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1. Introduction 

Due to mass consumption of fossil fuels, global warming and fossil fuels depletion have 
become the serious global environmental problems in the world. After the industrial 
revolution, the averaged concentration of CO2 in the world has been increased from 280 
ppmV to 387 ppmV. Therefore, it is necessary to develop new energy production 
technologies with less or no CO2 emission. It is reported that CO2 can be reformed into fuels 
eg. CO, CH4, CH3OH and H2 etc. by using TiO2 as the photocatalyst under ultraviolet (UV) 
light illumination (Adachi et al., 1994; Anpo & Chiba, 1992; Aurian-Blajeni et al., 1980; Dey 
et al., 2004; Henglein & Gutierrez, 1983; Hirano et al., 1992; Inoue et al., 1979; Ishitani et al., 
1993; Kaneco et al., 1999; Ogura et al., 1992; Takeuchi et al., 2001). If this technique could be 
applied practically, a carbon circulation system would then be established: CO2 from the 
combustion of fuel is reformed, using solar energy, to fuels again, and true zero emission 
can be achieved. Many R&D works on this technology have been carried out, using TiO2 
particles loaded with Cu, Pd, Pt to react with CO2 dissolved in solution (Adachi et al., 1994; 
Goren et al., 1990; Halmann et al., 1984; Hirano et al., 1992; Ibusuki, 1993; Ishitani et al., 1993; 
Kawano et al., 1993; Lo et al., 2007; Tseng et al., 2002; Yamashita et al., 1994). Recently, nano-
scaled TiO2 (Pathak et al., 2004; Qu et al., 2005; Xia et al., 2007), porous TiO2 (Cecchet et al., 
2006), TiO2 film combined with metal (Cueto et al., 2006; Wu & Lin, 2005), and dye 
sensitized TiO2 (Ozcan et al., 2007), are developed for this process. However, the fuel 
concentration in the products achieved an all the attempts so far is still to low, ranging from 
10 ppmV to 1000 ppmV, to be practically useful (Adachi et al., 1994; Dey et al., 2004; Goren 
et al., 1990; Halmann et al., 1984; Hirano et al., 1992; Ishitani et al., 1993; Kaneco et al., 1999; 
Lo et al., 2007; Pathak et al., 2004; Tseng et al., 2002; Xia et al., 2007). For the fuels to be 
practically useful, the concentration of produced fuels should be exceed the lowest 
combustible concentration of each fuel. For example, for CH4 and CO, 5.3 vol.% and 12.5 
vol.% is required, respectively. Therefore, the big breakthrough in increasing the 
concentration level is necessary to advance the CO2 reforming technology. 
According to the calculation by the author, the mass transfer time of 105 - 10-1 s is much 
slower than the photo reaction time of 10-9 - 10-15 s in this process. Therefore, the mass 
transfer is thought to be the main factor contributing to the slow photocatalytic reaction. 
Another reason courses the low reforming rate is the re-oxidization of the products. 
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Namely, due to the reaction surface covered by products, the further movement of the 
reactants to the reaction surface is prevented and the reverse reaction, i.e. re-oxidization, 
which produces CO2 from CO and CH4, occurs. Therefore, it is desirable that the products, 
i.e. CO and CH4 are removed from the reaction surface as soon as they are produced. The 
reactants i.e. CO2 and water vapour can then continue to react on the reaction surface, and 
the fuel production can be sustained under this non-equilibrium reaction condition. In other 
words, by removing the products away, the reaction is forced to head to one direction. The 
gas separation membrane is usually used in the gas separation processes like H2 production 
from hydrocarbon, O2 enrichment from the air, and CO2 capture of the industrial power 
plants. Since the molecular diameters of reactants of CO2 and water vapour are smaller than 
that of CO and CH4 (CO2: 0.33 nm, water vapour: 0.28 nm, CH4: 0.38 nm, CO: 0.38 nm) 
(Nakagawa, 1988), the promotion of the reaction by gas separation is thought to be possible 
and was attempted in this study. This is a novel approach aiming to improve CO2 reforming 
performance over the TiO2. No similar attempts have been reported yet. 
Since this research approach is very novel, the following subjects are set in this study: 
i. Optimization of preparation condition, especially rising speed (RS) of gas separation 

membrane from the TiO2 sol solution in dip-coating process in order to select the 
optimal TiO2 film coating conditions to prepare the membrane for the reactor of gas 
circulation type, 

ii. Verification of the concept of this study which is promotion of CO2 reforming 
performance by gas separation and circulation, 

iii. Proposal of TiO2 photocatalyst power system with zero CO2 emission for the future. 
This chapter introduces the authors’ approach to research and develop the TiO2 
photocatalyst membrane reactor consisting of TiO2 photocatalyst and gas separation 
membrane. At first, the preparation procedure of TiO2 film coated on gas separation 
membrane is introduced. To optimize the preparation condition, the surface structure and 
crystallization characteristics of TiO2 film coated on gas separation membrane are analysed. 
In addition, the CO2 reforming and permeation performance of TiO2 film coated on porous 
gas separation membrane is evaluated by the batch type reactor. Finally, the CO2 reforming 
performance of TiO2 film coated on porous gas separation membrane is investigated by the 
gas circulation type reactor and the concept of this study which is promotion of CO2 
reforming performance by gas separation and circulation is verified. 

2. Research and development on TiO2 photocatalyst membrane reactor 

Since TiO2 photocatalyst membrane reactor is a novel approach to improve CO2 reforming 
performance over the TiO2, it is necessary to verify the effect of combination of gas 
separation membrane and TiO2 on CO2 reforming performance. Therefore, the authors 
investigated the preparation procedure of TiO2 film coated on gas separation membrane by 
sol-gel and dip-coating method and the experimental operation conditions to promote the 
CO2 reforming performance of the TiO2 photocatalyst membrane reactor. The RS which 
influences the thickness and physical and chemical structure of TiO2 film coated on gas 
separation membrane was investigated. The surface structure and crystallization 
characteristics of TiO2 film coated on gas separation membrane, under the various RS 
conditions, were analysed by SEM (Scanning Electron Microscope), EPMA (Electron Probe 
Micro Analyzer) and XPS (X-ray Photoelectron Spectroscopy) to understand the impact of 
difference of RS on the surface structure and crystallization characteristics of TiO2 film, as 
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the first step. The CO2 reforming and permeation performance of TiO2 film coated on gas 
separation membrane was evaluated by the batch type reactor in order to select the optimal 
TiO2 film coating conditions to prepare the membrane for the reactor of gas circulation type. 
In other words, the ideal TiO2 film for this application should have large reaction surface 
areas and high crystallization characteristics but does not block the pores in gas separation 
membrane. After the suitable TiO2 film coating conditions are known, the CO2 reforming 
performance of TiO2 film coated on porous gas separation membrane was investigated by 
the gas circulation type reactor. The effectiveness of gas separation and gas circulation using 
the gas separation membrane on CO2 reforming performance was compared with the results 
obtained from the batch type reactor experiment. 

2.1 Preparation of TiO2 film coated on gas separation membrane 
Sol-gel and dip-coating method was used for preparing TiO2 film in this study. Figure 1 
shows the flow chart of the sol-gel and dip-coating method. TiO2 sol solution was made by 
mixing [(CH3)2CHO]4Ti (purity of 95 wt.%, Nacalai Tesque Co.), anhydrous C2H5OH (purity 
of 99.5 wt.%, Nacalai Tesque Co.), distilled water, and HCl (purity of 35 wt.%, Nacalai 
Tesque Co.).  
 

 

Fig. 1. Sol-gel and dip-coating method to prepare TiO2 film in this study 

The gas separation membrane (silica-alumina gas separation membrane, Noritake Co., Ltd.), 

which was the porous multilayer ceramic tube shown in Fig.2, was dipped into TiO2 sol 

solution and pulled up at the fixed speed. Then, it was dried out and fired under the 

controlled firing temperature (FT) and firing duration time (FD), resulting that TiO2 film 

was fastened on the surface of gas separation membrane. Coating number (N) was fixed at 

1. FT and FD was set at 623 K and 180 s, respectively. RS varied from 0.66 mm/s to 1.7 

mm/s. Downing speed (DS) of gas separation membrane into TiO2 sol solution in dip-

coating process was kept at the constant speed of 1.7 mm/s. Table 1 lists the physical 

properties of the gas separation membrane. It can be seen from Table 1, the mean pore size 

of silica layer is not ideal, as it is not between the molecular diameter of reactants and that of 
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products, as required. It is difficult to find the gas separation membrane with the ideal pore 

size. However, the gas separation membrane selected is capable of separating gases through 

both molecular sieving diffusion and so called Knudsen diffusion mechanisms, therefore it 

can be used. The Knudsen diffusion can separate the gases whose molecular diameters are 

smaller than the pore size of silica layer. Since the molecular diameter of reactant and that of 

product is actually different as described above, we have decided to adopt this gas 

separation membrane. 

 

 

Fig. 2. Gas separation membrane 

 

 

Table 1. Physical properties of gas separation membrane 

2.1.1 Analysis result of TiO2 film coated on gas separation membrane by SEM 
Figures 3 and 4 show SEM images of TiO2 film prepared under various RS conditions. These 

SEM images were taken with 200 times and 1500 times magnification under the condition of 

acceleration voltage of 15 kV and current of 3.0×10-8 A. The silica layer covers one third of 

surface area of gas separation membrane used in this study at the center and the alumina 

layer is exposed except for the area covered by silica layer. Then, SEM images of TiO2 film 

coated were taken for the silica covered area and the alumina area separately. From these 

figures, it can be seen that the number of clucks of TiO2 film coated on alumina layer is less 

than that on silica layer, resulting that the amount of TiO2 coated on alumina layer is larger 

than silica layer. Since the pore size of alumina layer is larger than that of silica layer as 

listed in Table 1, it can be thought that TiO2 sol solution flows into the alumina layer more 

Thickness (m) Mean pore size (nm) Void ratio (-) Permeability  (m
2
)

1. Silica (SiO2) layer 0.2 0.4 0.27 5.4410
-22

2. -alumina (Al2O3) layer 2 4 0.44 8.8810
-20

. -alumina (Al2O3) layer 100 60 0.39 1.7610
-17

4. -alumina (Al2O3) supporter 1000 700 0.40 2.4510
-15

Silica layer is the top layer of this gas separation membrane.

-alumina layer is the second layer. -alumina layer is the third layer.

-alumina supporter is the bottom layer of gas separation membrane.
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easily than the silica layer in dip-coating process. Therefore, it seems that TiO2 film coated 

on alumina layer is fixed more strongly than that on silica layer. 

 

 

 
 

Fig. 3. SEM images of TiO2 film coated on silica layer prepared under various RS conditions 

 
 

 
 

Fig. 4. SEM images of TiO2 film coated on alumina layer prepared under various RS 
conditions 
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2.1.2 Analysis result of TiO2 film coated on gas separation membrane by EPMA 
Figure 5 demonstrates EPMA images of TiO2 film prepared under various RS conditions. 

These EPMA images are taken by 1500 times magnification under the condition of 

acceleration voltage of 15 kV and current of 3.0×10-8 A. Tables 2 and 3 list the distribution of 

Ti concentration detected for silica layer and alumina layer, respectively. 

 

 
 

Fig. 5. EPMA images of TiO2 film prepared under various RS conditions 

 

 

Table 2. Concentration distribution of Ti detected by EPMA (silica layer) 

RS  = 0.66 mm/s RS  = 1.1 mm/s RS  = 1.7 mm/s

Concentration of detected Ti (cps)

10 0 0 0

10~8 0 0 0

8~7 0.1 0 0

7~6 0.5 0 0

6~5 5.0 0.5 0

5~3 8.3 1.8 0

3~2 14.5 6.1 0.3

2~1 20.1 17.2 2.8

1~0 51.4 74.4 96.9

0 0 0 0
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Table 3. Concentration distribution of Ti detected by EPMA (alumina layer) 

In Fig.5, the concentration distribution of Ti detected in observation area is indicated by the 

difference of colour. Light colours, e.g. white, pink and red mean that the amount of Ti is 

large, while dark colours like black, blue and green mean that the amount of Ti is small. 

EPMA detects the each element whose crystallization characteristic is memorized in 

advance. Therefore, if the large concentration of Ti is detected, it means that the amount of 

crystallized TiO2 coated on gas separation membrane is large. The average concentration of 

Ti in the observation area is also shown in Fig.5. According to Fig.5, the average 

concentration of Ti detected in observation area for alumina layer is larger than that for 

silica layer. It can be said that TiO2 film is coated in the pores of alumina layer mainly. From 

Fig.5, Tables 2 and 3, it reveals that the concentration of Ti is reduced with the increase in 

RS. Generally speaking, the thickness of TiO2 film becomes thick and hubbly with the 

increase in RS. The thermal stress is acted on the interface between TiO2 film and gas 

separation membrane in the firing process, resulting that formation of large clucks and 

detachment of TiO2 film occur. Consequently, the concentration of Ti is reduced when RS is 

high. 

2.1.3 Analysis result of TiO2 film coated on gas separation membrane by XPS 
Figures 6 and 7 show the intensity distributions of Ti detected in silica layer and alumina 

layer, respectively. These XPS data were obtained under the condition of ion acceleration 

voltage of 4 kV and pass energy of 112 eV. The samples were sputtered by Ar ion laser 

whose acceleration voltage of 2 kV. The sputtering speed was 15 nm/min, which was 

estimated by assuming the sample as SiO2. The electron orbits of detected elements which 

were Ti, Si and Al were set at 2p. From these figures, it is known that the sputtering time of 

RS = 1.1 mm/s is the shortest among various RS conditions. However, the intensity of 

detected Ti is over 80000 cps for RS = 1.1 mm/s. It can be said that the amount of Ti is large 

with RS = 1.1 mm/s, resulting that fine TiO2 film is prepared. Regarding RS = 0.66 mm/s, it 

is seen that the intensity of Ti over 60000 cps can be detected up to about sputtering time of 

25 min for silica layer. Though the intensity of Ti detected in alumina layer is smaller than 

RS  = 0.66 mm/s RS  = 1.1 mm/s RS  = 1.7 mm/s

Concentration of detected Ti (cps)

10 0 0 0

10~8 0.1 0.3 0

8~7 0.2 0.7 0

7~6 0.7 1.8 0

6~5 7.5 13.7 0

5~3 11.4 16 0

3~2 18.6 22.5 0

2~1 24.3 23.2 0.2

1~0 37.1 21.7 99.8

0 0 0 0
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that in silica layer, the detecting period of Ti in alumina layer is almost equal to that in silica 

layer. According to Fig.5, the average concentration of Ti for RS = 0.66 mm/s is the largest 

 

 

 

Fig. 6. Intensity distributions of detected Ti in silica layer 

 
 

 

Fig. 7. Intensity distributions of detected Ti in alumina layer 
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among various RS conditions. From these results, one can conclude that the largest amount 

of TiO2 film is coated on gas separation membrane with RS = 0.66 mm/s. Meanwhile, the 

intensity of detected Ti with RS = 1.7 mm/s is the lowest among various RS conditions. In 

addition, the average concentration of Ti is 0 cps as shown in Fig.5. Consequently, it is clear 

that the amount of TiO2 film coated on gas separation membrane for RS = 1.7 mm/s is very 

small.  

2.2 Performance of TiO2 photocatalyst membrane reactor under batch type operation 
Figure 8 illustrates the CO2 reforming reactor that is termed as CO2 reformer, with TiO2 film 
coated on gas separation membrane. This reactor consists of one gas separation membrane 
with TiO2 film (150 mm (L.)×6 mm (O.D.)×1 mm (t.), whose reaction surface is equal to the 

outer surface area: 2.26×10-3 m2 and gas filling volume: 2.88×10-4 m3) , one quartz glass tube 

(266 mm (L.)×42 mm (O.D.)×2 mm (t.)), and four UV lamps (FL16BL/400T16, Raytronics 

Corp., 400 mm (L.)×16 mm (D.)) located at 20 mm apart from the surface of gas separation 

membrane symmetrically. These parts are assembled with stainless plates by bolts and nuts. 
The center wave length and mean light intensity of UV light illuminated from energy UV 
lamp is 365 nm and 2.4 mW/cm2, respectively. This is similar to the average light intensity 
level of UV ray in solar radiation in the daytime. 

 

 

 
 
 

Fig. 8. CO2 reformer composed of TiO2 film coated on gas separation membrane (UV lamp is 
removed from this figure for understanding the inside of CO2 reformer) 
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Fig. 9. CO2 reforming and permeation experiment system 

Figure 9 illustrates the whole experimental system set-up, which is termed as membrane 
reactor. With this membrane reactor, not only batch type but also gas circulation type 
experiment can be conducted. When it is used for batch type experiment, the valves located 
at inlet and outlet of CO2 reformer are closed. The membrane reactor is composed of CO2 
reformer, CO2 gas cylinder, mass flow controller (MODEL3660, KOFLOC), mass flow meter 
(CK-1A, KOFLOC), pressure gauge, gas drier and tube pump (WM-520S/R2, Iwaki Pumps). 
In the CO2 reforming experiment by the batch type reactor, CO2 gas whose purity was 
99.995 vol.% was flowed through the CO2 reformer as a purged gas for 15 min at first. After 
that, the valves located at inlet and outlet of CO2 reformer were closed. After confirming the 
gas pressure and gas temperature in the reactor was at 0.1 MPa and 298 K, respectively, the 
distilled water of 1.00 mL (55.6 mmol) was injected into the CO2 reformer and UV light 
illumination was started at the same time. This water was vaporized after injected into the 
reformer. Despite the heat of UV lamp, the temperature in CO2 reformer was kept at about 
343 K during the CO2 reforming experiment. The amounts of the injected water and the CO2 
in the batch type reactor are 55.6 mmol and 13.0 mmol, respectively. The gas in CO2 
reformer was sampled every 24 h in CO2 reforming experiment. The gas samples were 
analysed by FID gas chromatograph (GC353B, GL Science) and methanizer (MT221, GL 
Science). The concentration of water vapour and the temperature in CO2 reformer was 
measured by dew point meter (VAISALA HUMICAP HMT330, VAISALA) and 
thermocouple, respectively. In this experiment, only CO was detected as the product. In the 
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CO2 permeation experiment, the CO2 reforming and permeation experimental system 
shown in Fig.9 was arranged. 

 
 

 

 

Fig. 10. Arranged CO2 reforming and permeation experimental system for CO2 permeation 
experiment 

Figure 10 illustrates the CO2 reforming and permeation experimental system for CO2 

permeation experiment by batch type. In the CO2 permeation experiment, the CO2 

permeation flux was measured under the condition that the absolute pressure and 

temperature of supply gas to the apparatus was 0.10-0.40 MPa and 298 K, respectively. 

The flow rate of supply gas was set at 500 mL/min by mass flow controller. The flow rate 

of permeation gas was measured by mass flow meter. In the CO2 reforming experiment 

carried out by the membrane reactor of gas circulation type, UV light was illuminated 

under the same condition of batch type reactor until the steady reaction state was 

confirmed. After that, the gas circulation by tube pump was started. The suction pressure 

and flow rate of permeation gas was controlled to evaluate the effect of gas separation 

and circulation on CO2 reforming performance of this membrane reactor. The suction 

pressure and flow rate of permeation gas was set at 0.2 MPa and 0.39 mL/min, 

respectively. The produced CO would be removed from the CO2 reformer to outside of 

the system by switching the outlet valve of CO2 reformer on and off when needed. The 

distilled water of 1.00 mL (55.6 mmol) or 3.00 mL (166.8 mmol) was injected into CO2 

reformer when the CO2 reforming experiment under the condition of batch type reactor 

was established. The gas samples taken every 24 h from CO2 reformer were analysed by 

FID gas chromatograph and methanizer. The concentration of water vapour and the 

temperature in the CO2 reformer were also measured. 

2.2.1 CO2 reforming by the membrane reactor of batch type 
Figure 11 shows the CO concentration change in products with illumination time of UV 

light for several TiO2 films prepared under various RS conditions. According to our 
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previous studies, the reversal of superiority or inferiority on CO2 reforming performance of 

TiO2 film among selected parameters was confirmed until UV light illumination time of 48 

h. However, this reversal was not confirmed and the superiority or inferiority among 

selected parameters was kept after UV light illumination time of 72 h. From this reason, in 

this study, the data is obtained only up to UV light illumination time of 72 h for the purpose 

of determining the best condition for promotion of CO2 reforming performance. The 

distilled water of 1.00 mL (55.6 mmol) was injected into CO2 reformer at the beginning of the 

CO2 reforming experiment. 

 
 
 

 

Fig. 11. Concentration change in produced CO with illumination time of UV light for several 
TiO2 film prepared under conditions of different RS 

From Fig.11, it is known that the concentration of CO is increased with decreasing RS 

values. Referring to the images of the SEM, EPMA and XPS shown in Figs.3, 4, 5, 6 and 7, 

the reason of this is thought to be that the amount of TiO2 coated on gas separation 

membrane becomes larger when RS decreases within the range of 0.66 – 1.7 mm/s. Under 

slow RS condition, TiO2 sol solution is easy to remain in the pore of silica and alumina layer 

in the dip-coating process, and TiO2 film coated becomes thin and even. Consequently, the 

fine and strong TiO2 film is prepared. 

According to the reaction scheme shown in Fig.12, the number of electron and hydrogen 
ion (H+) decides the type of product in the reaction. In this experiment, CH4, C2H4 and the 
other hydrocarbons were not detected by gas chromatograph, due to less H+ in the 
reaction. Therefore, the amount of water vapour injected into the reactor is an important 
parameter to be investigated since it is the source of H+. From the reaction scheme, water 
vapour of 1 mol to CO2 of 1 mol is necessary to produce CO of 1 mol. In this experiment, 
the amount of substance of injected water and CO2 charged in the batch type reactor is 
55.6 mmol and 13.0 mmol, respectively, resulting that the molar ratio of water vapour to 
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CO2 is 4.28. Although the amount of water vapour injected seemed sufficient for this 
reaction, the change in temperature distribution and the concentration distribution of 
water vapour in the batch type reactor with time need to be checked to confirm what had 
happened. 

 
 

 

 

Fig. 12. Reaction scheme of CO2 reforming into fuel by TiO2 photocatalyst 

Figure 13 shows the concentration change of water vapour in CO2 reformer with 
illumination time of UV light during CO2 reforming for several TiO2 films prepared under 
various RS conditions. From this figure, it can be known that the concentration of water 
vapour for RS = 0.66 mm/s is the smallest among several RS conditions during UV light 
illumination from 0 h to 24 h. Under the same conditions, the temperatures in CO2 
reformer rose up to about 343 K during UV light illumination from 0 h to 24 h, and then 
remained steady irrespective of RS. The water injected had fully evaporated by UV light 
illumination at the time of 24 h. The reason why the concentration of water vapour for RS 
= 0.66 mm/s is the smallest can be explained by the results of XPS analysis. According to 
the results of XPS analysis, the largest amount of TiO2 film is coated on gas separation 
membrane for RS = 0.66 mm/s, and the TiO2 film is coated deeply to thickness direction 
in the pores of silica and alumina layer. The CO2 reforming is carried out well and 
consumes more water, compared to the other RS conditions in the oxidization process of 
the reaction scheme. Therefore, the concentration of water vapour and CO for RS = 0.66 
mm/s becomes low during the period from 0 h to 24 h, and the concentration of CO for 
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RS = 0.66 mm/s is the largest among the investigated RS conditions as shown in Fig.11. 
Although the water is produced in the reduction process of CO2 reforming by TiO2, this 
water vapour seems to be adsorbed by TiO2 film or gas separation membrane. Therefore, 
the concentration of water vapour did not increase irrespective of RS as shown in Fig.13. 
According to saturated steam table, the saturation concentration of water vapour at 343 K 
is 307545 ppmV, while the 55.6 mmol of water injected, if all evaporates, just makes the 
concentration of 53040 ppmV in CO2 reformer theoretically. Therefore, the all of water 
injected in CO2 reformer is thought to be vaporized. On the contrary, the measured 
concentration of water vapour obtained in CO2 reforming is just 25000 ppmV as shown in 
Fig.13. The gap between theoretical and experimental results might be caused by water 
vapour adsorption with TiO2 film and gas separation membrane in the experiment of CO2 
reforming. 

 

Fig. 13. Concentration change of water vapour in CO2 reformer with illumination time of 
UV light during CO2 reforming for several TiO2 films prepared under various RS conditions 

2.2.2 CO2 permeation by the membrane reactor of batch type 
Figure 14 shows the relationship between CO2 permeation flux and pressure difference for 

several TiO2 film prepared under various RS conditions. The pressure difference is known 

by subtracting the gas pressure after penetrating the gas separation membrane from the gas 

pressure before. The CO2 permeation flux is calculated by the following equation: 
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p p

V
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A t
  (1) 

where 
2COF , pV , pA and pt are CO2 permeation flux (mol/(m2·s)), volume of permeated gas 

(mol), outer surface area of gas separation membrane (m2) and gas separation time (s), 

respectively. 
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Fig. 14. Relationship between CO2 permeation flux and pressure difference for several TiO2 
film prepared under various RS conditions 

Comparing these results at pressure difference of 0.30 MPa, it is known that the CO2 
permeation flux for RS = 1.1 mm/s is the highest among these RS conditions. According to 
XPS analysis as shown in Figs. 6 and 7, the sputtering time of detecting Ti for RS = 1.1 mm/s 
is the shortest among various RS conditions, indicating that the depth of coated TiO2 film 
diffused into the silica and alumina layers of gas separation membrane is the shallowest. 
Consequently, the highest CO2 permeation flux is obtained at RS = 1.1 mm/s. On the other 
hand, regarding RS = 0.66 mm/s and 1.7 mm/s, the sputtering time of detecting Ti is longer 
though the intensity of Ti detected is lower as shown in Figs. 6 and 7, indicating the depth of 
coated. TiO2 film diffused into the silica and alumina layers is deeper, thus the CO2 
permeation flux is lower. 

2.2.3 Selection of the optimum coating condition 
To select the optimum coating condition of TiO2 film which would lead to the highest CO2 

reforming and permeation performance, the results by SEM and EPMA analysis and the 

results of CO2 reforming and permeation experiment by the batch type reactor are 

compared and analysed. Figure 15 shows the comparison of the results between the 

concentration of produced CO and the CO2 permeation flux for various RS conditions. In 

Fig.15, the concentration of CO at UV illumination of 72 h and CO2 permeation flux at 

pressure difference of 0.30 MPa are shown. It can be seen that the concentration of CO is 

decreased with increasing RS gradually. On the other hand, the CO2 permeation flux 

peaks at RS = 1.1 mm/s. Therefore, the optimum RS is different from the viewpoint of 

CO2 reforming and permeation performance. Since the main goal of this study is to 

promote the CO2 reforming performance, we have selected the RS = 0.66 mm/s as the 

optimum coating condition. 
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Fig. 15. Comparison of the results between concentration of produced CO and CO2 
permeation flux for each condition 

2.3 Performance of TiO2 photocatalyst membrane reactor under gas circulation type 
operation 
According to the reaction scheme shown in Fig.12, CO is re-oxidized with the O2 that is a by-
product in this reaction. After attaining to the steady reaction state, the concentration of CO 
is decreased. This is the opposite reaction toward CO2 reforming into fuel. Moreover, since 
the photocatalytic reaction occurred on the reaction surface, it is easy for the reaction surface 
to be covered by the products, which would stop the further reaction to happen. Therefore, 
removing the product of CO and CH4 from the reaction surface as well as transporting the 
reactants, i.e. CO2 and water vapour to the reaction surface quickly are necessary to promote 
further reaction and prevent the re-oxidization of CO. In this study, a tube pump and a gas 
separation membrane are used to realize this desirable measure for the promotion of CO2 
reforming performance. 

2.3.1 CO2 reforming by the membrane reactor of gas circulation type 
Figure 16 shows the concentration change of CO produced with illumination time of UV 
light. The distilled water of 1.00 mL (55.6 mmol) was injected into CO2 reformer when the 
CO2 reforming experiment by batch type reactor started. To show the effect of gas 
separation and circulation on the CO2 reforming performance, the gas circulation by tube 
pump only starts after the steady reaction state is reached. The steady reaction state was 
defined as the state at which the concentration of CO no longer increases along the time. 
Since the concentration of CO is diluted with the CO2 in the pipe lines of the gas circulation 
type reactor after starting gas circulation, the concentration of CO is corrected by the 
following equation: 

 total d
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where cC , totalV , dC and batchV  means corrected concentration of CO (ppmV), total gas 

volume inside the experimental apparatus including the gas volume in the pipe lines (m3), 

detected concentration of CO (ppmV), and total gas volume inside the experimental 

apparatus in the case of batch type reactor (m3), respectively. The experiment by batch 

type and gas circulation type was carried out during the period from 0 h to 216 h and 

from 216 h to 480 h, respectively. 

 

 
 

Fig. 16. Concentration change in produced CO with illumination time of UV light (Injection 
of water of 1.00 mL at the start of CO2 reforming experiment) 

It is observed that the concentration of CO in the reactor keeps increasing until 72 h and 

starts to be steady after 72 h in the experiment by batch type reactor. The highest 

concentration of CO which is 132 ppmV is obtained at 192 h after illuminating UV light. 

Since the concentration of CO is not increased over 192 h, it is determined that the 

experiment by batch type reactor reaches the steady reaction state at 192 h. After gas 

circulation, the concentration of CO starts to increase again, and peaks at 234 ppmV at UV 

light illumination of 432 h, which demonstrated the positive effect of gas separation and 

circulation on CO2 reforming performance. To show that the steady reaction state and 

inverse reaction have occurred or not clearly, the change in production rate of CO with 

illumination time of UV light is shown in Fig.17. Production rate of CO can classify the 

reaction state into progressive, steady and inverse reaction state by positive, 0 and 

negative value, respectively. The production rate of CO, in Fig.17, which is calculated by 

Eq. (3): 

 
int

C
CO

C
R

t
  (3) 

where COR
 
and intt

 
means production rate of CO (ppmV) and gas sampling interval (h), 

respectively. The COR used for calculating is 24 h. 
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Fig. 17. Change in production rate of CO with illumination time of UV light (Injection of 
water of 1.00 mL at the start of CO2 reforming experiment) 

In the experiment by batch type reactor, it can be seen that the production rate of CO peaks 
at 3.58 ppmV/h at the UV light illumination time of 24 h and is decreased afterwards 
gradually. The production rate of CO which is 0 means the reaction steady state is reached. 
The negative value of the production rate means the inverse reaction, i.e. re-oxidization 
occurs. In the experiment by gas circulation type reactor, the production rate of CO after 
starting the gas circulation peaks at the highest value of 0.89 ppmV/h in the period from 240 
h to 264 h. However, the production rate of CO became smaller after the passage time of 48 
h, i.e. after the total illumination time of UV light of 264 h. Comparing the production rate of 
CO after starting the gas circulation and that at steady state of batch type reactor except for 
the period from 0 h to 24 h, the effect of gas separation and circulation on CO2 reforming can 
be verified. However, the production rate of CO and the concentration of CO are still lower 
than the target value levels set for this study. Figure 18 shows the concentration of the water 
vapour during the CO2 reforming experiment by batch type and gas circulation type reactor 
with illumination time of UV light. Since the concentration of water vapour is diluted with 
the gas in the pipe lines of the gas circulation type reactor after starting gas circulation, the 
concentration of water vapour is corrected by the following equation: 
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and batchV

 
means corrected concentration of water vapour 

(ppmV), total gas volume inside the experimental apparatus including the gas volume in 

the pipe lines (m3), measured concentration of water vapour (ppmV), and total gas 

volume inside the experimental apparatus in the case of batch type reactor (m3), 

respectively. From this figure, it is known that the highest concentration of water vapour 
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in the experiment by batch type reactor and gas circulation reactor is 32400 ppmV and 

65387 ppmV, respectively. As described above, if the water vapour is saturated in the 

reactor at 343 K, it should have the concentration of 307545 ppmV. The 1.00 mL, water 

injected into batch type reactor and gas circulation reactor, if all evaporated, could make 

the vapour concentration of 53040 ppmV and 112968 ppmV, theoretically. As not sure the 

lower water concentration measured in caused by water vapour was adsorbed by 

membrane or not all of water injected was vaporized, more water was injected in order to 

evaluate the effect of amount and timing of water injection. 
 

 

Fig. 18. Concentration change in water vapour during the CO2 reforming experiment by 
batch type and gas circulation type reactor with illumination time of UV light (Injection of 
water of 1.00 mL at the start of CO2 reforming experiment) 

The further experiment plan was based on the assumption that at the steady and inverse 

reaction states, there was not sufficient water in the system. Therefore, the water was 

injected into CO2 reformer when the steady and inverse reaction state in the CO2 reforming 

was confirmed for not only batch type but also gas circulation type experiment. The amount 

of water injected was 1.00 mL at every time in this experiment. If the steady state was 

maintained after the injection of water in the batch type experiment by reactor, the gas 

circulation experiment then starts. 

Figure 19 shows the concentration change in produced CO with illumination time of UV 

light. The initial distilled water of 1.00 mL (55.6 mmol) was injected into CO2 reformer when 

the CO2 reforming experiment by batch type reactor started. It had shown that the 

concentration of CO in the batch type reactor kept increasing until 168 h and the 

concentration of CO reached 136 ppmV. After the water of 1.00 mL was added into CO2 

reformer at 216 h when the steady state was confirmed, the concentration of CO increased 

again and attained to 186 ppmV at 480 h. Since the steady state was confirmed again at 504 

h, another 1.00 mL of water was added into CO2 reformer again. However, the concentration 

of CO did not increase any more, indicating the steady state maintained. After gas 

circulation started from 576 h, the concentration of CO started to increase again, and peaked 
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at 179 ppmV at total UV light illumination of 624 h. Since the steady state in the experiment 

by gas circulation type reactor was confirmed at 648 h, the further 1.00 mL of water was 

injected into CO2 reformer. However, the concentration of CO did not increase further, 

indicating the water inside system was sufficient and its effect was peaked. 

 

 

Fig. 19. Concentration change in produced CO with illumination time of UV light (Injection 
of water of 1.00 mL many times) 

Figure 20 shows the concentration change in water vapour inside the system in the water 
adding experiment described above. From this figure, the measured concentration of water 
vapour obtained in CO2 reforming experiment by batch type reactor is almost 25000 ppmV 
with total 3.00 mL water injected.  
 

 

Fig. 20. Concentration change in water vapour during the CO2 reforming experiment by 
batch type and gas circulation type reactor with illumination time of UV light (Injection of 
water of 1.00 mL many times) 
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Fig. 21. Change in production rate of CO with illumination time of UV light (Injection of 
water of 1.00 mL many times) 

Figure 21 shows the change in production rate of CO with illumination time of UV light. 

From this figure, it can be seen that there are two peaks of production rate of CO in CO2 

reforming experiment by batch type reactor, and there is one peak of production rate of CO 

in CO2 reforming experiment by gas circulation type. The first peak was obtained at UV 

light illumination of 24 h with total of 1.00 mL water in the system, which was injected at the 

start of CO2 reforming experiment. According to Fig.21, the production rate of CO 

decreases, after peaking at 24 h, gradually and reaches negative value at UV light 

illumination of 216 h. As mentioned above, since the steady reaction state was confirmed at 

UV light illumination of 216 h, the another 1.00 mL water was added into CO2 reformer. As 

a result, the second peak was obtained at UV light illumination of 264 h. After that, the 

production rate of CO decreases again. Although further 1.00 mL water was added into CO2 

reformer again at UV light illumination of 504 h, the production rate of CO remains negative 

value. After gas circulation from total UV light illumination of 576 h, the production rate of 

CO increases and peaks at total UV light illumination of 600 h. From these results, the effect 

of water injection on the promotion of CO2 reforming performance is verified. However, 

both the highest concentration and the highest production rate of CO in this CO2 reforming 

experiment are lower than those in the case of only total 1.00 mL water injected. In addition, 

compared to the case of total amount of water injected of 1.00 mL, the effect of switching 

batch type reactor to gas circulation type reactor on the promotion of CO2 reforming 

performance is not confirmed in this experiment. 

Nevertheless the above described results seem reveals that the optimum timing of water 

injection is the very beginning of CO2 reforming experiment. Therefore, one more 
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experiment was conducted, i.e. the distilled water of 3.00 mL (166.8 mmol) was injected 

into CO2 reformer at the very beginning of the experiment. Figure 22 shows the 

concentration change in produced CO with illumination time of UV light. The experiment 

by batch type and gas circulation type reactor was carried out during the period from 0 h 

to 168 h and from 168 h to 264 h, respectively. The highest concentration of CO which is 

126 ppmV is obtained at UV light illumination of 144 h. Since the concentration of CO is 

not increased over 144 h, indicating that the experiment by batch type reactor attains to 

the steady reaction state, the gas circulation was started. After gas circulation, the 

concentration of CO starts to increase again, and peaks at 171 ppmV at UV light 

illumination of 240 h. 

 
 
 

 
 

Fig. 22. Concentration change in produced CO with illumination time of UV light (Injection 
of water of 3.00 mL at the start of CO2 reforming experiment) 

Figures 23 and 24 show the comparison in production rate of CO and change rate of water 
vapour with illumination time of UV light for the amount of water injected of 1.00 mL and 
that of 3.00 mL, respectively. The change rate of water vapour which is calculated by Eq. 
(5): 
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H O
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
  (5) 

where
2H OR ,

2H OC and intt means change rate of water vapour (ppmV/hour), the amount 

of increase in concentration of water vapour (ppmV) and measurement interval of water 

vapour (h), respectively. The used for calculating
2H OR is 24 h. 
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Fig. 23. Change in production rate of CO and change rate of water vapour with illumination 
time of UV light for the amount of water injected of 1.00 mL 

 
 

 

Fig. 24. Change in production rate of CO and change rate of water vapour with illumination 
time of UV light for the amount of water injected of 3.00 mL 

From these figures, it can be seen that the concentration of water vapour in both cases, 
decreases rapidly from 0 h to 48 h. Since the highest production rates of CO for the amount 
of water injected of 1.00 mL and 3.00 mL are obtained from 0 h to 48 h, the CO2 reforming is 
carried out well in the period. While the concentration of water vapour increases with 
illumination time of UV light from 0 h to 24 h due to temperature rise in CO2 reformer, the 
change rate of water vapour closes to 0 in the period from 48 h to 96 h irrespective of the 
amount of water injected. Therefore, it can be thought that the amount of water consumed 
by photocatalytic reaction is balanced out by the amount of water vaporized due to the heat 
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of UV lamp in the period from 48 h to 96 h. After starting gas circulation, the change rate of 
water vapour keeps at low level and decreases gradually irrespective of the amount of water 
injected, while the production rate of CO rises. Since the CO2 reforming performance is 
promoted by gas separation and circulation operation, the water vapour is consumed by the 
CO2 reforming reaction. In addition, the water vapour is also adsorbed by drier, which is 
installed to protect the mass flow meter, in pipe line of gas circulation type reactor during 
gas circulation. The water concentration increase due to temperature increase is balanced 
out by both consumption by CO2 reforming reaction and adsorption by drier. Therefore, the 
change rate of water vapour keeps low and decreases gradually after starting gas 
circulation. Consequently, it reveals that CO2 reforming performance of gas circulation type 
reactor is declined by increasing the amount of water injected due to decreasing the 
concentration of water vapour. 
Therefore, it can be concluded, too much water in that system, no matter when it was 
added, would not help improving the CO2 reforming performance. 

2.4 Proposal to establish the carbon circulation system using TiO2 photocatalyst 
membrane reactor 
As described above, the CO2 reforming performance of TiO2 photocatalsyt membrane 
reactor is still low. To enrich the product i.e. CO further, a hybrid system combining TiO2 
photocatalsyt membrane reactor with fuel concentrator is proposed as illustrated in Fig. 25. 
 

 

 
 

Fig. 25. Hybrid system combining TiO2 photocatalyst membrane reactor with fuel 
concentrator 

The fuel concentrator is a type of gas separation membrane. According to authors’ previous 
study, the concentration of CO could be further enriched by the gas separation membrane 
which was composed of multiple hollow fibers. The concentration of CO of 3 vol.% in pre-
mixed gas with CO2, which simulated the maximum concentration of product by CO2 
reforming in the previous our studies, could be enriched by 6 times (Nishimura et al., 2007). 
If the pump necessary to enrich the fuel by the gas separation membrane as well as 
operating TiO2 photocatalyst membrane reactor in the hybrid system can be powered by the 
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electricity generated by solar cell, and the photocatalytical reaction is powered by the sun 
light, the proposed hybrid system is a true power system with zero CO2 emission. 

3. Conclusion 

This chapter introduces the recent research and development of the TiO2 photocatalyst 
membrane reactor consisting of TiO2 photocatalyst and gas separation membrane. The 
following conclusions were obtained. 
i. According to characterization by SEM, EPMA and XPS, the amount of TiO2 film coated 

on gas separation membrane is reduced with increasing RS, and the largest amount of 
TiO2 film is obtained for RS = 0.66 mm/s among various RS conditions investigated in 
this study. 

ii. According to CO2 reforming experiment by batch type reactor, the concentration of CO 
is decreased with increasing RS gradually. On the other hand, the CO2 permeation flux 
peaks at RS = 1.1 mm/s. Since the main goal of this study is to promote the CO2 
reforming performance, the RS = 0.66 mm/s is selected as the optimum coating 
condition in this study. 

iii. According to CO2 reforming experiment by gas circulation type reactor, the positive 
effect of gas separation and circulation on CO2 reforming performance is confirmed. 
However, too much water in that system which can not be consumed in CO2 reforming 
process, no matter when it was added, would not help improving the CO2 reforming 
performance. 

iv. A concept power system with zero CO2 emission, which consists of the TiO2 
photocatalsyt membrane reactor and fuel concentrator is proposed. 
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