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1. Introduction   

The main control objectives of active vehicle suspension systems are to improve the ride 

comfort and handling performance of the vehicle by adding degrees of freedom to the 

system and/or controlling actuator forces depending on feedback and feedforward 

information of the system obtained from sensors. 

Passenger comfort is provided by isolating the passengers from undesirable vibrations 

induced from irregular road disturbances, and its performance is evaluated by the level of 

acceleration which vehicle passengers are exposed. Handling performance is achieved by 

maintaining a good contact between the tire and the road to provide guidance along the track. 

The topic of active vehicle suspension control system, for linear and nonlinear models, in 

general, has been quite challenging over the years and we refer the reader to some of the 

fundamental work in the area which has been helpful in the preparation of this chapter. 

Control strategies like Linear Quadratic Regulator (LQR) in combination with nonlinear 

backstepping control techniques are proposed in (Liu et al., 2006). This strategy requires 

information about the state vector (vertical positions and speeds of the tire and car body). A 

reduced order controller is proposed in (Yousefi et al., 2006) to decrease the implementation 

costs without sacrificing the security and the comfort by using accelerometers for 

measurements of the vertical movement of the tire and car body. In (Tahboub, 2005) a 

controller of variable gain that considers the nonlinear dynamics of the suspension system is 

proposed. It requires measurements of the vertical positions of the car body and the tire, and 

the estimation of other states and of the road profile.  

On the other hand, many dynamical systems exhibit a structural property called differential 

flatness. This property is equivalent to the existence of a set of independent outputs, called 

flat outputs and equal in number to the control inputs, which completely parameterizes 

every state variable and control input (Fliess et al., 1995). By means of differential flatness 
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the analysis and design of controller is greatly simplified. In particular, the combination of 

differential flatness with sliding modes, which is extensively used when a robust control 

scheme is required, e.g., parameter uncertainty, exogenous disturbances and un-modeled 

dynamics (see Utkin, 1978), qualifies as an adequate robust control design approach to get 

high vibration attenuation level in active vehicle suspension systems. Sliding mode control 

of a differentially flat system of two degrees of freedom, with vibration attenuation, is 

presented in (Enríquez-Zárate et al., 2000).  

This chapter presents a robust active vibration control scheme based on sliding modes 
and differential flatness for electromagnetic and hydraulic active vehicle suspension 
systems. Measurements of the vertical displacements of the car body and the tire are 
required for implementation of the proposed control scheme. On-line algebraic estimation 
of the states variables is used to avoid the use of sensors of acceleration and velocity. The 
road profile is considered as an unknown input disturbance that cannot be measured. 
Simulation results obtained from Matlab are included to show the dynamic performance 
and robustness of the active suspension systems with the proposed control scheme. This 
chapter applies the algebraic state estimation scheme proposed by Fliess and Sira-Ramírez 
(Fliess & Sira-Ramírez, 2004a, 2004b; Sira-Ramírez & Silva-Navarro, 2003) for control of 
nonlinear systems, which is based on the algebraic identification methodology of system 
parameters reported in (Fliess & Sira-Ramírez, 2003). The method is purely algebraic and 
involves the use of differential algebra. This method is applied to obtain an estimate of the 
time derivative from any signal, avoiding model reliance of the system at least in the 
estimation of states. Simulation and experimental results of the on-line algebraic 
estimation of states on a differentially flat system of two degrees of freedom are presented 
in (García-Rodríguez, 2005). 
This chapter is organized as follows: Section 2 presents the linear mathematical models of 
vehicle suspension systems of a quarter car. The design of the controllers for the active 
suspension systems are introduced in Sections 3 and 4. Section 5 divulges the design of the 
algebraic estimator of states, while Section 6 shows the use of sensors for measuring the 
variables required by the controller. The simulation results are illustrated in Section 7. 
Finally, conclusions are brought out in Section 8. 

2. Dynamic model of quarter-car suspension systems 

2.1 Linear mathematical model of passive suspension system 

A schematic diagram of a quarter-car suspension system is shown in Fig. 1(a). The 
mathematical model of the passive suspension system is given by  

  ( ) ( ) = 0s s s s u s s um z c z z k z z+ − + −    (1) 

 ( ) ( ) ( ) = 0u u s s u s s u t u rm z c z z k z z k z z− − − − + −    (2) 

where sm  represents the mass of a quarter car, um  represents the mass of one wheel with 
the suspension and brake equipment, sc  is the damper coefficient of suspension, sk  and tk  
are the spring coefficients of the suspension and the tire, sz  and uz  are the displacements of 
car body and the wheel and rz  is the terrain input disturbance. This simplified linear 
mathematical model of a passive suspension system has been widely used in many previous 
works, such as (Liu et al., 2006; Yousefi et al., 2006). 
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Fig. 1. Schematic diagram of a quarter-vehicle suspension system: (a) passive suspension 
system, (b) electromagnetic active suspension system and (c) hydraulic active suspension 
system. 

2.2 Linear mathematical model of the electromagnetic active suspension system 
A schematic diagram of a quarter-car active suspension system is illustrated in Fig.1 (b). The 
electromagnetic actuator replaces the damper, forming a suspension with the spring. The 
friction force of an electromagnetic actuator is neglected. The mathematical model of the 
electromagnetic suspension system, presented in (Martins et al., 2006), is given by:  

 ( ) =s s s s u Am z k z z F+ −  (3) 

 ( ) ( ) =u u s s u t u r Am z k z z k z z F− − + − −  (4) 

where sm , um , sk , tk , sz , uz  and rz  represent the same parameters and variables shown 

in the passive suspension system. The electromagnetic actuator force is represented by AF . 

2.3 Linear mathematical model of hydraulic active suspension system 
A schematic diagram of an active quarter-car suspension system is shown in Fig. 1(c). The 
mathematical model of the hydraulic suspension system is given by 

 ( ) ( ) =s s s s u s s u f Am z c z z k z z F F+ − + − − +    (5) 

 ( ) ( ) ( ) =u u s s u s s u t u r f Am z c z z k z z k z z F F− − − − + − −    (6) 

where sm , um , . sk ., tk , sz , uz  and rz  represent the same parameters and variables shown 

in the passive suspension system. The hydraulic actuator force is represented by AF , and fF  

represents the friction force generated by the seals of the piston with the cylinder wall inside 

the actuator. This friction force has a significant magnitude (> 200 )N  and cannot be ignored 

(Martins et al., 2006; Yousefi et al., 2006). The net force given by the actuator is the difference 

between the hydraulic force AF  and the friction force fF . 
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3. Control of electromagnetic suspension system 

The mathematical model of the electromagnetic active suspension system illustrated in Fig. 

1(b) is given by the equations (3) and (4). Defining the state variables 1 = sx z , 
2 = sx z , 3 = ux z  

and 
4 = ux z  for the model of the equations mentioned, the representation in the state space 

form is,  

4 4 4 4 1 4 1( ) = ( ) ( ) ( ); ( ) , , , ,rx t Ax t Bu t Ez t x t A B E× × ×+ + ∈ ∈ ∈ ∈      

 

1 1

2 2

3 3

4 4

0 1 0 0 0
0

1
0 0 0

= 0
0 0 0 1 0

1
0 0

s s

s s s

r

t
s s t

u
u u u

x xk k

x xm m m
u z

x x
k

x k k k x
m

m m m

   
            −             + +                   +     − −     

   






 (7) 

with = Au F , the force provided by the electromagnetic actuator as control input. 

3.1 Differential flatness 

The system is controllable and hence, flat (Fliess et al., 1995; Sira-Ramírez  & Agrawal, 2004), 

with the flat output being the positions of body car and wheel, 1 3= +s uF m x m x , in (Chávez-

Conde et al., 2009). For simplicity in the analysis of the differential flatness for the suspension 

system assume that = 0t rk z . In order to show the parameterization of all the state variables 

and control input, we firstly compute the time derivatives up to fourth order for F , resulting in  

( )

1 3

2 4

3

(3)
4

2
(4)

1 3 3

=

=

=

=

=

s u

s u

t

t

t s t t

u u u

F m x m x

F m x m x

F k x

F k x

k k k k
F u x x x

m m m

+

+

−

−

− − +


  

Then, the state variables and control input are differentially parameterized in terms of the 
flat output as follows 

1

(3)
2

3

(3)
4

1
=

1
=

1
=

1
=

u

s t

u

s t

t

t

m
x F F

m k

m
x F F

m k

x F
k

x F
k

 
+ 

 
 

+ 
 

−

−
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(4)= 1u s u s s

t t s t s

m k m k k
u F F F

k k m k m

 
+ + + + 
 

  

3.2 Sliding mode and differential flatness control 

The input u  in terms of the flat output and its time derivatives is given by  

 
(4)= 1u s u s s

t t s t s

m k m k k
u F F F

k k m k m

 
+ + + + 
 


 (8) 

where (4) =F v  defines an auxiliary control input. This expression can be written in the 

following form:  

 
(4)

1 2 3=u d F d F d F+ +
 (9) 

where 1 = u

t

m
d

k
, 2 = 1+ +s u s

t s t

k m k
d

k m k
 and 3 = s

s

k
d

m
.  

Now, consider a linear switching surface defined by  

 (3)
2 1 0= F F F Fσ β β β+ + + 

 (10) 

Then, the error dynamics restricted to = 0σ  is governed by the linear differential equation  

 (3)
2 1 0 = 0F F F Fβ β β+ + + 

 (11) 

The design gains 2 0, ,β β  are selected to verify that the associated characteristic 

polynomial 3 2
2 1 0β β β+ + +s s s  be Hurwitz. As a consequence, the error dynamics on the 

switching surface = 0σ  is globally asymptotically stable. The sliding surface = 0σ  is made 

globally attractive with the continuous approximation to the discontinuous sliding mode 

controller as given in (Sira-Ramírez, 1993), i.e., by forcing to satisfy the dynamics,  

 [ ]= ( )signσ µ σ γ σ− +  (12) 

where µ , γ denote positive real constants and “sign” is the standard signum function. The 

sliding surface is globally attractive, < 0σσ  for 0σ ≠ , which is a very well known 

condition for the existence of sliding mode presented in (Utkin, 1978). One then obtains the 

following sliding-mode controller:  

 1 2 3=u d v d F d F+ +
 (13) 

 [ ](3)
2 1 0= ( )v F F F signβ β β µ σ γ σ− − − − +    

This controller requires the measurement of all the state variables of the suspension system, 

sz , 
sz , uz  and 

uz , corresponding to the vertical positions and velocity of the body of the car 

and the wheel. The variables 
sz  and 

uz  are calculated through an online algebraic estimator, 

shown in Section 5. 
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4. Control control of hydraulic suspension system 

The mathematical model of the hydraulic active suspension system shown in Fig. 1(c) is 

given by the equations (5) and (6). Defining the state variables 1 = sx z , 2 = 
sx z , 3 = ux z  and 

4 = 
ux z  for the model of the equations mentioned, the representation in the state space form 

is, 4 4 4 4 1 4 1( ) = ( ) ( ) ( ); ( ) , , , ,rx t Ax t Bu t Ez t x t A B E× × ×+ + ∈ ∈ ∈ ∈      

 

1 1

2 2

3 3

4 4

0 1 0 0 0
0

1
0

= 0
0 0 0 1 0

1

s s s s

s s s s s

r

t
s s s t s

u
u u u u u

x xk c k c

x xm m m m m
u z

x x
k

x k c k k c x
m

m m m m m

   
            − −             + +                   +     − − −     

   






 (14) 

with = −A fu F F , the net force provided by the hydraulic actuator as control input (the net 

force provided by the actuator is the difference between the hydraulic force AF  and the 

frictional force fF ). 

4.1 Differential flatness 

The system is controllable and hence, flat (Fliess et al., 1995; Sira-Ramírez  & Agrawal, 2004), 

with the flat output being the positions of body car and wheel, 1 3= +s uF m x m x , in (Chávez-

Conde et al., 2009). For simplicity in the analysis of the differential flatness for the suspension 

system assume that = 0t rk z . In order to show the parameterization of all the state variables 

and control input, we firstly compute the time derivatives up to fourth order for F , resulting in  

1 3

2 4

3

(3)
4

2
(4)

2 4 1 3 3

=

=

=

=

= ( ) ( )

s u

s u

t

t

t s t s t t

u u u u

F m x m x

F m x m x

F k x

F k x

k c k k k k
F u x x x x x

m m m m

+

+

−

−

− − − − +


  

Then, the state variables and control input are parameterized in terms of the flat output as 
follows 

1

(3)
2

3

(3)
4

1
=

1
=

1
=

1
=

u

s t

u

s t

t

t

m
x F F

m k

m
x F F

m k

x F
k

x F
k

 
+ 

 
 

+ 
 

−

−
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(4) (3)= 1u s u s s u s s s

t t s t t s t s s

m c m c k m k c k
u F F F F F

k k m k k m k m m

   
+ + + + + + +   
   

 

 

4.2 Sliding mode and differential flatness control 

The input u  in terms of the flat output and its time derivatives is given by  

 (3)= 1u s u s s u s s s

t t s t t s t s s

m c m c k m k c k
u v F F F F

k k m k k m k m m

   
+ + + + + + +   
   

   (15) 

where (4) =F v  defines the auxiliary control input. The expression can be written in the 

following form:  

 
(3)

1 2 3 4 5=u v F F F Fη η η η η+ + + +   (16) 

where 1 =η u

t

m

k
, 2 =η +s u s

t s t

c m c

k m k
, 3 = 1η + +s u s

t s t

k m k

k m k
, 4 =η s

s

c

m
 and 5 =η s

s

k

m
.  

Now, consider a linear switching surface defined by 

 (3)
2 1 0= F F F Fσ β β β+ + +   (17) 

Then, the error dynamics restricted to = 0σ  is governed by the linear differential equation  

 (3)
2 1 0 = 0F F F Fβ β β+ + +   (18) 

The design gains 2 0, ,β β  are selected to verify that the associated characteristic 

polynomial 3 2
2 1 0β β β+ + +s s s  be Hurwitz. As a consequence, the error dynamics on the 

switching surface = 0σ  is globally asymptotically stable. The sliding surface = 0σ  is made 

globally attractive with the continuous approximation to the discontinuous sliding mode 

controller as given in (Sira-Ramírez, 1993), i.e., by forcing to satisfy the dynamics  

 [ ]= ( )signσ µ σ γ σ− +  (19) 

where µ , γ denote positive real constants and “sign” is the standard signum function. The 

sliding surface is globally attractive, < 0σσ  for 0σ ≠ , which is a very well known 

condition for the existence of sliding mode presented in (Utkin, 1978). One then obtains the 

following sliding-mode controller:  

 (3)
1 2 3 4 5=u v F F F Fη η η η η+ + + +   (20) 

 [ ](3)
2 1 0= ( )v F F F signβ β β µ σ γ σ− − − − +    

This controller requires the measurement of all the variables of state of suspension system, 

sz , 
sz , uz  and 

uz  corresponding to the vertical positions and velocity of the body of the car 

and the tire, respectively. The variables 
sz  and 

uz  are calculated through an online algebraic 

estimator, shown in Section 5. 
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5. On-line algebraic state estimation of active suspension system 

5.1 First time derivative algebraic estimation 

The algebraic methodology proposed in (Fliess & Sira-Ramírez, 2003) allows us to estimate 

the derivatives of a smooth signal considering a signal model of −n th  order, thus it is not 

necessary to design the time derivative estimator from a specific dynamic model of the 

plant. Through valid algebraic manipulations of this approximated model in the frequency 

domain, and using the algebraic derivation with respect to the complex variable s , we 

neglect the initial conditions of the signal. The resulting equation is multiplied by a negative 

power 1−ns  and returned to the time domain. This last expression is manipulated 

algebraically in order to find a formula to estimate the first time derivative of ( )y t . 

Consider a fourth order approximation of a smooth signal ( )y t ,  

 
4

4

( )
= 0

d y t

dt
 (21) 

This model indicates that ( )y t  is a signal whose behavior can be approximated by a family 

of polynomials of third order, thus the fourth time derivative is assumed close to zero. The 

order of this approximation can be increased to enhance the estimation quality of the 

algebraic estimator. From (21) it is possible to design a time derivative algebraic estimator. 

First, we apply Laplace transform to (21),  

 
(3)4 3 2( ) (0) (0) = 0s Y s s Y s Y sY Y− − − −   (22) 

Now, taking successive derivatives until a number of three with respect to the complex 
variable s , we obtain a expression which is free of initial conditions,  

 
( )4 4

4
= 0

d s Y

ds
 (23) 

Expanding this expression and multiplying by 3−s ,  

 
2 3 4

3 2 1

2 3 4
24 96 72 16− − −+ + + +

dY d Y d Y d Y
s Y s s s

ds ds ds ds
 (24) 

Returning to the time domain,  

4 3 2
1 1 10

1 1 2

2 2 2 1 3 3 2 10 0 0 0 0

( ( )) 16 ( ) 72 ( )

96 ( ) 24 ( ) = 0

t

t t

d
t z t t z t z d

dt

z d d z d d d
λ λ λ

λ λ λ

λ λ λ λ λ λ λ λ

− +

− +



    
 

From the last equation is possible to obtain the following algebraic estimator,  

 

1 1 23
2 2 2 1 3 3 2 10 0 0 0 0

4

12 96 ( ) 24 ( )
=

t t

t z z d d z d d ddz

dt t

λ λ λ
λ λ λ λ λ λ λ λ+ −    

 (25) 
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This formula is valid for > 0t . Since (25) provides an approximated value of the first 

derivative, this is only valid during a period of time. So the state estimation should be 
calculated periodically as follows,  

 

13
2 2 2 1

1 2

3 3 2 1

4

12( ) 96 ( )

24 ( )
=

( )

λ

λ λ

λ λ λ λ

λ λ λ λ

− +

−

−

 

  

t

i t ti i

t
t

t t ti i i

t ii

t t z z d d

z d d d
dz

dt t t
, ( ) > 0∀ − it t   (26) 

where ( , )it t  is the estimation period. 

In order to obtain a better and smoother estimated value of the vertical velocity, we have 

implemented simultaneously two algebraic estimators for each velocity to estimate. 

Proceeding with an out-of-phase policy for one of these algebraic estimators, the outputs of 

both are combined properly to obtain a final estimated value. 

6. Instrumentation of the active suspension system 

The only variables required for the implementation of the proposed controllers are the 

vertical displacements of the body of the car sz  and the vertical displacement of the wheel 

uz . These variables are needed to measure by some sensor. In (Chamseddine et al., 2006) the 

use of sensors in experimental vehicle platforms, as well as in commercial vehicles is 

presented. The most common sensors used for measuring the vertical displacement of the 

body of the car and the wheel are laser sensors. This type of sensors could be used to 

measure the variables sz  and sz  needed for controller implementation. An accelerometer or 

another type of sensor is not needed to measure the variables 
sz  and 

uz , these variables are 

estimated with the use of algebraic estimators from knowledge of the variables sz and uz . 

Fig. 2 shows a schematic diagram of the instrumentation for the active suspension system. 
 

 
Fig. 2. Schematic diagram of the instrumentation of the active suspension system. 
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7. Simulation results 

The simulation results were obtained by means of MATLAB/Simulink ® , with the Runge-

Kutta numerical method and a fixed integration step of 1ms . The numerical values of the 

quarter-car model parameters (Sam & Hudha, 2006) are presented in Table 1.  
 

Parameter Value 

Sprung mass ( sm ) 282 [ ]kg  

Unsprung mass ( um ) 45 [ ]kg  

Spring stiffness ( sk ) 17900
N

m

 
  

 

Damping constant ( sc ) 1000
N s

m

⋅ 
  

Tire stiffness ( tk ) 165790
N

m

 
  

Table 1. Quarter-car model parameters  

In this simulation study, the road disturbance is shown in Fig. 3 and set in the form of (Sam 
& Hudha, 2006): 

1 (8 )

2
r

cos t
z a

π−
=  

with = 0.11a [m] for 0.5 0.75t≤ ≤ , = 0.55a [m] for 3.0 3.25t≤ ≤ and 0 otherwise. 

 

 

Fig. 3. Type of road disturbance. 
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It is desired to stabilize the suspension system at the positions = 0sz  and = 0uz . The gains 

of both electromagnetic and hydraulic suspension controllers were obtained by forcing their 
closed loop characteristic polynomials to be given by the following Hurwitz polynomial: 

2 2( )( 2 )n ns p s sζω ω+ + +  with = 100p , = 0.5ζ , = 90nω , = 95µ  y = 95γ . 

The Simulink model of the sliding mode and differential flatness controller of the active 
suspension system is shown in Fig. 4. For the electromagnetic active suspension system, it is 
assumed that cz = 0. In Fig. 5 is shown the Simulink model of the sliding mode and 
differential flatness controller with algebraic state estimation. 
 

 

Fig. 4. Simulink model of the sliding mode and differential flatness controller. 

In Fig. 6 is depicted the robust performance of the electromagnetic suspension controller. It 

can be seen the high vibration attenuation level of the active vehicle suspension system 

compared with the passive counterpart. Similar results on the implementation of the 

hydraulic suspension controller are depicted in Fig. 7. 

In Fig. 8 is presented the algebraic estimation process of the velocities of the car body and 
the wheel. There we can observe a good and fast estimation. In Figs. 9 and 10 are shown the 
simulation results on the performance of the electromagnetic and hydraulic suspension 
controllers using the algebraic estimators of velocities. These results are quite similar to 
those gotten by the controllers using the real velocities. 
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Fig. 5. Simulink model of the sliding mode and differential flatness controller with state 
estimation.  
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Fig. 6. Electromagnetic active vehicle suspension system responses with sliding mode and 
differential flatness based controller. 
 

 

Fig. 7. Hydraulic active vehicle suspension system responses with sliding mode and 
differential flatness based controller. 
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Fig. 8. On-line algebraic state estimates of the hydraulic active suspension system. 

 

 
Fig. 9. a. Electromagnetic active vehicle suspension system responses with sliding mode and 
differential flatness based controller using algebraic state estimation. 
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Fig. 9. b. Electromagnetic active vehicle suspension system responses with sliding mode and 
differential flatness based controller using algebraic state estimation. 

 

 

Fig. 10. a. Hydraulic active vehicle suspension system responses with sliding mode and 
differential flatness based controller using algebraic state estimation. 
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Fig. 10. b. Hydraulic active vehicle suspension system responses with sliding mode and 
differential flatness based controller using algebraic state estimation. 

8. Conclusions 

The stabilization of the vertical position of the quarter of car is obtained in a time much 
smaller to that of the passive suspension system. The sliding mode based differential 
flatness controller requires the knowledge of all the state variables. Nevertheless the fast 
stabilization with amplitude in acceleration and speed of the body of the car very 
remarkable is observed. On-line state estimation is obtained successfully, however when 
it is used into the controller one can observe a deterioration of the control signal. This can 
significantly improve with a suitable interpolation between the estimated values at each 
restart of the integrations. In addition, the simulations results show that the stabilization 
of the system is obtained before the response of the passive suspension system, with 
amplitude of acceleration and speed of the body of the car very remarkable. Finally, the 
robustness of the controllers is observed to take to stabilize to the system before the 
unknown disturbance. 
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