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1. Introduction

Methods and techniques to design integrated circuits made a huge progress since German
engineer Werner Jacobi filed a first patent for an integrated-circuit-like semiconductor
amplifying device in 1949 or since Jack Kilby successfully demonstrated the first working
integrated circuit on September 12, 1958. The first integrated circuits were composed of a
small number of transistors and their functionality was very limited. They were designed
manually without any effective calculation tools and therefore the developing phase took
long time. Each design error was difficult to discover and the whole process had to be
repeated when uncovered during physical prototype testing. This further increased time
necessary to develop a working chip. An important milestone in integrated circuits design
is the first microprocessor Intel 4004 produced in April 1971. The significance lies in
the beginning of mutual bond between produced microprocessors and methods to design
them. It was discovered very soon that the high computation power of microprocessors
can be utilized directly by the design process to improve future microprocessors. High
performance microprocessors started to be used for calculations of an estimated behavior
of future prototypes and their parameters. The simple models were transformed to more
complex models that closer represented the reality. More precise models increased a chance
to uncover a design error in early design phases and accelerated its correction. The continual
upgrading process of design methods and tools matures into computer aided design (CAD)
software platforms that are able to carry out many tasks automatically which had to be done
manually in the past.
Constant refinement of design methods, tools and technology secured the steady grow of
integrated circuits internal complexity. Intel co-founder Gordon E. Moore described the trend
in his 1965 paper that the number of components in integrated circuits had doubled every
year from the invention of the integrated circuit in 1958 until 1965. He predicted that the
trend would continue for at least ten years Moore (1965). His prediction has proved to be
uncannily accurate and is now used in semiconductor industry to guide long-term planning
and to set targets for research and development ITRS (2009). This long-term trend is also
known as Moore’s law.
The digital design process uses highly automated CAD tools that significantly reduce the time
necessary to design a prototype when the design is closely specified by full set of parameters.
The original specification is usually general and many parameters have to be defined later.
The process specifying missing parameters is an inseparable part of feasibility study or the
first design phases. It is very important to set suitable parameters because they determine the
resulting prototype. More complex integrated circuits require more parameters to be defined
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and therefore more analysis and simulation work is necessary. Usually this process requires
more time in comparison to the physical design that is mostly done by modern CAD tools.
The modern CAD tools include models that closely represent the resulting prototype;
however, their calculation is too much time consuming. The feasibility study and first design
stages require different models. The models have to be relatively simple with the acceptable
correlation to reality. An excellent software environment to create and evaluate these models
is MATLAB.
Users can create new functions and procedures in MATLAB similarly as in a common
programing language environment. An advantage is that MATLAB has a more simple and
intuitive syntax and thorough help with many practical examples. Additionally, it has an
extensive database of internal functions that can be used directly in the source code of new
functions. Models usually describe a simulated behavior by mathematical equations or some
iterative process. Both types of model description can be written in MATLAB intuitively
with the short source code. However, the biggest advantage is very fast and simple work
with calculated results and the ability to visualize the resulted data with internal MATLAB
functions.
A hardware implementation of an algorithm or computation scheme implies new challenges
that have to be overcome. The general aim is to design an integrated circuit with
minimal area that produces results with a pre-specified overall precision. Deep analysis
and lot of simulations are needed to attain this. MATLAB can be used as a part of
this optimization process. The advantages are extensive mathematical support with the
option to create own optimization code and easy way to sort and evaluate excessive
calculated results. A simple software computational model can be created in MATLAB
and later used within optimization routines. An example of this optimization process
is presented in the following sections with an integrated circuit for acceleration of time
consuming computations of forward and backward modified discrete cosine transform
(MDCT) that is used in audio compression and coding. MDCT is used in many audio
coding standards for time-to-frequency transformation of digital signals. It is perfect
reconstruction cosine-modulated filter bank based on the concept of time domain aliasing
cancellation Princen et al. (1987). MDCT is the basic processing block for high-quality audio
compression in the international audio coding standards and commercial audio compression
algorithms in consumers electronics Bosi & Goldberg (2003); Spanias et al. (2007). Forward
and backward MDCT computations are the most computationally intensive operations in the
well-known audio coding standards. Thus, an efficient implementation of the MDCT has
become the key technology to realize real-time and low-cost audio decoders.

2. Computational models in digital design process

A computational model is a set of equations that describe some selected attribute or feature
in a more simplified way compared to its true physical nature. The idea behind creating
a computational model is to be able to run complex analyses and simulations of specific
scenarios on PC. The fast computational speed and the ability to calculate with a wide
spectrum of input data variations is very important. A computation power of common PC
has been increased significantly in recent years, which enabled to run usual simulations on
ordinary PC that required big server clusters in the past. The ability to create a computational
model easily and in short time accelerates the design process in general. The result is that
a designer can verify his/her designs in early developing phases and use the saved time to
further improvements.
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Digital circuit design is composed of many steps that continually shape the final integrated
circuit. The technology advancement paved the road to very complex integrated circuits
called system on a chip (SoC). The more complex the chip is the more design steps it requires.
Considerable interest has been oriented toward computational models with lower abstraction
levels. This resulted in the development of precise computational models that are integrated
in modern professional design tools. Easy access to these models is a great advantage. They
are utilized mostly during moderate and finalizing design steps. This chapter is oriented to
computational models on higher abstraction levels that are used in feasibility studies and first
design steps.
At the beginning of design process, the computational models depend considerably on a
selection of design characteristics. In this design phase, the designers create more detailed
specifications and develop the guidelines to reach them. The original specification is usually
too general and its parametric goals can be reached by different means. Each selected solution
has to be analyzed and evaluated. Simple computational models are very important in this
process. These models can differ from each other significantly. They use limited amount of
parameters and many unnecessary features are omitted. Models are used in many situations,
e.g., a comparison analysis of hardware implementation with software solution, analysis of
different algorithms, evaluation of different hardware architectures or components. These are
few examples with the most significant influence on the following design steps.
Each hardware implementation performs one or several algorithms. An algorithm is
evaluated by a number of operations that has to be carried out to produce a set of output
data. Long computation process can produce a significant computation error that distorts
the results. Each algorithm has different sensitivity to accumulation of errors. Therefore,
an analysis of computation errors by models is very important and the results usually
dictate minimal precision requirements of hardware components. These models are usually
very simple with minimal utilization of hardware parameters. In general, all operations
are transformed to basic mathematical operations that the selected hardware is capable to
perform. Each transformed operation uses rounding or truncating operation to model limited
precision of hardware components.
Mathematical operations can be performed with data in different data representations.
Selecting an appropriate data representation can improve the resulted parameters. This
effect can be modeled and analyzed. Data can be represented by floating point or fixed
point. Fixed point representations are also called integer representations. Floating point has
better precision for wide data intervals but if data variations are small an integer is a better
solution Inacio & Ombres (1996). An integer does not contain information about decimal
point placement and therefore it has to be managed externally. Floating point computation
components are more complex and thus larger area of a final chip is taken Kwon et al.
(2005). The increased area means higher cost of integrated circuits; hence, integer components
utilization can reduce the price of a final chip. These are universal guidelines but the optimal
results can be achieved only by deep analyses.
Models that analyze data variations are the good starting point to decide between floating
point and integer. The level of specialization is the key information in the decision process.
More universal applications usually use floating point due to more difficult estimation of data
variations. In highly specialized applications integer can be a better solution because internal
data structure can be highly optimized. The optimization results depend considerably on the
quality of used models and on the optimization extent.
Integer is more susceptible to data overflow than floating point Beauchamp et al. (2008). Data
overflow significantly distorts actual values and therefore digital designs have to include
some form of protection mechanism. Before it can be designed, the knowledge where and
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when the data overflow happens is necessary. This is usually analyzed with simple models
that work with wide data intervals and the point of interest is oriented to data that produce
highest peak values. It is also important to monitor the highest negative peaks, because they
can cause data underflow which has similar effect as data overflow. The data producing these
peaks are later used as test vectors for verifications of created designs.
An important part of modern integrated circuit is memory and memory controller. The cost of
memory has been falling in last years, which changed the focus from memory size to memory
controller bandwidth. The bandwidth depends on the speed of access to memory, on memory
delays and on memory interface bit-width. Access to memory can be improved by rearranging
of data in the memory. Reading data from memory that are placed next to each other is much
faster than reading data that are randomly distributed through the whole memory. Grouping
data that are often accessed at the same time and placing them in the shared memory block as
close as possible can significantly reduce the access time and increase the bandwidth. Optimal
data rearranging can be modeled and analyzed.
Another improvement of the memory bandwidth can be achieved by analysis of data values.
If the data values are from a narrow data range, the universal exponent can be transferred
separately and following data are represented only with a mantissa. This methodology is
mostly used in serial data transfers and with integer representations. In this case, the better
bandwidth utilization is increasing complexity of memory controller and therefore it has to
be evaluated more thoroughly. A similar principle can be applied to optimization of integer
representation itself.
Modern algorithms often require large memory. Lot of data are stored for a short time only.
If these time periods are not overlapped, the data can be rewritten and memory size can be
reduced. In many cases, the time periods are overlapped only partially and small changes
within an order of operations can eliminate overlapping. Of course, this requires more
complex models and deeper analysis. The result is represented by a significant reduction
of memory size.
Digital designs can utilize different computation flows. A design with few universal
computation blocks depends more on a memory subsystem. The advantage is a simple design
and support for many different algorithms. The optimization objectives are mostly oriented to
a memory subsystem and to the number of universal computational blocks. Deeper analysis
can evaluate the necessary complexity level of used computational blocks. An exchange of
several computational blocks with simplified blocks can reduce the final area of a chip.
A highly specialized digital design has usually a custom hardware architecture that gone
through a long optimization process. Its significant part is done at a higher abstraction level.
The important subject of analysis is the effect of increased parallel structures or utilization of
computational pipeline. Precision and overflow analysis is more the necessity than an option.
Each computational block can use unique interconnection, special features and attached latch
or register. The aim is to utilize these options efficiently. Then, the resulting design has
excellent parameters. The time consuming optimizations are costly and still economical in
large production quantities.
During the computational model design, it is important to select an area of interest and to
be able to verify precision of results. A model that produces results that differ from reality
too significantly has to be corrected immediately. In many situations, the simple model
composed of few mathematical equations can be sufficient, e.g., to verify an algorithm or
some independent feature. Mutually dependent features have to be modeled by more robust
models. The models that mimic hardware architectures with high precision give designers a
chance to analyze the hardware behavior before it is actually produced. This saves time and
reduces the overall cost.
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The simple model is an advantage when used under optimization routines with many
computation loops. Many mutually dependent parameters can easily rise the number of
optimization cycles over the acceptable level. In these cases, the very simple models can
produce more data on parameters’ dependency that is later used to reduce the number of
optimization dimensions and widths of input data intervals. This procedure can be repeated
later with more robust and more precise models.

3. MDCT computational models in MATLAB

Hardware implementation has special preferences for computational algorithms. The
number and complexity of computation operations are most important. An algorithm with
smaller number of operations computes results in shorter time which represents improved
computational speed. The number of computation operations reduced only by single
operation can significantly improve overall performance if the computation is run many
times under a loop or in more complex algorithm. Not all operations are equal. Addition
and subtraction operations are similar in their complexity. Multiplication operation is much
more complex and therefore consumes much more area on a chip. There is an exception.
Multiplication by a constant that equals to power of 2 (2, 4, 8, 16, 32, 64, ...) is the same as
shifting the original binary number to the left by the number of bits that equals to base 2
logarithm of the constant. It is similar to a constant that equals to negative power of 2 (1/2,
1/4, 1/8, ...) with the difference that shifting is to the right. Hence, one removed multiplication
is more significant than a removed addition or subtraction, and multiplication by power of 2
can be neglected.
The algorithm selected for hardware implementation is presented in Britanak & Rao (2002).
The algorithm computes MDCT that is used in audio compression. It has low number of
mathematical operations. Additionally, it has a symmetric computational structure that is an
advantage in digital design. The symmetric structure can be implemented more efficiently.
The resulting hardware is dedicated to accelerate the time consuming MDCT computations in
audio compression.
Correct verifications during the whole design process save time. Frequent verifications
facilitate a process of locating errors, because only few modifications were made between
two following inspections. An algorithm verification can be done by another algorithm that
is widely accepted and well proven. The best choice for verification of MDCT algorithm is the
original MDCT algorithm Princen & Bradley (1986). Its mathematical equations are:

ck =
N−1

∑
n=0

xncos

[

π

2N

(

2n + 1 +
N

2

)

(2k + 1)
]

, k = 0, 1, . . . ,
N

2
− 1, (1)

x̂n =
2
N

N
2 −1

∑
k=0

ckcos

[

π

2N

(

2n + 1 +
N

2

)

(2k + 1)
]

, n = 0, 1, . . . , N − 1, (2)

where {ck} are MDCT coefficients and {x̂n} represents the time domain aliased data sequence
recovered by backward MDCT. The verification model was designed straightforward by
simple computation loops. The source code is shown in the following MATLAB example.

function Z = MDCT_analytic(X, N)

Z = zeros(1, N/2);

for k = 0:((N/2) - 1)

sum = 0.0;

for n = 0:(N - 1)
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arg = pi / (2 * N) * ((2 * n + 1 + N/2) * (2 * k + 1));

sum = sum + (X(n + 1) * cos(arg));

end

Z(k + 1) = sum;

Complete formulas constituting the selected MDCT algorithm are as follows:

z2k = (−1)k
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and

x
′
n = xn − xN−1−n, x

′′
n = xn + xN−1−n, n = 0, 1, . . . ,

N

2
− 1. (5)

Final MDCT coefficients are obtained as

c2k = z2k, c2k+1 = −zN−2−2k, k = 0, 1, . . . ,
N

4
− 1. (6)

The model of selected algorithm is used for verification and optimization of an internal
computational structure and it is also used under optimization routines with many loops.
Therefore, the model has to be designed more efficiently in comparison to the algorithm
verification model. MATLAB can calculate matrix equations more efficiently than equations
written in linear code. A model described by matrix equations can reduce computation time
significantly. This is very important when the model is a part of optimization process with
many loops, because the saved computation time is multiplied by a number of loops.
Equations (5) can be transformed to matrix form

x
′
= X

′
N/2×Nx, x

′′
= X

′′
N/2×Nx, (7)

where matrices X
′
N/2×N and X

′′
N/2×N are spare matrices that compute addition or subtraction

of two input data. They can be merged to single matrix X1N×N. These matrices model a set
of adders and subtracters and can be used as a part of hardware architecture model. They are
given by

X
′
N/2×N =

[

IN/2 −JN/2
]

, X
′′
N/2×N = [IN/2 JN/2] , X1N×N =

[

IN/2 JN/2
JN/2 −IN/2

]

, (8)
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where IN/2 is the identity matrix, JN/2 is the reflection matrix, all of order N/2. The matrix
X1N×N written in MATLAB is shown in the following example.

X1 = [ eye(N/2) fliplr(eye(N/2));

fliplr(eye(N/2)) -eye(N/2) ];

Equation (4) can be decomposed into several stand-alone operations that are easily
transformed to spare matrices. The first matrix X2N/2×N represents subtraction in the brackets
of equation (4). The second matrix GN×N/2 represents multiplication by cosines and sines
constants. The third matrix G2N/2×N represents the remaining subtraction and addition. The
matrix X2N/2×N models a set of subtracters, matrix GN×N/2 models a set of multipliers and
G2N/2×N models a set of adders and subtracters. They are given by

X2N/2×N =

[

0N/4 −IN/4 0N/4 IN/4
IN/4 0N/4 −IN/4 0N/4

]

, G2N/2×N =

[

IN/4 0N/4 −IN/4 0N/4
0N/4 IN/4 0N/4 IN/4

]

, (9)
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, (10)

where 0N/4 is the zero matrix, IN/4 is the identity matrix, JN/4 is the reflection matrix, all of
order N/4. The matrices X2N/2×N, GN×N/2 and G2N/2×N written in MATLAB are shown in
the following example.

X2 = [zeros(N/4) -eye(N/4) zeros(N/4) eye(N/4);

eye(N/4) zeros(N/4) -eye(N/4) zeros(N/4)];

G = [ diag(cos((((N/2)-(1:2:N/2))*pi)/(2*N))) zeros(N/4);

zeros(N/4) diag(fliplr(cos((((N/2)-(1:2:N/2))*pi)/(2*N))));

zeros(N/4) fliplr(diag(sin((((N/2)-(1:2:N/2))*pi)/(2*N))));

flipud(diag(sin((((N/2)-(1:2:N/2))*pi)/(2*N)))) zeros(N/4) ];

G2 = [ eye(N/4) zeros(N/4) -eye(N/4) zeros(N/4);

zeros(N/4) eye(N/4) zeros(N/4) eye(N/4) ];
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Equation (6) represents permutation operations that change signs and order of data. It can be
transformed to the matrix form. The source code of the resulting matrix QN/2×N/2 is shown
in the following MATLAB example.

function Q = permatrix(N);

Q = zeros(N/2);

for k = 1:(N/4)

Q(2*k-1, k) = 1;

Q(2*k, N/2-k+1) = -1;

end

The most complex part of the selected algorithm is equation (3). It represents N/4-point
DCT-II and N/4-point DST-II combined by a butterfly operation Britanak & Rao (2002).
DCT-II and DST-II can be represented by a matrix but it cannot be generated universally
for any N/4 due to their not symmetrical internal computational structure. The MDCT
computational model is optimized for audio standard MP3 that uses 36-point MDCT for
slowly changing audio signal and 12-point MDCT for rapidly changing audio signal. Hence,
the model requires 9-point DCT-II/DST-II and 3-point DCT-II/DST-II matrices. The matrices
DCT-II and DST-II are similar and it is possible to transform one to the other with simple
modifications. The procedure to transforming DST-II to DCT-II is described in Britanak (2002).
The transformation is composed of extra operations that invert each odd input data and
reverse order of all input data. It results in one DCT-II that is used two times with different sets
of data. This is advantageous when dedicated hardware architecture is to be designed. The
single hardware block can be optimized within shorter time and overall hardware architecture
can be reduced easily by multiplexing input data from two datasets to single hardware block.
The 9-point DCT-II matrix can be derived directly from the mathematic equation. The result is
a matrix that represents many operations of addition and multiplication. The number of these
operations can be reduced significantly by matrix decomposition to several spare matrices or
by optimized linear code. The both principles utilize computation with partial results that
influence several output data. It is more efficient to use already computed partial results
during the following computations than to calculate all results from input data only. The
9-point DCT-II matrix DC9×9 written in MATLAB is shown in the following example.

u = 2 * pi / 9;

d1 = sqrt(3)/2;

d2 = 0.5;

d3 = cos(4*u);

d4 = cos(2*u);

d5 = cos(u);

d6 = sin(4*u);

d7 = sin(2*u);

d8 = sin(u);

DC = [ 1 1 1 1 1 1 1 1 1;

d7 d1 d8 (d7-d8) 0 (d8-d7) -d8 -d1 -d7;

-d3 d2 (d3+d5) -d5 -1 -d5 (d3+d5) d2 -d3;

d1 0 -d1 -d1 0 d1 d1 0 -d1;

-(d3+d4) -d2 d3 d4 1 d4 d3 -d2 -(d3+d4);

(d7-d6) -d1 -d6 d7 0 -d7 d6 d1 (d6-d7);

d2 -1 d2 d2 -1 d2 d2 -1 d2;

d6 -d1 (d6+d8) -d8 0 d8 -(d6+d8) d1 -d6;
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d4 -d2 d5 -(d4+d5) 1 -(d4+d5) d5 -d2 d4];

It can be seen from the 9-point DCT-II example that the matrix DC9×9 is not a spare matrix.
It is composed of many nonzero constants. Most of them are not equal to power of 2; hence,
shift operations are used rarely. When the computation of this matrix is carried out directly,
the number of multiplications is equal to the number of matrix elements that are not equal to
±1 or 0. The number of multiplications is equal to 60. 12 of them are multiplication by 0.5 and
therefore the number of nontrivial multiplication is 48.
Many scientific papers oriented to reduction of mathematical operations within specific
algorithms were published. The research in this area of interest is highly valued. The
paper Britanak & Rao (2001) presents linear code that requires 10 multiplications for a
computation of 9-point DCT-II and 2 of them are multiplication by 0.5. The optimized linear
code needs 6-times less multiplications. This code can be transformed to a set of spare matrices
that calculate results with minimized number of mathematical operations when multiplied
in correct order. One version of these spare matrices is shown in the following MATLAB
example.

DC1 = [ 0 0 0 1 0 1 0 0 0;

0 0 0 1 0 -1 0 0 0;

0 0 1 0 0 0 1 0 0;

0 0 -1 0 0 0 1 0 0;

0 1 0 0 0 0 0 1 0;

0 1 0 0 0 0 0 -1 0;

1 0 0 0 0 0 0 0 1;

-1 0 0 0 0 0 0 0 1;

0 0 0 0 1 0 0 0 0];

DC2 = [ 0 0 0 0 1 0 0 0 1;

1 0 1 0 0 0 0 0 0;

0 0 1 0 0 0 -1 0 0;

1 0 0 0 0 0 -1 0 0;

1 0 -1 0 0 0 0 0 0;

0 1 0 -1 0 0 0 0 0;

0 0 0 1 0 0 0 1 0;

0 1 0 0 0 0 0 -1 0;

0 1 0 1 0 0 0 0 0;

0 0 0 0 0 -d1 0 0 0;

0 0 0 0 d2 0 0 0 0;

0 0 0 0 0 0 1 0 0;

0 0 0 0 0 0 0 1 0;

0 0 0 0 0 0 0 0 1];

DC3 = [ 0 1 0 0 0 0 0 0 0 0 0 1 0 0;

0 0 0 0 0 1 0 0 0 0 0 0 1 0;

0 0 -d3 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 -d4 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 -d5 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 -d6 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 -d7 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 -d8 0 0 0 0 0;
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0 0 0 0 0 0 0 0 0 0 -1 0 0 1;

1 0 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 0 0 0 0 0 0 1 0 0 0 0];

DC4 = [ d2 0 0 0 0 0 0 0 0 0 0;

0 -d1 0 0 0 0 0 0 0 0 0;

0 0 1 0 0 0 0 0 1 0 0;

0 0 -1 0 0 0 0 0 1 0 0;

0 0 0 1 0 0 0 0 1 0 0;

0 0 0 0 0 1 0 0 0 0 1;

0 0 0 0 0 -1 0 0 0 0 1;

0 0 0 0 0 0 1 0 0 0 1;

1 0 0 0 0 0 0 0 0 1 0;

0 0 0 0 0 0 0 0 0 1 0;

0 0 0 1 0 0 0 0 0 0 0;

0 0 0 0 1 0 0 0 0 0 0;

0 0 0 0 0 0 1 0 0 0 0;

0 0 0 0 0 0 0 1 0 0 0];

DC5 = [ 0 0 0 0 0 0 0 0 1 0 0 0 0 0;

0 0 0 0 0 0 0 -1 0 0 0 0 0 1;

0 0 -1 0 0 0 0 0 0 0 0 1 0 0;

0 1 0 0 0 0 0 0 0 0 0 0 0 0;

0 0 0 1 0 0 0 0 0 0 -1 0 0 0;

0 0 0 0 0 0 1 0 0 0 0 0 -1 0;

1 0 0 0 0 0 0 0 0 -1 0 0 0 0;

0 0 0 0 0 1 0 0 0 0 0 0 0 1;

0 0 0 0 1 0 0 0 0 0 0 1 0 0];

The matrices DC19×9, DC214×9, DC311×14, DC414×11 and DC59×14 use the same constants
as the matrix DC9×9 from the previous example. They are designed to model hardware
architecture. Addition or subtraction operations have only two inputs which is characteristic
for hardware implementations. Mutual addition of more input data is distributed through
several matrices. The last few lines of the several matrices perform no mathematical operation.
These lines provide access to input data or partial results for the following matrices.
Computation of 9-point DST-II with 9-point DCT-II requires two small modifications.
Inversion of odd input data can be modeled by a modified identity matrix that has all odd
diagonal elements equal to −1. Reverse order of input data can be modeled by a reflection
matrix. These two matrices are used together with DC19×9 during computation of 9-point
DST-II. The computations of 9-point DCT-II and 9-point DST-II are done independently with
clearly separated input data and results. The model with both 9-point DCT-II and 9-point
DST-II is shown in the following MATLAB example.

M1 = [ fliplr(eye(9)), zeros(9);

zeros(9), eye(9)];

M2 = diag([ones(1,9), repmat([1 -1],1,4), 1 ]);

DCC1 = [ DC1 zeros(9);

zeros(9) DC1 ];

DCS1 = DCC1*M2*M1;

DCS2 = [ DC2 zeros(14,9);
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zeros(14,9) DC2 ];

DCS3 = [ DC3 zeros(11,14);

zeros(11,14) DC3 ];

DCS4 = [ DC4 zeros(14,11);

zeros(14,11) DC4 ];

DCS5 = [ DC5 zeros(9,14);

zeros(9,14) DC5 ];

The results from DCT-II and DST-II are combined by a butterfly operation. It is a symmetrical
operation and therefore can be described universally for any N/4 by a matrix DN/2×N/2. The
matrix written in MATLAB is shown in the following example.

D = [ 1, zeros(1,N/2-1);

zeros(N/4-1,1) eye(N/4-1) zeros(N/4-1,1) -fliplr(eye(N/4-1));

zeros(1,N/4) -1 zeros(1,N/4-1);

zeros(N/4-1,1) -fliplr(eye(N/4-1)) zeros(N/4-1,1) -eye(N/4-1)];

The presented matrices are the main elements of the MDCT model. The model computation
core is composed of multiplications of these matrices in a correct order. The MDCT model is
shown in the following MATLAB example.

function C = MDCT36(x);

N = 36;

nc = sqrt(2)/2;

u = 2 * pi / 9;

d1 = sqrt(3)/2;

d2 = 0.5;

d3 = cos(4*u);

d4 = cos(2*u);

d5 = cos(u);

d6 = sin(4*u);

d7 = sin(2*u);

d8 = sin(u);

C = nc*Q*D*DCS5*DCS4*DCS3*DCS2*DCS1*G2*G*X2*X1*x;

All matrices used in the model are spare matrices with low number of mathematical
operations which increases computational speed in MATLAB. They also correspond to basic
hardware computational blocks as an adder, subtracter or multiplier. Further optimization of
these matrices also improves the resulting hardware architecture.
The MDCT computational model is created. The next step is analysis of data variations. Its
results represent actual intervals of data inside the modeled computational structure. The
positive and negative extreme input values can cause data overflow or data underflow and
therefore it is important to understand how the extreme values are propagated through
the computational structure. This knowledge facilitates a selection of appropriate data
representations and is necessary when integer representations are selected. Extreme values
of partial results can be paired with input data that caused them. These input data can be
included into a verification data set and used later to test if overflowing or underflowing
can happen. A computational model described by a matrix equation simplifies the analysis
process which is based on solving these mathematical equations. The equation

yX1 = X1N×Nx, (11)
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can be transformed to a set of equations

yX1
1 = X1(1, :)x = X1(1, 1)x1 + X1(1, 2)x2 + . . . X1(1, N)xN ,

yX1
2 = X1(2, :)x = X1(2, 1)x1 + X1(2, 2)x2 + . . . X1(2, N)xN ,

...

yX1
N = X1(N, :)x = X1(N, 1)x1 + X1(N, 2)x2 + . . . X1(N, N)xN , (12)

where X1(i, :) is the i-th line of the matrix X1N×N. The positive extreme value of yX1
i is

produced by addition of partial results X1(i, j)xi with maximal values that are all positive.
This means that if X1(i, j) is positive then xi should be maximal value within the interval of
input data. If it is negative then xi should be maximal negative value within the interval of
input data. Similarly, the negative extreme value of yX1

i is produced by addition of partial
results X1(i, j)xi with maximal values that are all negative. The matrix X1N×N is very simple
with only additions and subtractions and therefore it is intuitive that maximal value of results
is double the maximal input value. This simple conclusion is valid only at the beginning
of computation. In the middle, it is influenced by the internal constants and computational
structure.
The computation of extreme values that are produced by other matrices is done by the same
principle. The matrix X1N×N in equation (11) is substituted by product of the matrix under
investigation and other matrices that precede it. This principle is shown in equation (13). The
product of necessary matrices can be calculated easily in MATLAB. The whole process can be
also automated by new function created in MATLAB.

yX1 = MX2 = X2 ∗ X1 ∗ x

yG = MG = G ∗ X2 ∗ X1 ∗ x

yG2 = MG2 = G2 ∗ G ∗ X2 ∗ X1 ∗ x

yDCS1 = MDCS1 = DCS1 ∗ G2 ∗ G ∗ X2 ∗ X1 ∗ x

yDCS2 = MDCS2 = DCS2 ∗ DCS1 ∗ G2 ∗ G ∗ X2 ∗ X1 ∗ x

yDCS3 = MDCS3 = DCS3 ∗ DCS2 ∗ DCS1 ∗ G2 ∗ G ∗ X2 ∗ X1 ∗ x

yDCS4 = MDCS4 = DCS4 ∗ DCS3 ∗ DCS2 ∗ DCS1 ∗ G2 ∗ G ∗ X2 ∗ X1 ∗ x

yDCS5 = MDCS5 = DCS5 ∗ DCS4 ∗ DCS3 ∗ DCS2 ∗ DCS1 ∗ G2 ∗ G ∗ X2 ∗ X1 ∗ x

yD = MD = D ∗ DCS5 ∗ DCS4 ∗ DCS3 ∗ DCS2 ∗ DCS1 ∗ G2 ∗ G ∗ X2 ∗ X1 ∗ x

yQ = MQ = Q ∗ D ∗ DCS5 ∗ DCS4 ∗ DCS3 ∗ DCS2 ∗ DCS1 ∗ G2 ∗ G ∗ X2 ∗ X1 ∗ x (13)

The next step is optimization of all data representations within the whole computational
structure. Integer representations are selected for the MDCT model. The extreme values are
known, therefore data overflow is no longer a problem. The aim of the following optimization
is to set an optimal ratio between overall computation error, input data precision and output
data precision. The MDCT algorithm is composed of many mathematical operations and most
of them increase the interval of their results. This means widening of integer interface. An
addition usually increases the interface by one bit and a multiplication increases it to double.
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The value of the least significant bit (LSB) decreases exponentially with linear increasing of
integer interface bit-width. When the LSB value is too small the information that it carries
can be discarded without increasing the overall computation error. This can be modeled by
introduction of rounding or truncating operations into the model. MATLAB contains internal
functions that transform data to binary integer and back. This is shown in the following
MATLAB example where b1 is an integer variable and a2 is recovered value of a1 with finite
precision set by q.

q = quantizer([16,15]);

a1 = 0.54321;

b1 = num2bin(q, a1);

a2 = bin2num(q, b1);

The functions used in the previous example take too much time to compute. A faster
method to model finite precision of data is the utilization of truncating operations that directly
represents discarding of several LSBs. The rounding operation is more complex and requires
additional computations. The rounding operation is usually transformed to a combination
of addition and truncating operation where the added value is equal to the half of new LSB
after rounding. Data in hardware are usually represented in two’s-complement arithmetic and
discarding of several LSBs in this system represents rounding toward zero. The function that
performs rounding toward zero in MATLAB is called fix(). The operation of the fix() function
is confined to the placement of decimal point. The shift of decimal point modifies the amount
of data that is going to be discarded. The new data has to be in original form and this implies
a second shift of the decimal point in opposite direction. The combination of shift, rounding
toward zero and opposite shift can model the truncating operation in hardware. A shift is
represented by multiplication of a constant. A constant in the binary shift is equal to power
of 2. The positive power represents data shift to the left and negative power stands for data
shift to the right. This is shown in the following MATLAB example that is a modification of
the MDCT computational model.

yX1 = X1*x;

fyX1 = fix(2^s1 * yX1) * 2^(-s1);

yX2 = X2*fyX1;

fyX2 = fix(2^s2 * yX2) * 2^(-s2);

yG = G*fyX2;

fyG = fix(2^s3 * yG) * 2^(-s3);

yG2 = G2*fyG;

fyG2 = fix(2^s4 * yG2) * 2^(-s4);

yDCS1 = DCS1*fyG2;

fyDCS1 = fix(2^s5 * yDCS1) * 2^(-s5);

yDCS2 = DCS2*fyDCS1;

fyDCS2 = fix(2^s6 * yDCS2) * 2^(-s6);

yDCS3 = DCS3*fyDCS2;

fyDCS3 = fix(2^s7 * yDCS3) * 2^(-s7);

yDCS4 = DCS4*fyDCS3;

fyDCS4 = fix(2^s8 * yDCS4) * 2^(-s8);

yDCS5 = DCS5*fyDCS4;

fyDCS5 = fix(2^s9 * yDCS5) * 2^(-s9);

yD = D*fyDCS5;

fyD = fix(2^s10 * yD) * 2^(-s10);
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yQ = Q*fyD;

fyQ = fix(2^s11 * yQ) * 2^(-s11);

C = nc*fyQ;

The variables s1, s2, . . . , s11 from the previous example represent the precision of partial
results. The values of variables are natural numbers and they depend on the input data
precision, input data interval and intervals of partial results. They all can be used as
inputs of an optimization process where low values of the variables mean low overall
computation precision and high values of the variables imply large area of a resulted hardware
implementation. Some of them are more important than others. Multiplication doubles the
output precision. It means that a multiplier output has two time more bits in comparison to a
single multiplier input and therefore the precision of multiplication results has to be modified.
Overall computation precision is influenced significantly by precision of internal constants.
The MDCT algorithm uses constants three times during the whole computation. The first
set of constants is represented by the matrix GN×N/2. The second set of constants is used
during computation of DCT-II and DST-II and the last multiplications by constant represent
the normalization of all results by the scaling constant nc. Precision of the internal constants
can be optimized together with other variables.
Suitable values of the variables and precision of constants can be set by a simple analysis.
Several variables can be set intuitively. One of them is s1 that stands for the precision of
matrix X1N×N. This matrix performs addition and subtraction operations and adding one
extra bit is required. The truncating operation at the beginning of computation affects overall
computation error more significantly. This truncating operation can be omitted. A similar
principle can be done also for matrix X2N/2×N. The other variables can be set to the output
precision that is increased by one or two bits. The effect of higher precision can be easily
visualized up to three dimensions in MATLAB. In direct approach, more dimensions are not
possible to show clearly. Therefore, it is useful to modify only two variables at a time when
the visualization is the main optimization tool. An example of the described visualization is
shown in Figures 1 and 2. As can be seen, the multiplication results with bit-width wider than
20 bits does not improve overall precision in the specific situation shown in Figures 1 and 2.
The combination of visualizations and intuitive approach usually result in a set of suitable
variable and parameter values within short time. However, complex optimization routines
are necessary to calculate the best set of variables and parameters.

4. Refinement of computational models and their application

Computational models are used in analyses, simulations and optimization processes. They
are the key elements to further improve the parameters of future products. Optimized
computational models represent hardware architectures that are later implemented as
hardware prototypes. Verification of hardware prototypes and their following modifications
are necessary. Hardware prototypes are designed in different platforms; therefore, direct
verification is not possible. Verification models have been created to test designed
computational models. The mechanism to generate input stimuli and pair them with correct
results can be utilized. The necessary modifications have to be made to transform generated
data to the specific data representations that are used in hardware prototypes. The models
can be upgraded to write the transformed data to an external file that is directly used as
input of a verification process. The modification of the final computational model allows to
include not only input output pairs but also data that represent partial results of the internal
computational structure.
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Fig. 1. Maximal computational error dependence on the bit-width of multiplication results.

The most important parameters of the hardware chip are the area, speed or frequency and
delay. These parameters depend significantly on implementation technology. They cannot
be calculated directly or at least without extremely complex models. Low abstraction level
models are capable to compute them with high precision but they are too time demanding.
They are used usually only for verification or fine-tuning during the final steps of the design
process. The problem is that these parameters are necessary within the optimization process.
They are important factors of final product specification. At the same time, they represent
feasibility boundaries. The chip with the area larger than few hundreds square millimeters is
not possible to produce and it is the same with too high frequency. Many other parameters
influence their values, e.g., higher precision stands for larger area. Precision can be easily
modeled and accurately calculated. However, this is not true for the area. An optimization
process has to be able to evaluate the effect of increased precision to the area. Otherwise, a
cost of increased precision cannot be assessed.
Time consuming calculations can be replaced by an estimation. The advantage is in
significantly reduced computation complexity. This allows to use an estimation as a part of
the optimization process and to optimize other parameters more efficiently. A disadvantage
is in limited accuracy. In general, estimation of some complex parameter, e.g., the area, can be
implemented into computational models with any abstraction levels. Estimation capabilities
of higher abstraction models produce more coarse results. However, the accuracy can be
improved by increasing the amount of data that the estimation is based on. The estimation
data can be taken from many diverse situations and can be represented by many different
forms. The most common procedure is to take data from well known previous situations or
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Fig. 2. Maximal computational error dependence on the bit-width of multiplication results
displayed in base 10 logarithmic scale.

product versions and to interpolate between them. Higher number of situations or different
versions imply a better interpolation and also more accurate estimation.
An estimated parameter is dependent on many other parameters. Each parameter included
into estimation function increases the number of dimensions that the interpolation has to
work with. An estimation can be simplified by reducing this number with selecting only
the most important parameters. A simplified estimation can be used at the beginning of
optimization process together with higher abstraction computational models. When more
data are accumulated, additional parameters can be used to increase accuracy. Later, the new
data can be taken from early prototypes which further improves accuracy.
More refined computational models can be transformed to independent applications. This
can be useful when a product is a part of a more complex unit. Teams that design other
parts can test mutual features and integration capability much sooner. Another example is
the hardware-software co-design. The created applications can allow to test new software
before the hardware is actually produced. Computational models with improved estimation
capabilities can be transformed to applications that are offered together with final products
as an extra tool. This is useful for universal products with several setting values or many
parameters that can be modified by customers.
An independent application requires to design an input/output interface for users. The best
choice is a graphical interface that is easy to understand and can be operated intuitively.
MATLAB is a great tool to design computational models. The models can also be upgraded
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with a new graphical interface. MATLAB is also able to transform their source code to
independent application that can be run on a common PC.

5. Modifications of the MDCT computational model to improve hardware

architecture parameters

The most important goal of computational models is to improve the resulting hardware
implementation or some parameters of final chip. The original MDCT computational model
had been continually upgraded. Modifications were oriented to simplify the computational
structure, reduce mathematical operations and improve generality. Changes were done to the
algorithm, order, type and number of mathematical operations, computational pipeline and
level of parallel computations.
The first major modification is oriented to a simplification of the computational structure
located between inputs and first multiplications. This part is described by mathematical
equations (4) and (5) or by matrices X1N×N , X2N/2×N, GN×N/2, G2N/2×N of the MDCT
computational model. Basic algebraic manipulations applied to these equations transform
several additions of input data to additions of internal constants. The constants are not
changed during the whole computation process and therefore the addition of internal
constants can be calculated in advance. This produces new constants that are used as
replacement of the original constants and the overall number of addition operations is
reduced. This process is presented in Šimlaštík et al. (2006).
Another modification is associated with a scaling factor. The MDCT algorithm uses the scaling
constant nc that is applied to all results. Algebraic manipulation can change the position of
this multiplication and combine it with any matrix of the MDCT computational model. The
matrix DCS322×28 represents multiplication by constants; however, few of them are equal
to ±0.5 that can be implemented by shift operations. Combination of the scaling factor with
these constants nullifies this advantage and then a standard multiplier has to be used. The best
option is to use the matrix GN×N/2 again. In this situation, the new constants are calculated
as a product of scaling factor and original constants. This results in a reduced number of
multipliers used within MDCT computational structure Malík et al. (2006).
The original MDCT computational structure does not differentiate between addition of both
positive, combination of positive and negative and both negative input variables. Addition
of both positive input variables is implemented by an adder. Addition of one positive and
one negative is implemented by a subtracter. Addition of two negative input variables is
implemented by a combination of inverter and subtracter. The inverter changes the sign of
the first input and then the subtracter calculates the result. The problem is that this operation
is not usually implemented into standard computation blocks and extra inverters increase the
final area. The solution lies in further optimization of the MDCT computational structure. The
inversion can be separated from the subtraction and combined with preceding mathematical
operations by applying basic algebraic manipulations. The separated operation of inversion
can be completely absorbed and then the extra inverter is omitted. An example of this
situation is described by equations (14) and (15).

e = a − b, f = c + d, g = −e − f , (14)

e = −(a − b) = −a + b = b − a, f = c + d, g = e − f . (15)

The sign change of the variable e in equation (15) is done by exchanging the input variables
a and b before the variable e is calculated. Internal constants can also be used to completely
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absorbed extra inversions. In this case, new constants are equal to product of −1 and original
constants which is the same as inversion of the original constants. The MDCT computational
model described by matrix equations is a great advantage, because the inversion separation
can be written by matrix decomposition. The new matrix that depicts separated inversions is
spare diagonal matrix with most diagonal elements equal to 1 and only the elements that
represent inversions under investigation equal to −1. MATLAB can easily calculate the
product of this matrix with a preceding matrix. If the result does not represent a situation
when extra inversion can be absorbed completely, MATLAB can calculate new matrix
decomposition and then the process is repeated. Optimized MDCT hardware architecture
with reduced extra inverters is presented in Malík et al. (2006).
The next major modification allows computation of backward MDCT by the computational
structure optimized for forward MDCT. This means that computation of forward and
backward MDCT can be calculated by the same MDCT kernel. Complexity of the required
changes within MDCT computational structure is not high which was presented in Cho et al.
(2004) with a different MDCT algorithm. The changes are related to the inversion of several
signals and modification of the input and output parts of the MDCT computational structure.
Backward MDCT has twice as many outputs than inputs which is exactly opposite in
comparison to forward MDCT. The matrices at the beginning and at the end of the MDCT
computational structure were modified to include this. Backward MDCT uses extra scaling
factor equal to 2/N that was absorbed to internal constants. Modified MDCT computational
structure and resulted hardware architecture is presented in Malík (2007).
The MDCT computational structure is composed of many mathematical operations. When
they are implemented directly the resulted hardware consumes a large area. The advantage
is in high computational speed. However, higher computational speed can be achieved by
increasing operational frequency and therefore the large area is a disadvantage. The area
can be scaled down by separating mathematical operations to different time periods. It is
actually a reduction of parallel computational level. This process requires to add memory
elements into architecture to store partial results and to keep them unchanged for several
computational cycles. The symmetrical computational structure, e.g., the butterfly structure,
can be scaled down intuitively. In this case, all results are described by the same equation with
different input variables. This means that computational structure of a single result is able to
compute other results if a mechanism that selects different input variables is attached to it.
The situation is more difficult when a computational structure is not symmetrical, because the
universal computational structure dedicated for several results has to be designed manually.
This is usually a challenging and time consuming process.
The memory elements added into computational structure can be used to introduce a pipeline
computation. A pipelined computational structure represents a computational structure that
is divided into several parts and all these parts compute their partial results at the same time.
The aim is to design these parts so the whole computation process is continual and none
part has to wait for its input data. This results in significantly increased computational speed
without increasing operational frequency. A minor disadvantage is in induced computational
delay. The MDCT computational structure with reduced parallel computational level and
pipelined computation is presented in Malík (2007).
The MDCT computational model was upgraded with estimation capabilities. The estimated
parameter is the area described in 4-input Look-Up Tables (LUTs) which are basic
computational blocks used in FPGA technology. The FPGA chips were used for hardware
prototyping. Estimation data were taken from elementary prototypes. The estimation uses a
linear interpolation to calculate estimated results. The estimated results of this simple model
had been used within the optimization process. However, later evaluation showed that the
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Complete Computation 4-input LUTs Flip flops Frequency Latency

No optimization MDCT 18661 8174 32.26 MHz 341 ns

After optimization MDCT / IMDCT 15536 1269 41.67 MHz 192 ns

Table 1. 36-point MDCT prototypes implemented into FPGA

Complete 4-input LUTs Flip flops Frequency Latency

No optimization 100 % 100 % 100 % 100 %

After optimization 83.3 % 15.5 % 129.2 % 56.3 %

Difference -16.7 % -84.5 % 29.2 % -43.7 %

Table 2. Comparison of 36-point MDCT prototypes implemented into FPGA

estimated results were significantly different in comparison to prototypes. A further analysis
showed that the generated set of input parameters represents hardware architecture with
acceptable overall parameters and the estimation was not upgraded further.
The MDCT computational model was used to calculate optimal input parameters. These
parameters represent the precision of internal constants and several partial results. The
necessary input variables are input precision and overall computation precision. The
optimization process is presented in Malík et al. (2006).

6. Evaluation of the optimization process

Several hardware prototypes were implemented into FPGA technology. The first prototype
represents implementation of MDCT hardware architecture without any optimization. It is
implementation of a complete MDCT computational structure based on the selected MDCT
algorithm. The resulted parameters are shown in the first line of Table 1.
The second line of Table 1 represents parameters of the optimized MDCT computational
structure with no reduction of parallel computational level. This prototype is able to calculate
both forward and backward MDCT. The comparison of these two prototypes from Table 1 is
shown in Table 2.
As can be seen in Table 2, all parameters were improved. The highest improvement is in
reduction of internal memory elements, represented by flip flops, which are reduced by nearly
85 %. The latency is reduced by 44 % which is also induced by operational frequency increased
by 29 %. The area of the combination logic, represented by 4-input LUTs, was reduced by
nearly 17 %.
The MDCT implementations with a complete computational structure consume too large
area and therefore several prototypes with a reduced level of parallel computation were
implemented. The parameters of two such prototypes are shown in Table 3 and Table 4.
The first lines of Table 3 and Table 4 represent parameters of the first reduced MDCT
computational structure that was designed directly from the complete MDCT computational
structure shown in the first line of Table 1. The reduced implementation prototype has only
minimal extra optimizations. The second lines of Table 3 and Table 4 represent parameters of
the reduced MDCT computational structure that was designed from the optimized MDCT
computational structure with no reduction of parallel computational level shown in the
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Reduced Computation 4-input LUTs Flip flops TBUFs Block RAM

No optimization MDCT 5472 2467 2070 0

After optimization MDCT / IMDCT 3275 1752 0 0

Table 3. 36-point MDCT prototypes with reduced level of parallel computation implemented
into FPGA

Reduced Frequency Clock period Computation Latency Latency

No optimization 18.52 MHz 54 ns 18 x CLK 26 x CLK 1 404 ns

After optimization 35.71 MHz 28 ns 18 x CLK 42 x CLK 1 176 ns

Table 4. 36-point MDCT prototypes with reduced level of parallel computation implemented
into FPGA

Reduced 4-input LUTs Flip flops TBUFs Frequency Latency

No optimization 100 % 100 % 100 % 100 % 100 %

After optimization 59.9 % 71.0 % 0.0 % 192.9 % 83.8 %

Difference -40.1 % -29.0 % -100 % 92.9 % -16.2 %

Table 5. Comparison of 36-point MDCT prototypes with reduced level of parallel
computation implemented into FPGA

second line of Table 1. The comparison of the two implemented prototypes with a reduced
level of parallel computation is shown in Table 5.
As can be seen in Table 5, all parameters were improved. The highest improvement is in
increasing operational frequency by nearly 93 %. This is partially caused by introducing a
computational pipeline with 3 stages. As a result the latency is reduced by 16 % even though
the number of clock cycles that represent latency is increased (see the fifth column of Table 4).
Internal memory elements are reduced by 29 %. The area of the combinational logic is reduced
by 40 % and additionally no tree-state buffers (TBUFs) were used. The optimized reduced
prototype is able to calculate both forward and backward MDCT.
The MDCT hardware prototypes were also implemented into two ASIC technologies.
Comparison between implementation into AMS 350nm CMOS standard cell library and
implementation into UMC 90nm CMOS low power digital library technology with clock
gating technique is presented in Malík et al. (2009).
The all MDCT computational models were designed in MATLAB. Most optimization work
and time consuming calculations were also done in MATLAB, which substantially contributed
to overall improvements. Additionally, many internal MATLAB functions were used
to generate random input values and to visualize results, which accelerated the whole
optimization process significantly.
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7. Conclusion

The technology of integrated circuit production has been significantly improved which
resulted in very high integration of currently produced chips. The advantage is in lower
cost and higher computational speed of produced chips. Higher functionality represents
increased complexity of the internal computational structure that has to be designed. The
designed hardware architecture has to be optimized. Each small improvement that reduces
the chip final area, represents lower cost of the produced chips. This is very important in
high volume productions where the savings can grow to high values. Computer aided design
systems represent powerful tools that facilitate and speed up the design process. Most of
these tools include complex low abstraction level models that are able to optimize parameters
of the final chip. However, they are not suitable for a general optimization, because they are
too computation power demanding. An increase of modern chip complexity resulted in more
optimization steps that use models with higher abstraction level. MATLAB is an excellent
software platform that can be used to design, verify and highly optimize these computational
models. The optimization with higher abstraction level models is faster and therefore wider
intervals of input parameters and more suitable solutions can be evaluated. This implies the
final chip with better parameters and lower cost.
Many computational models have to be created during the whole design process. The
feasibility study and early design steps are examples where the computational models are
created anew. MATLAB includes extensive database of internal functions that can be directly
used into computational models which reduces the time necessary to design them. The
created models have to be verified and therefore the ability to generate input test data and
to analyze and visualize the calculated results is necessary. This is supported by embedded
MATLAB functions and the representing functions are easy to use. Additional manipulation
with calculated data further improves the effect of visualizations.
The design process of computational models created in MATLAB was presented by MDCT
computational models. The presented models are oriented to different tasks with a common
goal to improve parameters of the resulting hardware architecture and its implementation to a
chip. The effect of the optimization process was shown by the comparison of several hardware
prototypes implemented into FPGA technology during different optimization phase. The
parameters of the optimized prototypes are significantly improved. The improvements range
from 17 % to 93 %.
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