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1. Introduction 

Permanent magnet machines, particularly at low power range, are widely used in the 
industry because of their high efficiency. They have gained popularity in variable frequency 
drive applications. The merits of the machine are elimination of field copper loss, higher 
power density, lower rotor inertia and a robust construction of the rotor (Bose 2002). 
In order to find effective ways of designing a controller for PM synchronous motor (PMSM), 
the dynamic model of the machine is normally used. The dynamic model of PM motor can 
be derived from the voltage equations referred to direct (d) and quadrature (q) axes (Bose 
2002).The model derived essentially has  quadratic nonlinearity. Linear control techniques 
generally fail to produce the desired performance. Feedback linearization is a technique that 
has been used to control nonlinear systems effectively. 
By applying exact linearization technique (Cardoso & Schnitman 2011) it is possible to 
linearize a system and apply linear control methods. But this requires that certain system 
distributions have involutive property. An approximate feedback linearization technique 
was formulated by Krener (Krener 1984) based on Taylor series expansion of distributions 
for non-involutive systems. 
Chiasson and  Bodson (Chiasson & Bodson 1998) have designed a controller  for electric 
motors using differential geometric method of nonlinear control based on exact feedback 
linearization. But from a practical point of view, this technique suffers from singularity 
issues. If the system goes into a state, during the course of the system operation, where the 
singularity condition is satisfied, then the designed controller will fail. 
Starting with the quadratic model of PMSM, we apply quadratic linearization technique 
based on coordinate and state feedback. The linearization technique used is the control 
input analog of Poincare’s work ( Arnold 1983)  as proposed by Kang and Krener (Kang & 
Krener 1992)  and further developed by Devanathan (Devanathan 2001,2004) .The quadratic 
linearization technique proposed is on the lines of approximate linearization of Krener 
(Krener 1984) and does not introduce any singularities in the system compared to the exact 
linearization methods reported in (Chiasson & Bodson 1998). 
MATLAB simulation is used to verify the effectiveness of the linearization technique 
proposed. In this chapter, MATLAB/SIMULINK modeling is used to verify the effectiveness 
of the quadratic linearization technique proposed. In particular, the application of  
MATLAB and SIMULINK as tools for  simulating  the following is described: 
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i. Dynamic model of  a sinusoidal Permanent Magnet Synchronous  machine(PMSM) 
ii. Application of nonlinear coordinate and state feedback transformations to linearize the 

PMSM model and 
iii. Tuning the transformations against a linear system model put in Brunovsky form 

employing error back propogation. 
As these applications were somewhat sophisticated , customization and improvisation of 
the MATLAB/SIMULINK tools were essential. These applications are described in detail in 
this chapter.  
In section 2, linearization of dynamic model of PMSM is discussed and simulation results 
using MATLAB are given. In section 3,  linearization of PMSM machine model  is given. 
Construction of  PMSM model  using SIMULINK  and verification of linearization of PMSM 
SIMULINK model is given in Section 4. Tuning of the linearizing transformations to account 
for unmodelled dynamics is discussed in Section 5. In section 6, the chapter is concluded. 

2. Linearization of dynamic model of PMSM 

2.1 Dynamic model of PMSM 

The dynamic model of a sinusoidal PM machine, considering the flux-linkage fλ    to be 

constant and ignoring the core-loss, can be written as (Bose 2002). 

 qd
d d r q

d d d

Lv R
i i p i

L L L

•

= − + ω  (1) 

 q f rd
q q r d

q q q q

v pLR
i i p i
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= − − ω −  (2) 

 1.5
[ ( ) ]r f q d q d q

p
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J

•

ω = λ + −  (3) 

where all quantities in the rotor reference frame are referred to the stator. 

,q dL L  are q and d axis inductances respectively; R is the resistance of the stator windings; 

,q di i   are  q and d axis currents respectively; ,q dv v   are  q and d axis voltages respectively; 
ωr is the angular velocity of the rotor; λf  is the amplitude of the flux induced by the 

permanent magnets of the rotor in the stator phases and p  is the number of pole pairs. 
 Using linear coordinate and state feedback transformations (Kuo 2001) the dynamic model 
can be written with the linear part put in Brunovsky form (Parvathy et. al. 2005,2006)  as 

 (2)( )x Ax Bu f x
•

= + +  (4) 
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where 1 2 3, ,b b b are constants derived from the motor parameters. 
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2.2 Linearization of the dynamic model  

Coordinate and state feedback transformations in quadratic form (Kang & Krener 1992) 

 (2)( )y x x= + φ  (5) 

 (1) (2)
2( ( )) ( )u I x v x= + β + α  (6) 

Where 

 [ ] [ ]1 2 3 1 2;
T T

y y y y v v v= =
 

(2) (2)( ); ( )x xφ α and )()1( xβ
  

are derived by solving the Generalized Homological Equations  

(Kang & Krener 1992) .Applying the transformations (5) and (6), (4) is reduced to 

(3)( , )y Ay Bv O y v
•

= + +
 

where
  

(3)( , )O y v
  

represent third and higher order nonlinearities . 

2.3 Verification of linearization using MATLAB function 

The problem now is to apply MATLAB to verify the theoretical result on quadratic 
linearization of the dynamic model (4). Expanding (4), we can see that the expression of the 
derivative of each state variable has the other two state variables in it. This becomes difficult 
to solve using manual methods of differential equation solution. The tool selected for 
solving the dynamic equations is the MATLAB function called ODE45. 

ODE45 is a MATLAB function that solves initial value problems for ordinary differential 
equations (ODEs).  It uses the iterative Runge Kutta method of solving equations. Hence, 
this function does not return the solution as an expression, but the values of the solution 
function at discrete instants of time.  ODE45 is based on an explicit Runge-Kutta formula, 
the Dormand-Prince pair.  It  is a one-step ode45 –in the sense that, in computing ( ),ny t it 
needs only the solution at the immediately preceding time point 1( )ny t − .In general, ode45 is 
the best function to apply as a "first try" for most problems. 
[t,Y] = ode45(odefun,tspan,y0) with tspan = [t0 tf] integrates the system of differential 
equations from time t0 to tf with initial conditions y0. Function f = odefun(t,y) is defined, 
where t  corresponds to the column vector of time points and y is the solution array. Each 
row in y corresponds to the solution at a time returned in the corresponding row of t. To 
obtain solutions at the specific times t0, t1,...,tf (all increasing or all decreasing), we use 
tspan = [t0,t1,...,tf].  
[t, Y] = ode45(odefun,tspan,y0,options) solves as above with default integration parameters 
replaced by property values specified in ‘options’. Commonly used properties include a 
scalar relative error tolerance RelTol (1e-3 by default) and a vector of absolute error 
tolerances AbsTol (all components are 1e-6 by default).  
The PLOT function is used to create a computer-graphic plot of any two quantities or a 
group of quantities with respect to time. 

A simulation of (4) was carried out for different values of inputs u1 and u2 in the open loop 

before applying the linearizing transformations where 1b  = -0.0165*(10^-3) ; 2b  -186.96; 

3b =5754386. Fig 1 shows a plot of x3 (angular velocity) versus time for pulse inputs  
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u1= 0.1{u(t)-u(t-1)} and u2=0.1{u(t)-u(t-1)} where u(t) is a unit step function . The system is 

oscillatory as seen from Fig 1. Fig. 2 shows the result of simulation of equation (4) after the 

linearizing transformations (5) and (6) are applied to the system. It shows a plot of y1,y2,y3 

against time for pulse inputs v1=0.2{u(t)-u(t-1)}, v2=0.2{u(t)-u(t-1)}. From Fig 2 it is seen that 

the system shows a stable response for a pulse input in v1 and v2   even under open loop 

conditions.. 
 

 

Fig. 1. Time response of angular velocity with v1=0.1 and v2=0.1 

 

 

Fig. 2. Time response of Y1 ,Y2 ,Y3  with v1=0.2 and v2=0.2 
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Fig. 3. Variation of transformed variable Y3  with input v1 (keeping v2=0.1) 

Fig. 3 shows the steady state gain of y3 with respect to v1 while v2 is maintained constant. It is 

observed that the plot between y3 and v1 is almost linear, thus verifying that the linearizing 

system is almost linear. A similar test before linearization revealed that the steady gain of 

3x  with respect to input u1  varied over a large range thus revealing the nonlinearity. 
Thus the linearization of the dynamic model of PMSM was verified through the use of 
MATLAB function ODE45 . 

3. Linearization of PMSM machine model  

3.1 PMSM model in normal form 

The 4 – dimensional PM machine model can be derived  as below   (Bose 2002). 
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where , , ,q d q dv v i i  represent the quadrature and direct axis voltages and currents 

respectively and , eθ ω  represent rotor position and  angular velocity respectively. 
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λ is the flux induced by the permanent magnet of the rotor in the stator phases. ,d qL L  are 

the direct and quadrature  inductances respectively. R  is the stator resistance. p  is the 

number of pole pairs and J is the system moment of inertia. 
The model (7) can be reduced to normal form for two inputs (Brunovsky 1970), in a standard 
way using the following transformations  (Kuo 2001), 

 

1 1

1 1

1

4

1 2 3

2
4 4

2 2

0 0 0

0 0 0

0 0 0

0 0 0

0 01 0

0 0 0 0

a c

a c
x y

c

a

a a a

u u ya a
c c

 
 
 =
 
 
 

− −  
   ′= + −  
    

 (8) 

where  

1

1.5
;

p
a

J

λ
= 2 3, ,

q q

p R
a a

L L

−λ −
= =

4 ;
d

R
a

L

−
= 1 2

1 1
;

q d

c c
L L

= =  

The Brunovsky  form  for two inputs is given  below (where , ,x u A  and B  are retained  for 

simplicity of notation ).  

 
(2)( )x Ax Bu f x

•

= + +
 (9) 

Where 
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0 1 0 0 0 0 0
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k k k
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= = =  

3.2 Linearization of PMSM normal form model 

Given the 4 dimensional model of a PM synchronous motor (IPM model) of the form (9), the 
system can be linearized using the following transformations   

 (2)( )y x x= + φ  (10) 

 
(1) (2)

2( ( )) ( )u I x v x= + β + α  (11) 
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where 1 2 1 2[ ] ; [ ]T Tu u u v v v= =  

2 2 4 1 4 1 3(2) (2) (1)

1 3 4 3 2 3

0

0
( ) , ( ) , ( )

0 0

0

k x x k x k x
x x x

k x x k x x

 
  −    φ = α = β = −     −    
 

        

where 2I is the identity matrix of order 2. The system then reduces to 

 (3)( , )y Ay Bv O y v
•

= + +  

where (3)( , )O y v represents third and higher order nonlinearities . 

4. Linearization of PMSM model using SIMULINK 

4.1 Construction of PMSM model 

Customization of PMSM machine model using MATLAB/SIMULINK  tools had to be 

carried out as the standard library available contained only special cases. The PM motor 

drive simulation was built in several steps through the  construction of q-axis circuit, d-a xis 

circuit, torque block and speed block. 

4.1.1 q-axis circuit  

By using the following system equation the q-axis circuit is constructed. 

( )q q q r d d f q qv R i L i L i= + ω + λ + ρ
 

q-axis circuit in the SIMULINK is shown in Fig.4 . 
 

 

Fig. 4. q-axis circuit                                           
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4.1.2 d-axis circuit  

By using the following system equation the d-axis circuit is constructed. 

( ) ( )d d d r q q f d dv R i L i L i= + ω + ρ λ +  

Simulation of the d-axis circuit is shown in Fig. 5. 
 

 

Fig. 5. d-axis circuit 

4.1.3 Torque block 

By using the following torque equation the torque block is constructed. 

(3 2)( 4)( )e d q q dT p i i= λ − λ
  

The simulation of torque eT  circuit is shown in the Fig 6. 

 

 

Fig. 6. Te Block in Simulink 
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4.1.4 Speed block 

By using the following equations the speed block is constructed. 

 ( )m e l mT T B Jdtω = − − ω
 

(2 )m r pω = ω  

The simulation of mω  circuit is shown in the Fig.7. 

 

 

Fig. 7. Speed Block in Simulink 

4.1.5 Designed PMSM with Vq and Vd as inputs  

The PMSM is constructed by using q-axis, d-axis, torque and speed blocks (figures 4,5, 6, 
and 7 ) and is shown in figure 8. 
 

 
Fig. 8. Permanent Magnet Synchronous Motor with qV  and dV as inputs 
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4.2 Linearization of PMSM SIMULINK model   

The PMSM model is first converted to controller normal form of the linear part (9) using 

transformations as given in (8). Then linearization of the PMSM is carried out using 

quadratic coordinate and state feedback as given in (10) and (11). Fig.9 gives the PMSM 

model including linearization blocks.  1N and 2N include the linear transformations (8) 

while 1L  and 2L , denote the nonlinear transformations (11) and (10) respectively. 

1N , 2N , 1L  and 2L  are implemented using function blocks.  

 

 

Fig. 9. Linearization of PMSM model 

4.3 Verification of linearization of PMSM-simulation results 

For the Interior PMSM, parameters are taken as follows: 

Stator resistance R = 2.875Ω ;  q- axis Inductance Lq = 9mH; d-axis Inductance Ld = 7mH; 

Flux induced in magnets fλ = 0.175 wb; Moment of Inertia J = 0.0008 kg.m^2 

Friction factor B = 1 N.m.s; No. of pole pairs p = 4 
 

qv  eω  K=d eω /d
qv

5 2.55 - 

10 4.7709 0.44418 

15 6.4706 0.33994 

20 7.6082 0.22752 

25 8.2567 0.1297 

30 8.5326 0.05518 

Table 1. Steady  state gain of eω  versus
qv

 
for the  system  in open loop  (Prior to 

linearization) 
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1v  
2y  

*10^(-6) 

K=d 2y /d 1v  

*10^(-6) 

5 2.176 - 

10 4.366 0.438 

15 6.585 0.4438 

20 8.845 0.452 

25 11.162 0.4634 

30 13.55 0.4776 

Table 2. Steady state gain of 2y  vs 1v for the linearized system in open loop 

Prior to linearization, the open loop steady state gain of eω  versus 
qv of the PMSM model 

is investigated and the results are given in Table 1. In Table 1, it is observed that the open 

loop steady state gain of eω  versus  qv (keeping dv constant)  is not  constant  because of the 

system nonlinearity. To verify the linearity of the  system after linearization, we investigated 

the variation of its gain of  2y  ( a scaled version of eω  as can be seen from (8) and (10)) with 

input 1v (see Fig. 9)  and the results are given in Table 2. The table reveals that the gain of 

the system is nearly constant thus verifying that by applying the homogeneous linearizing 

transformation, the PMSM model is made nearly linear for the given set of  inputs. 

 Figures 10  and 11 show the time response of angular velocity eω  by closing the loop 

around PMSM model (Fig. 8) before linearization when qv = 5 units and 30 units 

respectively. It is observed that the dynamic response for qv  = 5 is more oscillatory 

compared to the case of qv = 30 with a fixed controller of proportional gain = 50 and integral 

constant =2. This is to be expected since the loop gain is higher in the former case with a 

higher static gain in the plant or motor as can be seen from Table I. 
 

 

Fig. 10. Time response of angular velocity in closed loop   when  qv  = 5; 50; 2p ik k= =   

(before linearization) 
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Figures 12 and 13  show the time response of  2y   of the transformed PMSM system (Fig. 9) 

in closed  loop when 1v  = 5  units and 30 units respectively . It is observed that a uniform  

output response is obtained in the closed loop  after  linearization when the reference is 

varied. Since the static gain in Table II is nearly uniform, the loop gain is also nearly 

constant for the extreme points in the operating range, thus resulting in the uniform 

dynamic responses in Fig. 12 and 13. 
Simulation results show that the nearly constant gain of the linearized model,  results in a 
uniform response on a range of set point and load inputs with a fixed controller. This is in 
contrast to the case before linearization under the corresponding conditions. 

 

 

Fig. 11. Time response of angular velocity in closed loop   when  qv  = 30; 50; 2p ik k= =   

(before linearization) 

 

 

Fig. 12. Time Response of 2y   for  the linearized system in closed loop when 1v  = 5; 

50; 2p ik k= =
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Fig. 13. Time Response of 2y   for  the linearized system in closed loop when 1v  = 30; 

50; 2p ik k= =  

5. Tuning linearizing transformations 

Unmodelled dynamics coupled with the third and higher order nonlinearities introduced 
due to quadratic linearization, are best accounted for by tuning the transformations (Levin 
& Narendra 1993). 
To further improve the linearity of the system taking into account unmodelled dynamics 
and higher order nonlinearities, tuning of the transformation parameters against an actual 
PM machine is done on the lines similar to those proposed by  Narendra (Levin & Narendra 
1993). Fig 14 shows the block diagram for tuning. 
 

 

Fig. 14. Block diagram for  tuning of transformation 

Referring to Fig. 14, error ( E)  can be calculated  as 

 
1/2

ˆ ˆ( ) ( ) ( )T TE y y y y = ε ε = − −   (12) 
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where ( )1 2 3 4
T

ε = ε ε ε ε
;

ˆ ; 1,2,3,4i i iy y iε = − =  

The error can be written as  

( )
1/22 2 2 2

1 2 3 4E = ε + ε + ε + ε  

Since (2)( )xφ  and (1)( )xβ  are both functions of  1k , we shall redefine  

(2)

1 3 4

0

0
( )

0

x
k x x

 
 
 φ =
 
 
 

  

and  











 ′′
−=

00
)( 3141)1( xkxk
xβ

 

so that (2)( )xφ  and (1)( )xβ can be independently tuned by tuning 1k  and 1k ′  respectively 

and (2)( )xα is not varied. 

5.1 Updation of  N2 transformation coefficients 

Tuning of 2N  transformation implies the tuning of (2)( )xφ . As (2)( )xφ is a function of only 

1 3 4k x x , the coefficient 1k  has to be updated based on the error between the outputs of 

quadratic linearized system and normal form. The updation law is derived as follows. 

1
1 1

yE E
k

k y k

∂∂ ∂
Δ = =

∂ ∂ ∂
 

From (12), it is seen that  

; 1,2,3,4i

i

E
i

y E

ε∂
= =

∂
 

Hence  

31 2 4E

y E E E E

ε∂ ε ε ε 
=  ∂  

. 

 
3 31 2 4

1 3 4
3 4

0

0

0

k x x
x xE E E E E

 
 

ε εε ε ε   ∴Δ = =    
 
 

 (13) 
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Updation of (2)( )xφ  is done by using the formula: 

 1 1 1( ) ( 1) ( );0 1k m k m k m= − − ρΔ < ρ <
  (14) 

where m corresponds to the updating step and ρ  correspond to the accelerating factor. 

5.2 Updation of N1 transformation coefficients 

Tuning of 1N  transformation is achieved by  tuning of (1)( )xβ . As (1)( )xβ is a function of  

1 3k x′  and  1 4k x′ ,  the coefficient 1k ′  has to be updated based on the error between the 

outputs of quadratic linearized system and normal form . The updation law is derived as 

follows. 
 
 

 

 

where  ; 31 2 4E

y E E E E

ε∂ ε ε ε 
=  ∂  
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Assuming  that the steady state of the Simulink model is reached within the tuning period. 

3241

1

1 xvxv
k

u
−−=

′
∂

∂

 

Hence 

 1k ′Δ = 1 4 2 3 3 1 3 42

2 4 2 2

( )
( )

v x v x k x

E k x k x

′+ ε + εε
+  (15) 

Tuning of the quadratic linearizing transformations is done by updating the transformation 

coefficients of vector polynomials (2)( )xφ  and (1)( )xβ . 

5.3 Construction of controller tuning blocks 

Updation of (2)( )xφ  is done by using (14) and 1kΔ  can be obtained from (13). 

The tuning is done using Memory blocks and they are constructed in simulink as shown. 

Fig. 15 shows the construction of Del 1k  block. Similar construction can be done for Del 1 'k  

where 1 'kΔ  can be obtained from (14). 

Simulation of updation of (2)( )xφ  and (1)( )xβ  can be done using the  simulation diagrams  

Fig. 15, 16 and 17.
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Fig. 15. Calculation of del K1 for the updation of (2)( )xφ   

 
 

 
 
 

 
 
 

Fig. 16. Updation rule using Memory Read and memory Write Blocks 
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Fig. 17. Updation of input transformation 
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Fig. 18. Simulation diagram including controller tuning 

 

1v
 2y *10^-6 

K=d 2y /d 1v  

*10^(-6) 

106 7.142 -- 

108 7.38 0.048 

110 7.334 0.048 

112 7.43 0.048 

114 7.525 0.0475 

116 7.62 0.0475 

118 7.714 0.047 

Table 3. Steady state gain of  2y  versus 1v for the  linearized  system in  open loop after 

tuning 
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Complete simulation diagram including conversion to Brunovsky form, linearization and   

tuning is given in Fig.18. It is seen that the error after tuning is reduced to 0.01.  

In Table 3, improvements are obtained for the steady state gain of  2y  versus 1v for the 

linearized system after incorporating tuning of the transformation parameters. Table 3  

reveals that the gain of the system is even more constant compared to that shown in Table 2, 

thus verifying that by tuning the homogeneous linearizing transformation, the linearity of 

the system has been improved for the given set of inputs.  

6. Conclusion 

Application of MATLAB and SIMULINK tools for the verification of linearization of 
permanent magnet synchronous motor is considered in this chapter. Simulation is done 
using the dynamic model of PMSM, application of nonlinear coordinate and state feedback 
transformations to the SIMULINK model which is customized to PMSM and tuning the 
transformations against a linear system model employing error back propogation to account 
for unmodelled dynamics. 
 Initially, linearization of PMSM is verified using the dynamic model of PMSM. The 
dynamic model of a PM synchronous motor involving quadratic nonlinearity is linearized 
and simulated using MATLAB. Steps are given to perform dynamic simulation  for the 
nonlinear system using the dynamic equations based on parameters of the machine, 
together with the state and input transformations using MATLAB function ODE45. 
The SIMULINK model of Interior Permanent Magnet machine is  specially developed by 
integrating various blocks as standard library functions do not cater to generic purposes .  
The PMSM machine model, together with the state and input transformations, are simulated 
using SIMULINK. The simulation results show that the linearizing transformations 
effectively linearize the system thus supporting the theory.  

To account for the unmodelled dynamics and third and higher order nonlinearities, tuning 

of the transformation parameters is done by comparing the output of the linearized system 

with a normal form output. Tuning the transformation functions (2)( )xφ  and (1)( )xβ  is 

shown further to improve the linearity of the resulting system. 
More details of the simulation results are given in  (Parvathy et. al. 2011). 
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