRNA transport among cells (Deregibus et al., 2007). MVs generated 

from EPC were incorporated in normal endothelial cells by interaction with 4- and 1-
integrins expressed on their surface and activated an angiogenic program. Besides 
mRNA, MVs may transfer microRNAs (miRNA) to target cells (Yuan et al., 2009). Since 
miRNAs are naturally occurring regulators of protein translation, this observation 
opens the possibility that stem cells can alter the expression of genes in neighbouring 
cells by transferring microRNAs contained in MVs. We recently characterized miRNA 
shuttled by MVs released by human adult mesenchymal stem cells (MSCs) (Collino et 
al., 2010). Hierarchical clustering and similarity analysis of microRNAs showed that 
microRNA compartmentalization and secretion by MVs are both highly regulated 
processes. 

5.2 Microvesicles in CKD 

The biologic role of MVs and their implication in pathophysiology depends on the several 

factors namely the cell of origin, their phenotype, the genetic material (mRNA and 

microRNA) and the target cells. In CKD, several studies have accrued evidence that MVs or 

MPs could participate to the vascular damage and the evolution of the atherosclerotic lesion.  

5.2.1 Circulating platelet-derived microparticles (PMPs) with procoagulant activity are 

considered a potential cause of thrombosis in uremic patients undergoing HD (Ando et 

al., 2002). Elevated counts of circulating PMPs have been reported in association with 

thrombotic disorders, such as cerebrovascular accidents (Katopodis et al., 1997), 

unstable angina (Katopodis et al., 1997), and acute myocardial infarction (Gawaz et al., 

1996). In addition, PMPs that adhered to vascular endothelium and leukocytes activate 

such cells and transport their chemical mediators to those cells, potentially leading to 

the development of thrombosis and atherosclerosis (Mallat et al., 1999, Barry et al., 

1997).  

5.2.2 Endothelial MVs (EMVs) - Treatment modalities that reduce the inflammatory 

potential of the cells originating MVs have interestingly been correlated with a 

decreased number of endothelial microparticles (Carracedo et al., 2005, Ramirez et al., 

2005). Circulating EMPs have recently been reported to correlate with impaired 

vascular function in HD patients (Faure et al., 2006). A recent study showed an increase 

in the percentage of CD14+CD16+ monocytes in CKD-NonD and HD patients. In PD 

patients, regardless of RRF, the percentage of CD14+CD16+ was similar to controls 

(Merino et al., 2010). It is interesting to note that HD patients displayed significantly 

higher apoptotic EMPs and VEGF levels than the two PD and CKD-non dialyszed 

groups. In contrast, there were no differences between CKD-NonD and PD groups. In 

CKD-non dialyszed and HD patients, the percentage of CD14+CD16+ was correlated 

with endothelial damage. It appears that PD, compared with HD, reduces but does not 

fully prevent the endothelial damage induced by uremia, in spite of presenting a 

microinflammatory status similar to that of the controls. The role of EMVs is still to be 

elucidated in the complex unbalance observed in CKD patients between circulating 

endothelial cells and endothelial progenitor cells.  
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5.2.3 MVs in treatment modalities  
Preliminary studies in our laboratory have shown an interesting trend in the reduction of 
total MVs in a cross-over clinical study when patients shifted from high-flux HD to on-line 
HDF (Figure 7).  
 

 

Fig. 7. Total MVs count in patients on maintenance HD. In a cross-over design, 8 patients 
were started on bicarbonate HD (black columns) and 8 patients on on-line HDF (grey 
columns). MVs were counted by cytofluorimetry. MVs were also characterized (data not 
shown) by the following specific markers: CD62P, CD41, CD42, CD31, for platelets; CD45, 
for leukocytes; CD31, CD146, CD144 for the endothelium: CD235 and CD242 (ICAM 4), for 
erythrocytes. 

More studies are needed to better assess the relevance of these observations and to better 

characterize the type and biological effects of the MVs. It is still to be fully elucidated 

whether MVs are a consequence or a cause of disease. Increasing evidence for their 

pathophysiologic role in other human diseases such as sepsis and tumors (Camussi et al., 

2011) is rapidly accruing. Many points require further investigation. i. The stimuli and the 

molecular pathways that regulate the assembly within MVs of the biological active 

molecules that they shuttle. ii. The stimuli that trigger their release. iii. The surface receptors 

that may confer selective specificity. iv. The full diagnostic potential of MVs in different 

pathological conditions. v. The strategy to inhibit formation or to remove from circulation 

potentially harmful MVs. The recognition of MVs has opened a new era and new 

perspectives of investigation also in biocompatibility of extracorporeal treatments. 

6. Conclusions 

The outlook of more biocompatible and physiological dialysis is today confronted with a 

older and sicker population in need of maintenance HD. The knowledge of biological 

mechanisms operating at the system level will be approached with the help of improved 

technologies hopefully able to reduce the deleterious effect of the repetitive contact with a 

foreign surface and to insure optimal performances for the elimination of small and middle 

molecule solutes. Advances in dialyzer membranes and geometries, as well as blood tubings 
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together with new concepts in machine technology have already shown their great potential  

to improve survival and cardiovascular stability.  

7. Conflict of interest  

Ciro Tetta and Emanuele Gatti are full-time employees of Fresenius Medical Care. 

8. Acknowledgement 

The authors thank Dr Sudhir Bowry for critically reviewing the manuscript. 

9. References 

Adam A, Cugno M, Molinaro G, Perez M, Lepage Y, & Agostoni A. (2002). Aminopeptidase 
P in individuals with a history of angio-oedema on ACE inhibitors. Lancet. 
359(9323):2088-9. 

Ando M, Iwata A, Ozeki Y, Tsuchiya K, Akiba T, &  Nihei H (2002). Circulating platelet-
derived microparticles with procoagulant activity may be a potential cause of 
thrombosis in uremic patients Kidney Int, 62:1757–1763 

Arenas MD, Niveiro E, Moledous A, Gil MT, Albiach B, & Carretón MA (2006) .Fatal acute 
systemic hypersensitivity reaction during haemodialysis. Nephrol Dial Transplant. 
21(10):2966-70  

Barret BJ. (2002). Reducing the burden of cardiovascular disease in patients on dialysis. Dial 
Transplant  31: 155–163  

Barry OP, Pratico D, Lawson JA, & FitzGerald GA (1997). Transcellular activation of 
platelets and endothelial cells by bioactive lipids in platelet microparticles. J Clin 
Invest 99: 2118-2127. 

Barry OP, Kazanietz MG, Praticò D, & Fitzgerald GA(1999). Arachidonic acid in platelet 
microparticles up-regulates cyclooxygenase-2-dependent prostaglandin formation 
via a protein kinase C/mitogen-activated protein kinase-dependent pathway. J Biol 
Chem 274: 7545-7556. 

Bhatt DL, & Topol EJ. (2002). Need to test the arterial Inflammation hypothesis. Circulation 
106:136–140. 

Bingel M, Lonnemann G, Shaldon S, Koch KM, & Dinarello CA. (1986). Human interleukin-1 
production during hemodialysis. Nephron. 1986;43(3):161-3 

Bradbury BD, Critchlow CV, Weir MR Stewart R, Krishnan M, & Hakim RH (2009). Impact 
of elevated C-reactive protein levels on Erythropoiesis-stimulating agent (ESA) 
dose and responsiveness in naemodialysis patients. Nephrol Dial Transplant 24: 919-
925.  

Camussi G, Deregibus MC, Bruno S, Grange C, Fonsato V, & Tetta C  (2011). Exosome / 
microvesicle - mediated epigenetic reprogramming of cells Am J Cancer Res 1(1):98-
110 

Canaud B, Bosc JY, Leray H, Stec F, Argiles A, Leblanc M, & Mion C.(1998). On line 
hemodiafiltration: State of the art. Nephrol Dial Transplant. 5:3–11 

Canaud B, Wizemann V, Pizzarelli F, Greenwood R, Schultze G, Weber C, & Falkenhagen D 
(2001). Cellular interleukin- 1 receptor antagonist production in patients receiving 
on-line haemodiafiltration therapy. Nephrol Dial Transplant. 16:2181–2187. 

Canaud B, Chenine L, Renaud S, & Leray H. (2011). Optimal therapeutic conditions for 
online hemodiafiltration. Contrib Nephrol. 168:28-38. 

www.intechopen.com



 
Progress in Hemodialysis – From Emergent Biotechnology to Clinical Practice 

 

108 

Cappelli G, Riccardi M, Perrone S, Bondi M, Ligabue G, & Albertazzi A (2006). Water 
treatment and monitor disinfection. Hemodialysis Int. 10, Suppl 1: S13–S18.  

Cocucci E, Racchetti G, & Meldolesi J (2008). Shedding microvesicles: artefacts no more. 
Trends Cell Biol 19: 43-51. 

Carracedo J, Ramirez R, Soriano S, Alvarez de Lara MA, Rodriguez M, Martin-Malo A, & 
Aljama P. (2005). Monocytes from dialysis patients exhibit characteristics of 
senescent cells: does it really mean inflammation? Contrib Nephrol. 149:208-18. 

Carracedo J, Merino A, Nogueras S, Carretero D, Berdud I, Ramírez R, Tetta C, Rodríguez 
M, Martín-Malo A, & Aljama P (2006). On-line hemodiafiltration reduces the 
proinflammatory CD14+CD16+ monocyte-derived dendritic cells: A prospective, 
crossover study. J Am Soc Nephrol. 17(8):2315-21. 

Claure-Del Granado R, Macedo E, Chertow GM, Soroko S, Himmelfarb J, Ikizler TA, 
Paganini EP, & Metha RL (2010).. Effulent volume in continuous renal replacement  
therapy overestimates the delived dose of dialysis. Clin J Am Soc Nephrol epub  
november 29,  

Collino F, Deregibus MC, Bruno S, Sterpone L, Aghemo G, Viltono L, Tetta C, & Camussi G 
(2010): Microvesicles derived from adult human bone marrow and tissue specific 
mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5: e11803. 

Craddock PR, Fehr J, Dalmasso AP, Brighan KL, & Jacob HS. (1977) Hemodialysis 
leukopenia. Pulmonary vascular leukostasis resulting from complement activation 
by dialyzer cellophane membranes. J Clin Invest. 59(5):879-88. 

Culleton BF, Larson MG, Wilson PW, Evans JC, Parfrey PS, & Levy D. (1999). 
Cardiovascular disease and mortality in a community- based cohort with mild 
renal insufficiency. Kidney Int  56: 2214–2219  

Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C, Biancone L, & Bruno S 
(2007). Endothelial progenitor cell derived microvesicles activate an angiogenic 
program in endothelial cells by a horizontal transfer of mRNA. Blood. 110: 2440-
2448. 

Diamant M,, Tushuizen ME, Sturk A, & Nieuwland R (2004). Cellular microparticles: new 
players in the field of vascular disease? Eur. J. Clin. Invest. 34: 392-401. 

Donadio E, Piccolomini F, Dimuccio V, Felicioli A, Balestreri E, Cianti R, Armini A, Bini L, 
Felicioli R, & Donadio C (2009). Serum albumin fragmentation in end-stage renal 
disease patients: a pilot study. Clin Chem Lab Med. 47(11):1373-9. 

Kaysen GA (2002). Role of inflammation and its treatment in ESRD patients. Blood Purif. 
20:70–80 

Ebo DG, Bosmans JL, Counttenye MM, & Stevens WJ. (2006) Haemodialysis–associated 
anaphylactic and anaphylactoid reactions. Allergy 61:211–220. 

Facler OT, & Peterlin BM. Endocytic entry of HIV-1 (2000). Curr Biol  10: 1005-1008. 
Faure V, Dou L, Sabatier F, Cerini C, Sampol J, Berland Y, Brunet P, & Dignat-George F 

(2006). Elevation of circulating endothelial microparticles in patients with chronic 
renal failure. J Thromb Haemost. 4(3):566-73. Epub 2005 Dec 23. 

Fevrier B, Vilette D, Archer F, Loew D, Faigle W, Vidal M, Laude H, & Raposo G. (2004). 
Cells release prions in association with exosomes. Proc. Natl Acad Sci USA 101: 9683-
9688. 

Fiore GB, & Ronco C. (2007) Principles and practice of internal hemodiafiltration. Contrib 
Nephrol. 158:177-84.  

Fischer KG. (2007). Essentials of anticoagulation in hemodialysis. Hemodial Int. 11(2):178-89. 
Foley RN, Parfrey PS, & Sarnak MJ (1998). Clinical epidemiology of cardiovascular disease 

in chronic renal failure. Am J Kidney Dis. 32(Suppl 5):S112–S119. 

www.intechopen.com



 
The Evolution of Biocompatibility: From Microinflammation to Microvesiscles 

 

109 

Foley RN (2004). Cardiac disease in chronic uremia: can it explain the reverse epidemiology 
of hypertension and survival in dialysis patients? Semin Dial  17: 275–278  

Hess C, Sadallah S, Hefti A, Landmann R, & Schifferli  JA  (1999). Ectosomes released by 
human neutrophils are specialized functional units. J Immunol 163: 4564-4573. 

Gawaz M, Neumann JF, Ott I, Schliessler A, &  Schoemig A (1996). Platelet function in acute  
myocardial infarction treated with direct angioplasty. Circulation.3493:229–237. 

George JN, Thoi LL, McManus LM, & Reinmann TA (1982). Isolation of human platelet 
membrane microparticles from plasma and serum. Blood 60:834-840. 

Go AS, Chertow GM, Fan D, McCulloch CE, & Hsu CY (2004). Chronic kidney disease and 
the risks of death, cardiovascular events, and hospitalization. N Engl J Med 351: 
1296–1305  

Greco V, Hannus M, & Eaton S (2001). Argosomes: a potential vehicle for the spread of 
morphogens through epithelia. Cell  106: 633-645. 

Katopodis JN, Kolodny L, Jy W, Horstman LL, Dearchena EJ, Tao JG, Haynes DH, & Ahn Ys 
(1997): Platelet microparticles and calcium hemostasis in acute coronary ischemias. 
Am J Hematol 33;54:95–101,  

Kessler M  on behalf of the EBPG Working Group (2002). Section IV. Dialysis fluid purity. 
European Best Practice Guidelines for Haemodialysis (Part 1). European Dialysis 
and Transplant Association. Nephrol Dial Transplant 17 Suppl 7:45.-54 

Kim HK, Song KS, Park YS, Kang YH, Lee YJ, Lee KR, Kim HK, Ryu KW, Bae JM, & Kim S. 
(2003). Elevated levels of circulating platelet microparticles, VEGF, IL-6 and 
RANTES in patients with gastric cancer: possible role of a metastasis predictor. Eur 
J  Cancer 39: 184-91. 

Krenning G, Dankers PY, Drouven JW, Waanders F, Franssen CF, van Luyn MJ, Harmsen 
MC, & Popa ER. (2009). Endothelial progenitor cell dysfunction in patients with 
progressive chronic kidney disease. Am J Physiol Renal Physiol. 296(6):F1314-22. 

Krieter DH, Lemke HD, & Wanner C (2008). A new synthetic dialyzer with advanced 
permselectivity for enhanced low-molecular weight protein removal. Artif Organs. 
32(7):547-54.  

Iero M, Valenti R, Huber V, Filipazi P, Parmiani G, Fais S, & Rivoltini L. (2008). Tumour-
released exosomes and their implications in cancer immunity. Cell Death Differ 15: 
80-88. 

Goodkin DA, Bragg-Gresham JL, Koenig KG, Woolfe RA, Akiba T, Andreucci VE, Saito A, 
Rayner HC, Kurokawa K, Port FK, Held PJ, & Young EW. (2003). Association of 
comorbid conditions and mortality in hemodialysis patients in Europe, Japan, and 
the United States; the Dialysis Outcomes and Practice Patterns Study (DOPPS). J 
Am Soc Nephrol  14:3270–3277  

Janowska-Wieczorek A, Majka M, Kijowski J, Baj-Krzyworzeka M, Reca R, Turner AR, 
Ratajczak J, Emerson SG, Kowalska MA, & Ratajczak MZ. (2001) Platelet-derived 
microparticles bind to hematopoietic progenitor cells and enhance their 
engraftment. Blood 98: 3143-3149 

Jimenez R, Carracedo J, Santamaría R, Soriano S, Madueño JA, Ramírez R, Rodríguez M, 
Martín-Malo A, & Aljama P. (2005). Replicative senescence in patients with chronic 
kidney failure. Kidney Int .Suppl. 99:S11-5. 

Johansson SG, Hourihane JO, Bousquet J, Bruijnzeel-Koomen C, Dreborg S, Haahtela T, 
Kowalski ML, Mygind N, Ring J, van Cauwenberge P, van Hage-Hamsten M, & 
Wüthrich B. (2001) EAACI (the European Academy of Allergology and Cinical 
Immunology) nomenclature task force. A revised nomenclature for allergy. An EAACI 
position statement from the EAACI nomenclature task force. Allergy 56:813–824. 

www.intechopen.com



 
Progress in Hemodialysis – From Emergent Biotechnology to Clinical Practice 

 

110 

Johnstone RM. (2006). Exosomes biological significance: A concise review. Blood Cells Mol 
Dis. 36: 315-321. 

Lagrand WK, Visser CA, Hermens WT, Niesssen HW, Verheught FW, Wolbink GJ, & Hack 
CE. (1999). C-reactive protein as a cardiovascular risk: More than an 
epiphenomenon? Circulation 100:96–102. 

Libby P, Ridker PM, & Maseri A. (2002). Inflammation and atherosclerosis. Circulation. 
3:187–197. 

Liuzzo G, Biasucci LM, Gallimore JR, Grillo RL, Rebuzzi AG, Pepys MB, & Maseri A. (1994) . 
The prognostic value of C-reactive protein and serum amyloid a protein in severe 
unstable angina. New Engl J Med. 331:417–424. 

Lonnemann G. (2004) When good water goes bad: How it happens, clinical consequences 
and possibile solutions. Blood Purif. 22:124–129.  

Morel O, Toti F, Hugel B, & Freyssinet JM (2004) Cellular microparticles: a disseminated 
storage pool of bioactive vascular effectors. Curr Opin Hematol. 11: 156-164. 

Mallat Z, Hugel B, Ohan J, Leseche G, Freyssinet JM, & Tedqui A. (1999) Shed membrane 
microparticles with procoagulant potential in human atherosclerotic plaques. A 
role for apoptosis in plaque thrombogenicity. Circulation 99:348–353. 

Martinez MC, Tesse A, Zobairi F, & Andriantsihohaina R. (2005). Shed membrane 
microparticles from circulating and vascular cells in regulating vascular function. 
Am J Physiol Hearth Circ Physiol 288: H1004-H1009. 

Merino A, Portolés J, Selgas R, Ojeda R, Buendia P, Ocaña J, Bajo MA, del Peso G, Carracedo 
J, Ramírez R, Martín-Malo A, & Aljama P. (2010) Effect of different dialysis 
modalities on microinflammatory status and endothelial damage. Clin J Am Soc 
Nephrol. 5(2):227-34.  

Meziani F, Delabranche X, Asfar P, & Toti F. (2010). Bench-to-bedside review: Circulating 
microparticles - a new player in sepsis? Critical Care 14:236-244. 

Miyamoto S, Kowalska MA, Marcinkiewicz C, Marcinkiewicz MM, Mosser D, Edmunds LH, 
& Niewiaroswski S. (1998) Interaction of leukocytes with platelet microparticles 
derived from outdated platelet concentrates. Thromb Haemost 80: 982-988. 

Morena M, Patrier L, Jaussent I, Bargnoux AS,  Dupuy AM, Badiou S, Leray-Moragues H, 
Klouche K, Canaud B,  & Cristol JP (2011). Reduced glomerular filtration rate, 
inflammation and HDL cholesterol as main determinants of superoxide production 
in non-dialysis chronic kidney disease patients. Free Radic Res. 45(6):735-45. 

Nicholls AJ. (1987) Hypersensitivity to haemodialysis: the United Kingdom experience. Artif 
Organs 11:87–89. 

Owen HG, Brecher ME (1994). Atypical reactions associated with use of angiotensin-
converting enzyme inhibitors and apheresis. Transfusion 94;  891–894,  

Panichi V, De Pietro S, Andreini B, Migliori M, Tessore V, Taccola D, Rindi P, Palla R, & 
Tetta C. (1998). Cytokine production in hemodiafiltration: A multicentre study. 
Nephrol Dial Transplant. 13:1452–1459. 

Panichi V, Migliori M, De Pietro S, Taccola D, Andreini B, Metelli MR, Giovannini L, & Palla 
R. (2000). The link of biocompatibility to cytokine production. Kidney Int. 59, Suppl 
76: 96–103. 

Panichi V, Tetta C, Rindi P, Palla R, & Lonnemann G. Plasma C-reactive protein is linked to 
ackfiltration associated interleukin 6 production. ASAIO J. 1998; 744: M415–M417. 

Panichi V, Maggiore U, Taccola D, Migliori M, Rizza GM, Consani C, Bertini A, Sposini-
Garcia R, Rindi P, Palla R, & Tetta C. (2004). Interleukin-6 is a stronger predictor of 
total and cardiovascular mortality than C-reactive protein in hemodialysis patients. 
Nephrol Dial Transplant 19:1154-60. 

www.intechopen.com



 
The Evolution of Biocompatibility: From Microinflammation to Microvesiscles 

 

111 

Panichi V, Rizza GM, Paoletti S, Bigazzi R, Aloisi M, Barsotti G, Rindi P, Donati G, Antonelli A, 
Panicucci E, Tripepi G, Tetta C,  & Palla R; RISCAVID Study Group (2008) Chronic 
inflammation and mortality in haemodialysis: effect of different renal replacement 
therapies. Results from the RISCAVID study. Nephrol Dial Transplant. 23(7):2337-43. 

Panichi V, Rosati A, Bigazzi R, Paoletti S, Mantuano E, Beati S, Marchetti V, Bernabini G, Grazi 
G, Rizza GM, Migliori M, Giusti R, Lippi A, Casani A, Barsotti G, & Tetta C; on behalf 
of the RISCAVID Study. (2011). Group.Anaemia and resistance to erythropoiesis-
stimulating agents as prognostic factors in haemodialysis patients: results from the 
RISCAVID study. Nephrol Dial Transplant. Feb 16. [Epub ahead of print] 

Pascual M, Schifferli JA. (1993). Adsorption of complement factor D by polyacrylonitrile 
dialysis membranes. Kidney Int. 43(4):903-11. 

* Parfey PS, & Foley RN. (1999) The clinical epidemiology of cardiac disease in chronic renal 
failure. J Am Soc Nephrol. 10:1606–1615. 

Pizzarelli F, Cerrai T, Dattolo P, Tetta C, & Maggiore Q. (1998) Convective treatments with 
on line production of replacement fluid: A clinical experience lasting 6 years. 
Nephrol Dial Transplant. 13:363–369. 

Polgar J, Matuskova J, & Wagner DD. (2005) The P-selectin, tissue factor, coagulation triad. J 
Thromb Haemost; 3: 1590-1596. 

* Poothullil J, Shimizu A, Day RP, & Dolovich J. (1975) Anaphylaxis from the product(s) of 
ethylene oxide gas. Ann Intern Med 82:58–60. 

Quah BJ, Barlow VP, McPhun V, Matthaei KI, Hulett MD, & Parish CR. (2008). Bystander B 
cells rapidly acquire antigen receptors from activated B cells by membrane transfer. 
Proc Natl Acad Sci USA 105: 4259-4264. 

Ramirez R, Carracedo J, Berdud I, Carretero D, Merino A, Rodríguez M, Tetta C, Martín-
Malo A, & Aljama P. (2006). Microinflammation in hemodialysis is related to a 
preactivated subset of monocytes. Hemodial Int., Suppl 1:S24-7. 

Ramirez R, Carracedo J, Merino A, Nogueras S, Alvarez-Lara MA, Rodríguez M, Martin-Malo 
A, Tetta C, & Aljama P. (2007) Microinflammation induces endothelial damage in 
hemodialysis patients: the role of convective transport. Kidney Int. 72(1):108-13. 

Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, & Ratajczak MZ. (2006) 
Membrane-derived microvesicles: important and underappreciated mediators of 
cell-to-cell communication. Leukemia; 20: 1487-1495. 

* Rayner HC, Pisoni RL, Bommer J, Canaud B, Hecking E, Locatelli F, Piera L, Bragg-
Gresham JL, Feldman HI, Goodkin DA, Gillespie B, Wolfe RA, Held PJ, & Port FK. 
(2004). Mortality and hospitalization in haemodialysis patients in five European 
countries: results from the Dialysis Outcomes and Practice Patterns Study (DOPPS). 
Nephrol Dial Transplant. 19(1):108-20. 

Ramírez R, Carracedo J, Soriano S, Jiménez R, Martín-Malo A, Rodríguez M, Blasco M,  & 
Aljama P. (2005). Stress-induced premature senescence in mononuclear cells from 
patients on long-term hemodialysis. Am J Kidney Dis. 45(2):353-9. 

Recio-Mayoral A, Beneriee D, Streather C, & Kaski JC. (2011). Endothelial dysfunction, 
inflammation and atherosclerosis in chronic kidney disease - a cross-sectional study 
of predialysis, dialysis and kidney-transplantation patients. Atherosclerosis. Feb. 18 
[Epub ahead of print]. 

Ridker PM, Cushman M, Stampfer MJ, Tracy RP, & Hennekens CH.(1997). Inflammation, 
aspirin and the risk of cardiovascular disease in apparently healthy men. N Engl J 
Med. 336: 973–979. 

Ronco C. (2007) Fluid mechanics and crossfiltration in hollow-fiber hemodialyzers. Contrib 
Nephrol. 158:34-49. 

www.intechopen.com



 
Progress in Hemodialysis – From Emergent Biotechnology to Clinical Practice 

 

112 

Ross R. (1999) Atherosclerosis: An inflammatory disease. N Engl J Med. 340:115–126. 
Sarkar A, Mitra S, Mehta S, Raices R, & Wewers MD. (2009). Monocyte derived microvesicles 

deliver a cell death message via encapsulated caspase-1. PLoS One  4: e7140. 
Schindler R, Beck W, Deppisch R, Aussieker M, Wilde A, Goehl H, & Frei U. (2004). Short 

bacterial DNA fragments: Detection in dialysate and induction of cytokines. J Am 
Soc Nephrol. 15:3207–3214. 

Siekevitz P. (1972) Biological membranes: the dynamics of their organization. Annu Rev 
Physiol  34: 117-140. 

Singh AK, Coyne DW, Shapiro W, Rizkala AR. (2007). Predictors of the response to 
treatment in anemic haemodialysis patients with high serum ferritin and low 
transferring saturation. Kidney Int  71: 1163-1171.  

Stenvinkel P, Heinburger O, Paultre F, Diczfalusy U, Wang T, Berglund L, & Jogestrand T.. 
(1999). Strong associations between malnutrition, inflammation and atherosclerosis 
in chronic renal failure. Kidney Int  55: 1899-1911,  

Stenvinkel P. (2001). Malnutrition and chronic inflammation as risk factors for 
cardiovascular disease in chronic renal failure. Blood Purif. 19:143–151. 

Tetta C, Haeffner-Cavaillon N, Navino C, David S, Franceschi C, Mariano F, & Camussi G  
(1996). The role of platelet-activating actor in the biocompatibility of hemodialysis 
membranes. Adv Exp Med Biol. 416:243-8.  

* Tetta C, David S, Marcelli D, Cogliati P, Formica M, Inguaggiato P, & Panichi V. (2006). 
Clinical effects of online dialysate and infusion fluids. Hemodial Int 10: S60–S66 

Tetta C, Roy T, Gatti E, & Cerutti S. (2011). The rise of hemodialysis machines: new 
technologies in minimizing cardiovascular complications. Expert Rev. Cardiovasc. 
Ther. 9(2), 155–164. 

Tielemans C, Madhoun P, Lenaers M, Schandene L, Goldman M, Vanherweghem JL. (1990). 
Anaphylactoid reactions during hemodialysis on AN69 membranes in patients 
receiving ACE inhibitors. Kidney Int. 38(5):982-4.  

US Renal Data System. Excerpts from the USRDS 1997 annual data report. (1997) Am J 
Kidney Dis. 30:S1–S195. 

Vasan RS, Sullivan LM, Roubenoff R, Dinarello CA, Harris T, Benjamin EJ, Sawyer DB, 
Wilson PW, D’Agostino RB: Framingham Heart Study (2003). Inflammatory 
markers and risk of heart failure in erderly subjects without prior myocardial 
infarction: The Framingham Heart Study. Circulation 107:1486–1491. 

Vaslaki L, Karatzon A, Voros P, Maior L, Pethoe F, Ladanyi E, Weber C, Mitteregger R, & 
Falkengagen D. (2000). Can sterile and pyrogen-free on-line substitution fluid be 
rotuineley delivered? A multicentre study on the microbiological safety of on-line 
hemodiafiltration. Nephrol Dial Transplant. 15, Suppl 1: 74–78. 

Wratten ML, Tetta C, Ursini F, & Sevanian A. (2000). Oxidant stress in hemodialysis: 
prevention and treatment strategies. Kidney Int. Suppl. 2000, 76: S126-32. 

Wright S, Steinwandel U, & Ferrari P. (2010) Citrate anticoagulation during long-term 
haemodialysis. Nephrology (Carlton). Nov 3. [Epub ahead of print] 

Yuan A, Farber EL, Rapoport AL, Tejada D, Deniskin R, Akhmedov NB, & Farber DB. (2009). 
Transfer of microRNAs by embryonic stem cell microvesicles. PLoS One 4: e4722 

Ziouzenkova O, Asatryan L, Akmal M, Tetta C, Wratten ML, Loseto-Wich G, Jürgens G, 
Heinecke J, & Sevanian A. (1999). Oxidative cross-linking of ApoB100 and 
hemoglobin results in low density lipoprotein modification in blood. Relevance to 
atherogenesis caused by hemodialysis. J Biol Chem. 274(27):18916-24. 

Zwaal RF, Comfurius P, & Bevers EM, Scott syndrome, a bleeding disorder caused by 
defective scrambling of membrane phospholipids. Biochim Biophys Act 1636: 119-128. 

www.intechopen.com



Progress in Hemodialysis - From Emergent Biotechnology to

Clinical Practice

Edited by Prof. Angelo Carpi

ISBN 978-953-307-377-4

Hard cover, 444 pages

Publisher InTech

Published online 07, November, 2011

Published in print edition November, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Hemodialysis (HD) represents the first successful long-term substitutive therapy with an artificial organ for

severe failure of a vital organ. Because HD was started many decades ago, a book on HD may not appear to

be up-to-date. Indeed, HD covers many basic and clinical aspects and this book reflects the rapid expansion of

new and controversial aspects either in the biotechnological or in the clinical field. This book revises new

technologies and therapeutic options to improve dialysis treatment of uremic patients. This book consists of

three parts: modeling, methods and technique, prognosis and complications.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ciro Tetta, Stefano Maffei, Barbara Cisterna, Valentina Fonsato, Giorgio Triolo, Giuseppe Paolo Segoloni,

Giovanni Camussi, Maria Chiara Deregibus and Emanuele Gatti (2011). The Evolution of Biocompatibility:

From Microinflammation to Microvesiscles, Progress in Hemodialysis - From Emergent Biotechnology to

Clinical Practice, Prof. Angelo Carpi (Ed.), ISBN: 978-953-307-377-4, InTech, Available from:

http://www.intechopen.com/books/progress-in-hemodialysis-from-emergent-biotechnology-to-clinical-

practice/the-evolution-of-biocompatibility-from-microinflammation-to-microvesiscles



© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.


