
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

4

Question-Answer Shell
for Personal Expert Systems

Petr Sosnin
Ulyanovsk State Technical University,

Russia

1. Introduction

In the near future a ubiquitous computerization of all spheres of the modern human activity,

including various forms of the collective activity, will lead to conditions of a life when all

population of the Earth will be involved in interactions with computers. Therefore, in usages

of computers by the person it is necessary to aspire to a naturalness of such attitudes. The

naturalness should be achieved in that sense that any usage of a computer should be

embedded in the activity in accordance with its essence.

Any activity is a naturally-artificial process created on the base of a definite set of precedents

the samples of which are extracted from the appropriate experience and its models. Such

role of precedents is explained with the help of the following definition: “précédents are

actions or decisions that have already happened in the past and which can be referred to

and justified as an example that can be followed when the similar situation arises”

(Precedent, 2011).

Accessible samples of precedents are necessary means for the activity but in a general case

such means can be insufficiently. If absent means will be found and the necessary activity

will be created then the new sample of precedent can be built for the reuse of this activity.

Hence, told above entitles to assert that “the creation and reuse of precedents defines the

essence of the human activity.”

Each unit of the fulfilled activity must be modeled by the useful way, be investigated and be

coded for its reuse as the precedent. In the life all these actions are similar to creating the

programs for the building of which a natural language in its algorithmic usage is applied.

Moreover such programs as behavioral schemes are built for tasks which have been solved

for already created units of the activity. So, any sample of the precedent can be understood

as a program which is coded previously at the natural language (in its algorithmic usage) for

the task aimed at the creation of the definite activity unit.

Such understanding of precedents samples allows assert, that any person is solving

continuously tasks, programming them in a natural language because the human life is

based on precedents. Any person has an experience of programming in a natural language

in its algorithmic usage. Let’s name such possibility of programming as “a natural

programming of a human” (N-programming). Any human has a personal ability of the N-

programming the experience of which depends on a set of precedents which have been

mastered by the person in the own life.

www.intechopen.com

Expert Systems for Human, Materials and Automation

52

One can count any human as an expert who owns the valuable information about personal

precedents. Such information can be extracted from the human by the same human and

can be used for creating the knowledge base of an expert system built by the human for

the own usage. In the described case one can speak about the definite type of expert

systems which will be named below as personal expert systems (or shortly be denoted as

ESP).

The definite ESP should be created by the person who fulfills roles of the expert, developer

and user of such computer assistant. Such type of expert systems should have the

knowledge base containing the accumulated personal experience based on precedents. To

create the own personal expert system the human should be provided simple, effective

and powerful instrumental means. The Question-Answer shell (QA-shell) which is

described in this chapter is a system of such means. QA-shell is built on the base of the

instrumental system WIQA (Working In Questions and Answers) previously developed

for conceptual designing of software intensive systems.

A very important specificity of QA-shell and ESP is a pseudo-programming (P-

programming) which is used for the creation of precedents samples and also for the work

with them in the real time. The language LPP of the P-programming is similar to the

natural language in its algorithmic usage. Therefore the P-programming is similar to the

N-programming and such similarity essentially simplifies its application in the creation of

precedents samples and their use. This specificity takes into account the ordinary human

who have decided to use the computer for solving own tasks based on precedents.

The next important specificity is connected with executors of P-programs. There was a

time when computers have not been existed and when N-programs of precedents were

being executed by certain persons (by intellectual processors or shortly by I-processors).

Computer programs (or shortly K-programs) are being executed by computer processors

(or shortly K-processors). Any P-program in the ESP is being executed by I-processor and

K-processor collaboratively.

The last important specificity is the “material” which is used by the human for writing

data and operators of the P-programs on its “surface”. This “material” consists of

visualized forms for data originally intended for modeling questions and answers in

processes of problem-solving. The initial orientation and features of such type of data are

being inherited by data and operators of P-programs and for this reason they are declared

as P-programs of the QA-type. In further text the abbreviation of QA will use frequently

to emphasize the importance of question(s) and answer(s) for the construction(s) labeled

by QA.

2. Question-answering and programming in subject area of expert systems

2.1 Logical framework for precedent model
The use of the precedent as a basic unit of the human interaction with own surrounding

demands to choose or build adequate patterns for precedents representations. Appropriate

patterns should provide the intellectual mastering of precedents and their natural using by

the ordinary person.

In accordance with the author opinion the necessary model for the definite precedent can be

created on the base of the following logical framework:

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

53

This framework is a human-oriented scheme the human interaction with which activates the
internal logical process on the level of the second signal system in human brains. Such
logical processes have a dialog nature and for keeping the naturalness the interaction
processes outside brains should keep the dialog form also.
The logical framework is used in ESP for creating the precedents models and keeping
them in the knowledge base. This fact can be used for indicating the difference between
the suggested ESP and known types of ES. It also distinguishes ESP from systems which
use case based reasoning (CBR). Measured similarity between cases and the access to
them in the form of “cases recognition” are the other differences between CBR-systems
and ESP.
Let’s notice that any ES is a kind of rules-based systems any of which are “software
systems that applies the rules and knowledge defined by experts in a particular field to a
user’s data to solve a problem”. Any precedent model can be understood as a rule for its
owner and it opens the possibility to define the class of personal expert systems. The shell
which is described below helps humans in the creation of expert systems belonged to this
class.

2.2 Question-answering in creation and usage of precedents samples
There are three ways for the appearance of the precedent sample. The first way is connected
with the intellectual processing of the definite behavior which was happened in the past but
was estimated by the human as a potential precedent for its reuse in the future. The second
way is the creation of the precedent sample in parallel with the its first performance and the
third way is an extraction of the precedent model from another’s experience and its models.
In any of these cases if the precedent sample is being created as fitting the logical framework
and filling it by the appropriate content then the human should solve the retrieval and
extraction tasks of the necessary information from useful sources.
Named tasks of the retrieval and extraction should be solved in conditions of the chosen
framework and the usage of diverse informational sources including different kinds of texts
and reasoning. In the solving of this task the important role is intended for the mental
reasoning. Taken into account all told above the question-answering has been chosen by
author for retrieval and extraction of informational elements needed in the creation of
precedents samples. Question-Answering (or shortly QA) is a type of “an information
retrieval in which a direct answer is expected in response to a submitted query, rather than a
set of references that may contain the answers”(Question, 2011) .
There were many different QA-methods and QA-systems which have been suggested,
investigated and developed in practice of the informational retrieval and extraction
(Hirschman, 2001). Possible ways in the evolution of this subject area were marked in the

 Name of precedent Pi:

 while [logical formulae (LF) for motives M ={Mk}]
 as [LF for aims C = {Cl}]
 if [LF for precondition U'= {U’n}],
 then [plan of reaction (program) rq],

 end so [LF for postconditions U" = {U”m}]

 there are alternatives {Pj(rp)}.

c

h

o

i

c

e

www.intechopen.com

Expert Systems for Human, Materials and Automation

54

Roadmap Research (Burger, 2001) which is actual in nowadays. This research has
defined the system of concepts, classifications and basic tasks of this subject area.
Applying concepts of the Roadmap Research we can assert that QA-means which are
necessary for working with precedents samples should provide the use of “interactive QA”
and “advanced reasoning for QA” (Question, 2011). In interactive QA “the questioner might
want not only to reformulate the question, but (s)he might want to have a dialogue with the
system”. The advanced reasoning is used by questioner who „expects answers which are
outside the scope of written texts or structured databases“ (Question, 2011). Let’s remind,
that one of informational sources for the creation of precedents samples is mental reasoning
in dialog forms.
QA-means are effective and handy instruments not only for the creation of the precedents
samples but for their use also. Sequences of questions and answers which had been used in
the creation stage of the precedent can be used for the choice of the necessary precedent
sample.

2.3 Programming in the work with precedents samples
The important component of logical framework is a reaction plan of the human behavior
which should be coded in the precedent sample for the future reuse. Before the appearance
of computers and frequently nowadays the ordinary human used and uses the textual forms
for registering plans of reactions. If the plan includes conditions and-or cycles then, its text is
better to write in pseudo-code language similar to the natural language in its algorithmic
use. In this case the reaction plan will have the form of P-program.
The reaction plan in the form of P-program is being created as a technique for solving the
major task of the corresponding precedent. The other important task is connected with the
search of the suitable sample including its choice in a set of alternatives.
In ESP both of these tasks should be solved and P-programmed by the human for their reuse
in the future with the help of computer by the same human. Hence, a set of effective and
handy means should be included to ESP for writing and fulfilling QA-programs supporting
the work of the human with precedents samples.
There is a feature of P-programs oriented on the work of the human with precedents and

their samples. As told above any P-program in ESP is being executed by I-processor and

K-processor collaboratively where the role of I-processor is fulfilled by the human. The

idea of the human model as I-processor is inherited by the author from a set of

publications (Card, 1983; Crystal, 2004) where described the model human processor

(MH-processor) as an engineering model of the human performance in solving the

different tasks in real time.

The known application of the MH-processor is Executive Process-Interactive Control (EPIC)

described detailly in (Kieras, 1997). Means of EPIC support the programming of the human

interaction with the computerized system in the specialized pseudo-language Keystrok

Level Model (KLM). A set of basic KLM actions includes the following operators: K - key

press and release (keyboard),P - Point the mouse to an object on screen, B - button press or

release (mouse), H - hand from keyboard to mouse or vice versa and others commands.

Means of I-processor should support QA-interactions of the human with the precedent

reuse process. The major part of such interactions consists of the execution of P-programs

embedded to the current precedent sample. The main executor of P-programs is the human

who fulfills the role of I-processor.

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

55

2.4 Co-ordination of I-processor and K-processor
MH-processor is defined (Card, 1983) as a system of specialized processors which solve the

common task collaboratively. One of these processors is a cognitive processor providing

mental reasoning the basic form of which is an implicit dialog (question-answer reasoning,

QA-reasoning). Let’s count that I-processor is similar to MH-processor and includes the

cognitive component with its named natural functions.

It is easy to agree that for saving the naturalness the implicit QA-reasoning as a natural form

of the cognitive processes inside I-processor should “be translated” and transferred to K-

processor as an obvious QA-reasoning. Hence, K-processor should include the embedded

QA-processor supporting the work with obvious QA-reasoning (or the work with question

and answers). Such combining of processors provide their natural coordination in the

collaborative work managed by the human reasoning.

Combining of processors is schematically presented in Fig. 1 which is inherited and

adapted from Fig. 1 of the ACM SIGCHI Circulium for Human-Computer Interaction

(Hewett, 2002).

computer

human

questions

answers

I-processor

“questions

“answers”

QA- processor

Fig. 1. General question-answer scheme of CHI

In scheme the question is understood by the author as the natural phenomenon which

appears at the definite situation when the human interacts with the own experience (own

precedents). In this case the „question“ is a symbolic (sign) model of the appropriate

question. Used understanding helps to explain the necessity of fitting the „question“ in QA-

processes. Implicit questions and answers exist in reality while „questions“ and „answers“

present them as sign models.

3. QA-processor and its applications

3.1 Conceptual solution of project tasks
The system named WIQA has been developed previously as QA-processor for the

conceptual designing of the Software Intensive System (SIS) by the method of conceptual

solving the project tasks.

In most general case the application of a method begins with the first step of QA-

analyzing the initial statement of a development task Z*(t0). In special cases of its

application the initial statement of a task is included in a task tree corresponded to the

design technology with which it will be used. The dynamics of the method is presented

schematically in Fig.2.

www.intechopen.com

Expert Systems for Human, Materials and Automation

56

Fig. 2. Dynamics of conceptual solving the project task

The system of tasks of conceptual designing the SIS is being formed and solved according to
a method of the stepwise refinement. The initial state of the stepwise refinement is defined
by the system of normative tasks of the life cycle of SIS which includes the main project task
Z*(t0). The base version of normative tasks corresponds to standard ISO/IEC 12207.
The realization of the method begins with the formulation of the main task statement in the
form which allows starting the creation of the prime conceptual models. The initial
statement of the main task formulates as the text Z*(t0) which reflects the essence of the
created SIS without details. Details of SIS are being formed with the help of QA-analysis of
Z*(t0) which evolves the informational content of the designing and includes subordinated
project tasks (Z1(t1), …, ZI,k(tn), …, ZJ,r(tm)) in the decision of the main task.
The detailed elaboration of SIS forms the system of tasks which includes not only the project
tasks connected with the specificity of SIS, but also service tasks, each of which is aimed at
the creation of the corresponding conceptual diagram or document. The solutions of project
and service tasks are chosen from libraries of normative conceptual models {Mk} and service
QA-techniques {QA(Mki)}.
During conceptual decision of any task (included in a tasks tree of the SIS project) additional
tasks can be discovered and included to the system of tasks as it shown in Fig. 3. The tasks
tree is a dynamic system which is evolved iteratively by the group of designers. The step-
wise refinement is used by any designer who fulfils QA-analysis and QA-modeling of the
each solved task. General conceptual decision integrates all conceptual decision of all tasks
included in a tasks tree of the project.

Libraru of models {MKj}

Initial
statement of

Z*(t0)

Library of models {QA(MKj)}

Z1(t1)

Z11

Z12

Z1m

Zp1

Z2n

Z22

Z21

Z2

Z1

Z

Zp

Zp2

Zpr

Q11

Q12

Q1m

Qp1

Q2n

Q22

Q21

Q2

Q1 A1

A11

A12

A1m

A21

A22

A2n

Ap1

Ap2

Apr

Q

A2

Qp Ap

Qp2

Qpr

Analysis

Transformation

Representations

Visualization

Figure 2. Logical view

Result of decision =
conceptual project

…
ZJ.r(tm)

ZI.k(tn)
…

Decision process

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

57

Fig. 3. Task tree of development process

The conceptual solution is estimated as the completed decision if its state is sufficient for the

successful work at the subsequent development stages of SIS. The degree of the sufficiency

is obviously and implicitly checked. Useful changes are being added for achieving the more

adequate conceptual representation of SIS.

Thus, the conceptual solution of the main project task is defined as a system of conceptual

diagrams with their accompanied descriptions at the concept language the content of which

are sufficient for successful coding of the task solution. Which conceptual diagrams are

included to the solution depends on the technology used for developing the SIS.

As a related works which are touched QA-reasoning, we can mention the reasoning in the

“inquiry cycle” (Potts, 1994) for working with requirements, “inquiry wheel” (Reiff, 2002)

for scientific decisions and “inquiry map” (Rosen, 2008) used for the education aims. Similar

ideas are used in the special question-answer system which supports the development of SIS

(Henninger, 2003). The typical schemes of reasoning for SIS development are presented in

(Bass, 2005), in (Yang, 2003) reasoning is presented on seven levels of its application together

with the used knowledge and in (Lee, 2000) model-based reasoning is presented as useful

means for the software engineering.

3.2 Question-answering in WIQA
The conceptual solution of any project task is based on QA-analysis and QA-modeling. QA-
analysis provides the extraction of questions from the task statement and searching and
formulating the answers on them. QA-modeling helps to combine questions and answers in
QA-model of the task and its parts and for checking them on the correctness and conformity.

Z11

Z12

Z1m

Zp1

Z2n

Z22

Z21

Z2

Z1

Z*(t)

Zp

Zp2

Zpr

Iterative process

Tasks distribution
in designers group

Stepwise
refinement

+

+

+

QA-analysis and
modeling

www.intechopen.com

Expert Systems for Human, Materials and Automation

58

Named QA-actions are fulfilled by designer who translates internal QA-reasoning and
registers them in QA-database of WIQA. All these works are implemented with using the
visual forms presented in Fig. 4. This form fulfils the role of an inter-mediator between I-
processor and QA-processor. The language of WIQA is Russian therefore fields of the
screenshot are marked by labels.

Fig. 4. The main form of QA-processor.

The responsibility for evolving the tasks tree, defining tasks statements and building for

them adequate QA-models is laid on designers. For this work they use any informational

sources not only mental reasoning. One of these sources is a current content of tasks tree and

the current state of QA-model for each task. Therefore a set of commands are accessible to

designers for interactions with tasks, questions and answers which are visualized in the

main form. The additional commands are accessible via plug-ins of WIQA.

The usage of QA-model of task is a specificity of WIQA as a Question-Answering system.

Any QA-model is being formed as an example of QA-sample which is defined as a set of

architectural views on the materialization of the model. This set includes, for example, the

task view, logical-linguistic view, ontological view and views of other types each of which is

being opened for designers with the help of specialized plug-ins.

Question-answer models, as well as any other models, are created “for extraction of answers
to the questions enclosed in the model”. Moreover, the model is a very important form of
representation of questions, answers on which are generated during the interaction with the
model. Any designer can get any programmed positive effect with the help of the access to
the “answer” on the chosen question actually or potentially included in the appropriate
view of QA-model (Fig. 5).
The definite set of questions and answers are available to the designer via visual “side” of
QA-model named as QA-protocol the structure of which is presented in Fig. 6.
The field of QA-protocol is marked in the screenshot presented above. The designer can use
any visual task for the access to the corresponding QA-protocol. Further the designer can
use any question Qi or answer Aj for the access to the content of the corresponding QA-
model. One can interprets labels of Z-, Q- and A-elements at the main interface form as
visual addresses of corresponding Z-, Q- and A-objects.

Text expression
 (can be edited)

Person responsibility

Plug-ins

QA-protocol

Other
QA-protocol

Picture

Task tree

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

59

QA model views

?…
?… ?…

?…

?…

?… ?…

?…

?…

?…

?… S({Ai})

Design process

?…

?…

?…

?…

Views

Fig. 5. QA-model of the task

Q11
Q12

Q1m

Qp1

Q2n
Q22
Q21

Q2

Q1 A1
A11
A12

A1m

A21
A22
A2n

Ap1
Ap2
Apr

Q

A2

Qp Ap

Qp2

Qpr

Fig. 6. QA-protocol of QA-model

Any label has a unique code which includes a capital letter (Z, Q, A, or other) and its index
appointed automatically. Any capital letter is presented by the icon and indicates the type or
subtype of the visualized object. In WIQA there are means for creating the new icons.
The content of such interactive objects are not limited only their textual and graphical
expressions which are accessible to the designer via the main interface form. Other “sides”
of any QA-model and any interactive object of Z- or Q- or A-type are accessible via plug-ins
of WIQA.

3.3 Applications of WIQA
QA processor WIQA has been implemented in several versions. Elaborations of two last
versions were based on architectural views of QA-model and the usage of repository, MVC,
client-server and interpreter architectural styles. Moreover in created versions have been
used object-oriented, component-oriented and service-oriented architectural paradigms.
One of the last versions named as NetWIQA has been programmed on Delphi 6.0 and the
second version (named as WIQA.Net) has been created on C# at the platform of
Microsoft.Net 3.5.
The structure of WIQA, its functional possibilities and positive effects are described in a set
of publications of the author. The features of WIQA are reflected by its general components
structure presented in Fig 7 on the background of QA-model to emphasize that components
are working with the common QA-database.

www.intechopen.com

Expert Systems for Human, Materials and Automation

60

Z1m Z11 Z12 Zp1 Z2n Z22 Z21

Z2
Z1

Z*

Zp

Zp2 Zpr

Task tree

Q11 Q12 Q1m
Qp1

Q2n Q22 Q21

Q2 Q1

A1

A11 A12 A1m A21 A22 A2n Ap1 Ap2 Apr

Q

A2

Qp

Ap

Qp2 Qpr

Q11 Q12 Q1m
Qp1

Q2n Q22 Q21

Q2 Q1

A1

A11 A12 A1m A21 A22 A2n Ap1 Ap2 Apr

Q

A2

Qp

Ap

Qp2 Qpr

Q11 Q12 Q1m
Qp1

Q2n Q22 Q21

Q2 Q1

A1

A11 A12 A1m A21 A22 A2n Ap1 Ap2 Apr

Q

A2

Qp

Ap

Qp2 Qpr

QA-protocols

Q11 Q12 Q1m
Qp1

Q2n Q22 Q21

Q2 Q1

A1

A11 A12 A1m A21 A22 A2n Ap1 Ap2 Apr

Q

Qp

A2 Ap

Qp2 Qpr

Basic components of WIQA

QA-database
Editors: text
&graphics

Orgstructure Web-shell

Simulator of
expert system

Library of
patterns

Means of evolving
(components, data, agents)

Interpreter
pseudocodes

Visualization
means

Base of
Precedents

Plug-ins of Application

Fig. 7. Components structure of WIQA

As told above WIQA has been created for designing the SIS. The practice of this activity has
shown that WIQA can be used as a shell for the creation of some applications. By present
time on the basis of this shell, for example, the following applications have been elaborated:
DocWIQA for the creation and manage of living documents, EduWIQA for the automated
teaching, TechWIQA for technological preparation for production and EmWIQA for the
expert monitorng of the sea vessel surrounding.
The last application of WIQA is QA-shell for personal expert systems which is being
described in this chapter. This QA-shell inherits basic means of WIQA and evolves them by
necessary plug-ins supporting the activity based on precedents. Some inheritances were
described above and consequently some features of ESP are already presented.

4. Elaboration of expert system on the base of WIQA

4.1 Question-answer modeling the basic tasks of expert system
The description of ESP will be continued in the form of its elaboration in WIQA with the
inheritance basic means of WIQA, and also their necessary modifying and evolving. First
question is about QA-modeling the typical tasks of ES without their orientation to ESP. The
answer this question is connected with immersing the ES into WIQA which is schematically
presented in Fig. 8.
The “Block and line” view in Fig 8 is chosen specially, so that it corresponds to the typical
scheme of the ES. The structure of the ES is presented on the background of QA-model and
also as early for emphasizing the functional style of immersing the ES to its model of QA-type.
The corresponding task should be defined and programmed for each block of ES in its chosen
immersing. The tasks structure and the definition of each necessary task can be presented in
WIQA in the form of the tasks tree. Each task of this tree can be solved conceptually by the
step-wise refinement method. After that each built solution should be distributed between I-
processor and QA-processor and necessary computer components should be programmed. In
such approach to the elaboration of ES one can assert that possibilities of WIQA means are
used for the emulation of ES in WIQA as into the instrumental shell.

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

61

Z1m Z11 Z12 Zp1 Z2n Z22 Z21

Z2
Z1

Z*

Zp

Zp2 Zpr

Q11 Q12 Q1m Qp1
Q2n Q22 Q21

Q2 Q1

A1

A11 A12 A1m A21 A22 A2n Ap1 Ap2 Apr

Q

A2

Qp

Ap
Qp2 Qpr

Q11 Q12 Q1m Qp1
Q2n Q22 Q21

Q2 Q1

A1

A11 A12 A1m A21 A22 A2n Ap1 Ap2 Apr

Q

A2

Qp

Ap
Qp2 Qpr

Q11 Q12 Q1m Qp1
Q2n Q22 Q21

Q2 Q1

A1

A11 A12 A1m A21 A22 A2n Ap1 Ap2 Apr

Q

A2

Qp

Ap
Qp2 Qpr

Q11 Q12 Q1m Qp1
Q2nQ22Q21

Q2Q1

A1

A11 A12 A1m A21 A22 A2n Ap1 Ap2
Apr

Q

Qp

A2 Ap
Qp2 Qpr

QUESTION-ASNSWER ENVIRONMENT of WIQA

In
te

rf
ac

e

Forming the
knowledge base

Substantiation

Working
area

Interpreter
Knowledge

base

Fig. 8. Emulation of ES in WIQA

First all works named above have been fulfilled for the specialized ES with knowledge base
oriented on its filling by samples of precedents extracted from international rules for
collision avoidance at sea (COLREG-72) (Cockcroft, 2003). After that the work was repeated
creatively and QA-shell for ESP has been elaborated. Thus the elaboration of the own ESP is
implemented as creating the SIS of the ESP type.
The usage of Question-Answering is the main specificity of both elaborations which opens
for the human the right QA-access not only to the knowledge base (precedents base). The
human has the direct access to any task of the tasks tree of ES or ESP and therefore to any
QA-protocol or QA-model in any its state. The human can use such uniform access for the
analysis of solution processes in any interval of time and for modeling the evolving the
events in ES or ESP.

4.2 Composite structure of precedent samples
The creation of the new precedent sample Pi is a specially important for the human who
elaborates and uses the own ESP. Such creation is being implemented technologically as the
elaboration of SIS also but SIS of the precedent type. This point of view opens the possibility
for registering a set of elaboration states in life cycle of precedent (Fig. 9)

life cycle

 System of operations

 Name of precedent Pi:

 while [logica formulae (F) for motives M ={Mk}]

 as [F for aims C = {Cl}]
 if [F for precondition U'= {U’n}],
 then [plan of reaction (program) rq],
 end so [F for postconditions U" = {U”m}]

 there are alternatives {Pj(rp)}.

c
h
o
i
c
e

PT PG PL PG PE PI

Fig. 9. Presentations of precedent models on the line of its life cycle

www.intechopen.com

Expert Systems for Human, Materials and Automation

62

This set includes the following useful precedent models: PT - textual precedent description, PL
- logical (predicate) model, PG - graphical (diagrammatic) model, PQA - question-answer
model, PI - source program code and PE - executed code. All of these models are included to
the typical materialization of the precedent sample in the knowledge base (precedets base).
The composite structure of the precedent sample and the specificity of its production units
were chosen for their usage by I-processor firstly and for the usage by K-processor secondly.
The first version of the typical precedent sample which was used for coding the rules of
COLREG’72 is presented in Fig. 10. This version is included to QA-shell of ESP

 precedent sample Pi

Keys

Rating

P
T

P
QA

P
L

P
G

 P
I

P
E

Name

V

Fig. 10. Structure of the typical precedent sample in the knowledge base of EmWIQA

Precedents used in EmWIQA are accessible as for the user (sailor on duty) so for software
agents which are presenting the vessels in the definite sea area. The usage of the automatic
access of the vessel agent to the precedents sample in EmWIQA has led the author to the
second version of precedents samples which uses P-programming for the work with
conditions and reactions in samples of precedents in the form of software agents (Fig. 11).

In
p

u
t_

U
n

it
s_

1

In
p

u
t_

U
n

it
_

N

In
p

u
t_

U
n

it
_

2

O
u

tp
u

t_
U

n
it

_
1

O
u
tp

u
t_

U
n
it

_
M

O
u

tp
u

t_
U

n
it

_
2

Software agent (precedent sample Pi)

P
T

P
QA

P
L

P
G

P
I

P
E

 V

Fig. 11. Precedent sample as a sotware agent

In the second version any precedent sample is presented as an autonomous software unit
the access to which is being processed in accordance with conditions of the precedent
usage. It is supposed that conditions are defined and described by the person (human) in
text form in the natural language (from this point of text we will use the word „person“
instead the word „human“ to emphasize the context of the personal expert system).
The input text is being processed step by step by a set of input units (morfologic analyzer,
ontological filter,key words filter, compiler of condition). If the precedent sample has been
chosen and the corresponding precedent has been fulfilled then a set of output units can be
activate automated by the person and automatically for registering post-conditions (events
on blackboard, output data). The second version is included to QA-shell of ESP partially.

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

63

5. Pseudo-programming in WIQA

5.1 QA-approach to P-programming
The ordinary person in own ESP should have the possibility for programming the behavior
embedded to the precedent sample. As told above the best way for fulfilling such work is
the use of P-programming which is supported by handy automated means included to
WIQA.
Any P-program is better for understanding as the code of interactions of the person with the
corresponding precedent. In WIQA the normative way for interactions is QA-reasoning.
Hence is better to adapt the means of QA-reasoning for their use in P-programming. For
such adaptation it is necessary to find the ways for emulations (wuith the help of QA-
reasoning) data and operators of the appropriate language of P-programming.
Expressions of data and operators of P-programs by means of QA-reasoning is only one part
of QA-approach to P-programming. This part should be expanded by the interpreter which
transforms any written P-programs in collaborative actions of the person and computer.
 Both named parts of QA-approach to P-programming are defined and implemented with
their orientation on the ordinary person. To distinguish P-programs of such type from other
P-programs they have been named QA-programs.
The type of QA-data has been defined for expressions of data and operators by means of
QA- reasoning. Features of this type D will be opened on the example of its simple subtype
which consists of a “question” Qi and appropriate “answer” Ai which haven’t the
subordinated “questions” and “answers”. In this case the “name” and “value” of the
definite data Di are written in attributes of Qi and Ai which are intended for the textual
expression of Qi and Ai in QA-database. All other attributes Qi and Ai are inherited by Di .
The attributes structure of Di is presented in Fig.12 where not only attributes of QA-database
are indicated but additional attributes which are defined by the user also. In general case
QA-data are an association of simple data each of which is based on the corresponding pair
of Qi and Ai.

Textual expression Qi

Other attributes of
Qi in QA-database

Additional
attributes of user

Textual expression Ai

Other attributes of
Ai in QA-database

Additional
attributes of user

Di

Fig. 12. Attributes stricture of the simple QA-data

Means of additional attributes (AA) are embedded to WIQA for simplifying the elaboration
of new plug-ins. The mechanism of AA implements the function of the object-relational
mapping of QA-data to programs objects with planned characteristics. One version of such
objects is classes in C#. The other version is fitted for pseudo-code programming. The
scheme which is used in WIQA for the object-relational mapping is presented in Fig. 13.
The usage of the AA is supported by the specialized plug-ins embedded in WIQA. This
plug-ins helps the user to declare the necessary attribute or a group of attributes for definite
Z-, Q- and A-elements. In any time the user can view declared attributes for the chosen
element. Other actions with the AA must be programmed in C# or in the pseudo-code
language supported by WIQA.

www.intechopen.com

Expert Systems for Human, Materials and Automation

64

Virtual relation
(additional attributes)

server

client

Mechanisms of AA

Relations of
AA-plug-ins

Relation on QA-
database

A set of classes
(additional attributes)

Access to
QA-data

User or the new function for
automatic use

Fig. 13. Creation of additional attributes

Thus in Di the field for the textual expression of Qi can be used for writing the declaration of

the necessary element of data or operator of P-program. In this case the corresponding field

for the textual expression of Ai will be used for coding the “value” of data or the result of

the operator execution.

 Hence, any line of any P-program is possible to write on the “surface” of the corresponding

Q-element which can be interpreted as a “material for writing” with useful properties. This

“material” consists of visualized forms for writing the string of symbols. The initial

orientation and features of such type of strings are being inherited by data and operators of

P-programs and for this reason they are declared as P-programs of QA-type. In order to

separate this type of P-programs from P-programs of the others types, they will be named as

QA-programs. Such name of P-programs is rightful as the pseudo-code text of any line can

be qualified as a “question” on which the interpreter of QA-program builds the

corresponding “answer”.

5.2 Emulation of pseudo-code data
There are two types of lines of the source pseudo-code one of which intends for the data

emulation and another for the operator emulation. Let’s begin to describe the emulation of

QA-data.

First of all the AA-mechanism was used for the creation a subset of objects imitated the

typical data (such as scalars of traditional types, array, record, set and list) in the forms of

packed classes (Fig. 14).

For the declaration of variables the constructor of QA-data has been developed. This

constructor gives the possibilities to name QA-variable, to choose its type and to appoint the

initial value of the variable. The constructor can be used as the self-dependent utility or can

be embedded to the translator of pseudo-programs which is implemented as a compiler and

an interpreter (in two versions).

Let’s remember that any unit of QA-data is created for its use by I-processor firstly and for
the computer processor secondly. The visualized declaration of QA-data of the necessary
type and the touchable appointment of the necessary visual value take into account the
interactions possibilities of I-processor. But any declared QA-variable is accessible
automatically for the appropriate programs executed by the computer processor also.

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

65

 QA-variable

Basic attributes of
QA-data

Attributes
declared by user

Type of variable,
Attributes of type

Additional
attributes

Index(Address)
«Creator»
Time of changes
.....................
Type of visual icon

Name
Description
....................

Value

Necessary methods (operations)

Fig. 14. Imitation of variable

As told above there is a pssibility to create and use the icon for the necessary types or
subtypes for Z-, Q- and A-objects. QA-variables can be qualified as a definite type of Q- and
A-objects. For this type the icons for letters D and V instead of icons for letters Q and A are
created and used.
An example of keeping the array with elements of the integer type is presented in Fig. 8
where a set of additional attributes are used for translating the array declaration to
computer codes.

The other useful AAi

Additional attributes

Attribute Value

Type_data Array

Measure 1

Type_element integer

Number 5

QA-protocol

D1. Array & Name &
D1.1. Name[0]
V1.1. 12
D1.1. Name[0]
V1.1. 5
D1.1. Name[0]
V1.1. -7
D1.1. Name[0]
V1.1. 0
D1.1. Name[0]
V1.1. 22

Fig. 15. Declaration of array

Attributes which are assigned for the array are visually accessible for the person at any time
and can be used not only for translating. The person can add useful attributes to the set of
array attributes for example for describing its semantic features which will be checked in
creating and executing QA-program.
Let’s open some features of additional attributes for data declarations. For the chosen Q-
element the person can appoint not only the definite attribute AAm but the type Tk of AAm

with characteristics of type Tk and also a set of subordinated attributes {AAmn} with the

www.intechopen.com

Expert Systems for Human, Materials and Automation

66

appropriate type Tn for each of which. All these attributes and types with their values can be
used by the person in the creation of QA-programs. Such possibilities help the person in P-
programming the work with semantics of QA-variables. The named effects can be used in P-
programming the planned or real time work with pseudo-code operators also.

5.3 Emulation of pseudo-code operators
The second type of pseudo-code lines are intended for writing the operators. As it was for
QA-data we can define for operators the next interpretations:

• “question” is “ a symbolic presentation of an operator”;

• “answer” indicates by the special marker about “the fact that the operator was
fulfilled”.

In other words, the string of symbols for the “question” can be used for writing (in this
place) the operator in the pseudo-code form. The fact or the result of the operator execution
will be marked or registered in the string of the symbol for the “answer”. Such version of
emulating the operator has been named as QA-operator. The expression of any QA-operator
can be understood as the „question“ about the action which is coded. The execution af QA-
operator builds the „answer“ this „question“.
The next step in the emulation of operators is connected with taking into account types of
operators. For simulating the basic pseudo-program operators the next constructions were
chosen:

• Appoint: “question” → ”name of variable” and “answer” → “appoint the value;

• Goto:“question” → ”condition” and “answer” → “go to the definite operator of QA-
program;

• If: «question» → «condition» Then «answer» → «Execute the definite operator»;

• Command: “question” →” the command of QA-processor” and “answer” → “execute
the command”;

• Function: “question” → ”definition of function” and “answer” → “compute the value”;

• Procedure: “question” → ”definition of procedure” and “answer” → “execute the
procedure”.

• End: “question” → ”end of program” and “answer” → “finish the work with QA-
program”.

In named operators the following definitions of functions and procedures are used:

• any function is defined as the expression written in the P-language;

• any procedure is a typical sequence of actions which are accessible in QA-processor for
the execution by the person.

The set of basic operators includes traditional pseudo-code operators but each of which
inherits the feature of the appropriate QA-unit also. Hence, the basic attributes of QA-unit
and necessary additional attributes can be taken into account in processing the operator and
not only in its translation. In order to underline the specificity of operators emulation they
will be indicated as QA-operators.
In pseudo-programming languages a set of basic operators is being expanded usually. In the
described case the expansion includes cycle-operators such as «for», "while-do" and «do-

until». Emulations of QA-data and QA-operators are implemented in WIQA and provide
the creation of pseudo-code programs for different tasks.
As for QA-variables the special icons for letters „O“ (for operator) and „E“ (is executed)
have been created and used instead icons for letters „Q“ and „A“. The person can defined

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

67

and labeled subtypes of QA-operators. The person can appoint additional attributes for any
QA-operator and such attributes can be used obviously in the text of QA-program, for
example, for operations with comments included to QA-program lines.

6. Specimens of QA-programs

6.1 Types of QA-programs
Any QA-program creates for the division of the problem-solving process among the person

an computer. In this case the division is presented in the form of the source pseudo-code the

interactions with which are used as the person so the computer. The definite task of human-

computer interactions can be solved with the help of its QA-programming.

 But interactions on the base of QA-programs have the additional features. These features

are implemented in interactions of persons with Z-, Q- and A-objects which are used for

registering the lines of pseudo-code source of QA-programs. As told above such interactive

objects open very useful positive effects for persons.

Both named features define the essence of QA-programming for I-processors firstly and for

computer processors secondly. The basic aim of the interaction is the access to the person

experience in the precedents forms for its inclusion to the problem-solving processes.

The structure of any precedent includes a condition part and a part of a reaction each of

which should be QA-programmed. The value “truth” in the estimation of the conditional

part opens the access to the execution of the appropriate reaction. Therefore QA-programs

for estimating the conditions of precedents and QA-programs for executing the reaction part

of precedents are two basic types of QA-programs.

But as told above, some QA-programs can be written for their translating and executing as

computer programs. Some of such QA-programs can be created for supporting the work

with “precedents” in the definite application. The system of QA-programs was created by

author for the collision avoidance expert system of the sea vessel.

QA-programs, which are oriented on the computer execution, are useful in cases when the

direct access to the visualized data is profitable for example for developers of SISs or for

their users (documenting, decision-making, expert estimating and other tasks). Such

programs are suitable when the library of QA-templates (not precedents samples) can be

created for a set of typical tasks solving in SISs. The possibility of working with QA-

templates and the library of templates are included to WIQA.

For the real time working of I-processor with precedents the following QA-program scheme

is useful:

QA-PROGRAM_1(condition for the access to the precedent):
D1. Variable V_1 / Comment_1?
V1.Value of V_1.
D2. Variable V_2 / Comment_2?
V2. Value of V_2.
……………………………………………
DN. Variable V_M / Comment_M?
VN. Value of V_M.
OJ. F = Logical expression (V_1, V_2, …, V_M)?
AJ. Value of Expression.
End.

www.intechopen.com

Expert Systems for Human, Materials and Automation

68

It is necessary to notice that the person can build or to modify or to fulfill (step by step) the

definite example of this program in the real time work with the corresponding precedent

which, it may be, the person creates. In presented typical scheme the logical expression is

defined for the function F.

The next typical scheme reflects the work with techniques programmed as QA-

procedures:

QA-PROGRAM_2 (technique for the typical task):

P1.K_i, K_j, …, PL_k ?

E1. *

P2. K_m, QA-P_n, …, K_q?

E2.*

………………………………

PN. K_s, Pl_t, …, QA-P_v?

EN. #

End.

The program text includes the symbolic names K_x and Pl-y for the Command and

Plug-ins of WIQA and QA-P_z for QA-program written by means of WIQA. It is

necessary to notice that all names of the types K_x, Pl-y and QA-P_z are indicated

positions on the monitor screen for initiating the actions by touch of the person. In this

typical scheme the symbols “*” and “#” (as “yes” and “no”) indicate the facts of the

execution for operators.

The following fragment of the Outlook reset actions demonstrates (without E-units) one

type of QA-procedures:

P1. Quit all programs.

P2. Start On the menu Run, click.

P3. Open In the box regedit, type, and then OK the click.

P4. Move to and select the following key:

HKEY_CURRENT_USER/Software/Microsoft/Office/9.0/Outlook/

P5. In the Name list, FirstRunDialog select.

P6. If you want to enable only the Welcome to Microsoft Outlook greeting, on the

Edit menu Modify, click the type True in the Value Data box, and then OK the

click.

P7. If you also want to re-create all sample welcome items, move to and select the

following key:

HKEY_CURRENT_USER/Software/Microsoft/Office/9.0/Outlook/Setup

 P8. In the Name list, select and delete the following keys: CreateWelcome First-

Run

P9. In the Confirm Value Delete dialog box click Yes , for each entry.

P.10. On the Registry menu, click Exit,.

P11. End.

This type provides the work of the person with service techniquea of the definite

application. WIQA and QA-shell are examples of such application. About three hundred

typical techniques are implemented as QA-programs for designing the SISs with

instruments of WIQA. A half of these QA-programs are the guide type. To remember such

(or more) quantity of QA-programs are impossile. Therefore all typical QA-programs

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

69

are kept in the special library. Any QA-program of this library is kept in the special area

of QA-database and registered in its catalog which is visually accessible to the person.

Let’s notice that the greater part of WIQA techniques are being inherited by QA-shell for

ESP.

If the person needs to use the typical QA-program (needs to solve the typical task with QA-

model implemented as QA-program) the person extracts the typical QA-program from the

library, creates the new task, includes the task to the tasks tree and after such actions the

person can start to solve the task (to execute the corresponding QA-program).

The reality of the person activity is a parallel work with many tasks at the same time.

Therefore the special interpreter for executing QA-procedures and the system of

interruption are included into WIQA. It gives the possibility to interrupt any QA-procedure

(if it is necessary) for working with other QA-programs. The interruption system supports

the return to any interrupted QA-program to its point of the interruption.

6.2 Example of QA-functions

As told above WIQA was used for elaboration the application EmWIQA provided the

expert monitoring of the sea vessel surrounding. This application uses the base of

precedents and means of QA-programming. The behavior of users in EmWIQA can be

qualified as the potential behaviour of the person in ESP. Therefore QA-programs in

EmWIQA can be used as examples of QA-programs in ESP.

One of such QA-programs is QA-function supports the access to the precedent sample

which presents the 15th rule of the International Rules for Preventing Collisions at Sea

(Cockcroft, 2003):

QA-PROGRAM_3 (conditional access to the precedent).

D1. Velocity V1 of the power driven vessel V_1?

V1.Value of V1.

D2. Bear_B1 of the vessel V_1?

V2.Value of B1.

D3. Place of the vessel V_1?

V3. Coordinates of the place_1.

D4. Velocity V2 of the power driven vessel V_2?

V4.Value of V2.

D5. Bear_B2 of the vessel V_2?

V5.Value of B2.

D6. Place of the vessel V_2?

V6. Coordinates of the place_2.

O7.CPA = expression for computing the Closest Point of Approach (CPA)?

E7. Value of CPA.

O8. Cond = (V_1, “keep out of the way”)&

 & (│Bear_1 - Bear_2│ > 11, 5о) &

 & (CPA-DDA- ∆D1 ≤ 0)?

E8. Manoeuvre_Mi / Call of the appropriate QA-procedure.

O9. End.

This QA-function is shown with demonstrated aims only and therefore without explaining

the variables and expressions. This function is kept in the knowledge base (with embedded

www.intechopen.com

Expert Systems for Human, Materials and Automation

70

precedents) into the EmWIQA and function is accessible for program agents (automatically)

and for the sailor on duty (in the automated regime). The knowledge base of the EmWIQA

consists of 155 units each of which includes QA-function for choosing the precedent and

QA-procedure for its executing.

7. Means for development and usage of personal expert systems

7.1 Additional means of WIQA
As told above AS-shell of ESP inherits the basic means of WIQA presented in Fig. 7. These
means include the simulator of expert system elaborated previously for EmWIQA, base of
precedents with their coding in the first version and the interpreter which uses the means of
the dynamic compilation of Microsoft.Net 3.5. After estimation all of these means from the
point of view of ESP the WIQA has been evolved with the orientation on the ordinary
person.
The additional technological QA-programs have been added to the specialized system of
QA-programs simulating the expert system. The first version of coding the precedent
sample is modified by the inclusion to it the possibility of QA-programming the conditional
access to the sample (morphologic analysis of key words and compilation of QA-functions).
The language of P-programming has been modified by the inclusion to its grammar the
description of additional attributes.
Following components have been developed and included in the ES-shell additionally:

• a set of translators (compilers and interpreters) of QA-programs;

• a specialized generator of interface units for helping the person to combine QA-
programs and executed codes of other types;

• a set of means for simplifying the work of the person aimed at the creation of precedent
samples, their inclusion to the precedents base, access to the necessary sample and its
use.

7.2 Translators of QA-programs
Translation means for the pseudo-programming are evolved step by step from one kind of

QA-programs to the other kind. Two compilers and two interpreters are embedded in QA-

shell for ESP.

The first compiler provides the processing of QA-programs which describe the conditional

parts of precedents. Copies of such compiler can be embedded by the person to the

precedent samples implemented as agents. The second compiler supports the translation of

QA-programs in the executed codes (.dll-forms).

Both interpreters are intended for I-processors. There are the following differences between

interpreters - the first interpreter can work with cycle operators and the second interpreter

uses the mechanism of the dynamic compilation for the current line of QA-program which is

being executed.

Let’s present some details for the first interpreter. As other translators embedded in WIQA

this interpreter is worked with the LP-language. The lexicon of the created QA-program can

be chosen by the programmer (by the person). For the declaration of QA-data the

specialized utility program is developed. This utility program supports the work with data

of traditional algorithmic types. The main window of the interpreter is presented in Fig. 16

with commentary labels.

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

71

Interfaces of the main form help to control as executing QA-program so its debugging. The

person who is fulfilling the role of I-processor can interrupt I-process on any operator of

QA-program with the possibility of returning to the point of the interruption.

In the set of named translators for indicating the types of operators the following variants

has been used and checked:

• inclusion the key words into the symbolic presentation of operators;

• selection the type of the operator from the emerging menu;

• appointment the type with the help of additional attributes (as for QA-data).

QA-pseudocode

executed operator

Pascal-like code
dictionary Function

library

execute

interrupt

Fig. 16. Screenshot of interpreter

In accordance with told above, the usage of the potential of Z-, Q- and A-objects for

emulating the typical data and simulating the basic program operators opens the possibility

to create QA-programs which can be translated for their executing by computer processors

also.

Pseudo-code texts of QA-programs can be written and executed (in the real time) by the

person working in the corporate network. The person interacts with QA-programs as with

inter-mediators between the person and computers and it gives the arguments to qualify

their as new type of means for human-computer interactions. Moreover, such inter-

mediators can be translated (in WIQA) firstly to the C# source code and then to the executed

code.

7.3 Generator of interface units

The practice of QA-programming has shown that visual forms of WIQA presented in Fig.

4 are unsufficient for the usability of QA-programs created by the person in ESP.

Therefore the plug-ins „Generator of interface units“ has been created and embedded to

QA-shell.

The necessary interface unit is being generated from the drawn interface diagram which is

being translated to the scheme of the corresponding QA-program. After that the scheme of

QA-program is filling by the chosen interfaces precedents.

www.intechopen.com

Expert Systems for Human, Materials and Automation

72

Any interface precedent is coded the corresponding metrics of usability. A set of usability

metrics includes a subset of metrics which are defined in the standard ISO/ MEK–9126.

Other metrics were chosen from other useful sources. Any metrics included to the library

are defined as an appropriate task which is solved in QA-shell.

7.4 Creation and usage of precedent sample
Any precedent sample is coded as a composite QA-program the integrity of which is

provided by its interface shell. The special plug-ins of WIQA which was named

„Elaboration of precedent sample“ has been created for writing the codes of sample parts

and assembling them as a whole. This plug-ins is similar to the elaboration means of

traditional programs but it fits on QA-programming.

The graphic editor embedded to plug-ins helps the person to assemble the current sample

by filling its typical graphic form which is a copy of scheme presented in Fig. 11. When

assembling is finished the precedent sample is uploaded to the corresponding section of

QA-program library.

Any precedent sample is an autonomous software unit which is QA-programmed and can

be qualified as the software agent. One of the advantages of the agent of such type is the

possibility for its easy reprogramming in the real time.

If a number of precedent samples are necessary for the person who are solving the current

task they should be extracted from the precedent base (with using the techniques of ESP)

and uploaded into the active tasks tree.

8. Conclusion

Told above contains sufficient arguments to assert that the described QA-shell helps to

create the Expert Systems of the new type. This type of ES is intended for the ordinary

person who has decided to create the ES which will be filled by the valuable information

about personal precedents. In creation of own ESP the person fulfills roles of the expert,

developer and user of such computer assistant.

The main specificity of the elaborated QA-shell for ESP defines Question Answering which is

fitted to pseudo-programming of precedents samples. Accessible means of Question

Answering are coordinated with the dialogue nature of consciousness that simplifies

transition from internal reasoning of the person to their models in the computer

environment. Therefore the owner of ESP can apply real time P-programming of I-processor

and K-processor for solving own tasks on the base of precedents the samples of which are

kept in ESP.

Accessible means of P-programming is similar to N-programming and their power (types of

data, additional attributes and system of P-programming) open the possibility for the

ordinary person to write non-trivial programs of the own activity. QA-programs manage

accustomed (habitual) semi-automatic actions when QA-programs (as techniques of the

guide type) show to the person the sequence of actions which the person must execute.

Moreover, QA-programs can be translated in the form which can be executed by the

computer processors.

QA-shell is elaborated on the base of the sufficient experince of Question Answering applied

to the development of SIS and other applications including applied systems with ES

www.intechopen.com

Question-Answer Shell for Personal Expert Systems

73

subsystem based on precedents. For example, QA-samples of precedents were embedded in

system for Expert Monitoring of Environment of the Sea Vessel. QA-samples of precedents

also have been used in the solution of following tasks: Creation of Interface Prototypes in

context of ISO standard 9126; Information Safety of SIS in the context of ISO standard 15408;

Predicative Ontological Testing of Project Solutions.

9. References

Bass, L.; Ivers J. & Klein, M. & Merson, P. (2005). Reasoning Frameworks, Software

Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.

CMU/SEI-2005-TR-007.

Burger, J. et al. (2001). Issues, Tasks and Program Structures to Roadmap Research in Question &

Answering (Q&A), Tech. Rep. NIST.

Card S.K.; Thomas, T.P. & Newell, A. (1983). The Psychology of Human-Computer Interaction,

London: Lawrence Erbaum Associates.

Cockcroft, A.N. (2003). Guide to the Collision Avoidance Rules: International Regulations for

Preventing Collisions at Sea, Butterworth-Heinemann, 2003.

Crystal, A. & Ellington, B. (2004). Task analysis and human-computer interaction: approaches,

techniques, and levels of analysis. In proceedings of the Tenth Americas Conference on

Information Systems, New York, New York, pp 1-9.

Henninger, S. (2003). Tool Support for Experience-Based Software Development Methodologies,

Advances in Computers, vol. 59, pp. 29-82.

Hewett, T.; Baecker , R., Card , St., Carey , T., Gasen , J., Mantei, M., Perlman , G., Strong,

G., & Verplank, W. (2002). ACM SIGCHI Curricula for Human-Computer Interaction.

ACM Technical Report. P. 162.

Hirschman, L. & Gaizauskas, R. (2001). Natural Language Question Answering: The View from

Here. Natural Language Engineering, vol. 7, pp. 67-87.

Karray, F.; Alemzadeh, M., Saleh, J. A. & Arab, M. N. (2008). Human-Computer Interaction:

Overview on State of the Art Smart sensing and intelligent systems, vol. 1, No.

1(Mar), pp 138-159, 2008.

Kieras, D. & Meyer , D.E. (1997). An overview of the EPIC architecture for cognition and

performance with application to human-computer interaction. Human-Computer

Interaction, 12, 1997, 391-438.

Lee, M.H. (2000). Model-Based Reasoning: A Principled Approach for Software Engineering,

Software - Concepts and Tools, vol.19, #4, pp. 179-189.

Potts, C.; Takahashi, A. & Anton, K. (1994) Inquiry-based Requirements Analysis, IEEE

Software, vol.11, #2, pp. 21-32.

Precedent. Available from

 http://dictionary.reference.com/browse/precedent.

Question-Answering. Available from

 http://www.wordiq.com/definition/Question_ answering.

Reiff, R.; Harwood, W. & Phillipson, T. A (2002) Scientific Method Based Upon Research

Scientists’ Conceptions of Scientific Inquiry, In Proc.2002 Annual International

Conference of the Association for the Education of Teachers in Science, pp 546–556.

www.intechopen.com

Expert Systems for Human, Materials and Automation

74

Rich, C. & Feldman, Y. (1992). Seven Layers of Knowledge Representation and Reasoning in

Support of Software Development, IEEE Transactions on Software Engineering, vol, 8,

6, pp.451-469.

Rosen, D. J.; (2008) How to Make Inquiry Maps. Available from:

http://alri.org/pubs/im3.html.

Yang, F.; Shen, R. & Han, P. (2003). Adaptive Question and Answering Engine Base on Case

Based and Reasoning Technology, Journal of Computer Engineering, vol.29, #11, pp.

27-28.

www.intechopen.com

Expert Systems for Human, Materials and Automation

Edited by Prof. PetricÄƒ Vizureanu

ISBN 978-953-307-334-7

Hard cover, 392 pages

Publisher InTech

Published online 10, October, 2011

Published in print edition October, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

The ability to create intelligent machines has intrigued humans since ancient times, and today with the advent

of the computer and 50 years of research into AI programming techniques, the dream of smart machines is

becoming a reality. The concept of human-computer interfaces has been undergoing changes over the years.

In carrying out the most important tasks is the lack of formalized application methods, mathematical models

and advanced computer support. The evolution of biological systems to adapt to their environment has

fascinated and challenged scientists to increase their level of understanding of the functional characteristics of

such systems. This book has 19 chapters and explain that the expert systems are products of the artificial

intelligence, branch of computer science that seeks to develop intelligent programs for human, materials and

automation.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Petr Sosnin (2011). Question-Answer Shell for Personal Expert Systems, Expert Systems for Human, Materials

and Automation, Prof. PetricÄƒ Vizureanu (Ed.), ISBN: 978-953-307-334-7, InTech, Available from:

http://www.intechopen.com/books/expert-systems-for-human-materials-and-automation/question-answer-

shell-for-personal-expert-systems

© 2011 The Author(s). Licensee IntechOpen. This is an open access article

distributed under the terms of the Creative Commons Attribution 3.0

License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original work is properly cited.

