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1. Introduction 

In recent years, nanomechanics as an important branch of nanotechnology has been an 
effective method to study mechanical properties of structures and materials from micro- to 
nano-scale. It has been widely used to study mechanical behaviour and damage mechanism 
of nanotube, nanobelt as well as other nanostructures (Zhu & Espinosa, 2005; Han et al., 
2007). Some researchers studied biomechanics properties of tissues and organs of human 
body, such as the red cell (Suresh, 2007; Lim et al., 2006) and bone (Tai et al., 2007; Hansma 
et al., 2006; Thurner, 2009; Zheng & Mak, 1996; Koff et al., 2010; Huja et al., 2010; Diez-Perez 
et al., 2010; Zhang et al., 2010) by means of experimental nanomechanics approaches, to 
reveal occurrence rules, prevention and control methods of some diseases.   
Compared with tensile, torsion, bend and hardness tests etc. during which samples are 
usually in condition of simple stress state, nanoindentation and scratch test can obtain more 
parameters of materials including hardness, modulus, fracture toughness, creep property, 
fatigue, adhesion and so on (Doerner & Nix, 1986; Oliver & Pharr, 1992) because samples are 
in condition of complex stress state. So, it has been widely used in fields of materials science 
(Lucas & Oliver, 1999; Yang et al., 2007; Tao et al., 2010), nanotechnology, surface 
engineering (Jardret & Morel, 2003 ), semiconductor (Michler et al., 2005; Zhao et al., 2009), 
MEMS/NEMS (Abdel-Aal et al., 2005; Bhushan, 2007), biomedicine (Suresh, 2005), 
biomechanics (Bruet et al., 2008) and so on. In addition, it is a useful method to study multi-
physical field coupled performance of materials (Bradby et al., 2003; Schuh et al., 2005; 
Nowak et al., 2009). So in past years, nanoindentation and scratch test gave a big boost to the 
development of related fields and also it was given huge attention in all over the world. 
With further development of materials science and nanomechanics, more and more 
researchers tried to study principle of deformation and damage of materials (De Hosson et 
al., 2006; Rabe, 2006; Zhou & Komvopoulos, 2006). Nanoscale deformation: Seeing is 
believing (Hemker & Nix, 2008). So research on in situ nanoindentation and scratch test was 
proposed, through which process of deformation and damage of samples can be observed.  
However, because of large size and complex structure of existing commercial equipments 
(MTS NanoIndenter; Hysitron Incorporated; CSIRO.UMIS; Micro Materials Ltd.; CSM 
instruments), they can not be installed on the stage of SEM or TEM to realize in situ 
nanoindentation and scratch test. So, novel nanoindentation and scratch test devices are 
required. And this is advanced technology and up to now there is no mature product for in 
situ nanoindentation and scratch test.  
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In this chapter, we introduced principle of nanoindentation. A new method of indentation 
measurement through two displacement sensors and a displacement amplification structure 
was proposed. This measuring method was different from many commercial devices. Two 
key components of the proposed device including precise driving and precise measuring 
units were designed and analyzed. Hysteresis of two kinds of piezoelectric stacks were 
measured and analyzed. Here piezoelectric stacks and flexure hinges were used to realize 
precise positioning and precise loading and unloading of the diamond indenter. Flexure 
hinges with multi-structure forms were proposed and analyzed by finite element method. 
Based on the previous work, the prototype of nanoindentation and scratch device was 
designed and fabricated. Calibration experiments of sensors and displacement amplification 
structure were carried out and output performances of designed flexure hinges were 
measured and discussed. At last, nanoindentation experiments of optical glass were carried 
out. The relation curves between penetration load and depth were obtained, from which 
hardness of the glass was figured out. Nanoindentation morphology was obtained through 
high resolution optical microscope. Nanoindentation results indicated that the device 
presented in this chapter can realize the high precise nanoindentation test, but the testing 
resolution should be improved and the device also should be calibrated precisely. Though 
the accuracy was required to improve, this work was a bold attempt to combine the 
piezoelectric-driven mechanism and flexure hinge to realize precise motion in 
nanoindentation device. This transmission mode is very simple and can be used easily to 
realize miniaturization of the device and in situ nanoindentation test which is our future 
work.  

2. Principle of nanoindentation test technology---the Oliver-Pharr method 

Nanoindentation is a useful method to test the mechanical behavior and damage 
mechanism of materials from micro- to nano-scale. When a diamond indenter with sharp tip 
is penetrating into and then withdrawing from a sample surface, the load P and 
displacement h is continuously monitored by high resolution sensors. The load and 
displacement data is sent to processor during the indentation process and then converted to 
P-h curve which contains abundant information of material such as hardness, elastic 
modulus, yield stress and so on. Fig.1 is a typical P-h curve of nanoindentation. It mainly 
 

 

Fig. 1. A typical P-h curve of nanoindentation 
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consists of two portions, loading and unloading process. Sometimes, in order to study creep 
of materials, holding portion (holding for a certain time at maximum load) between loading 
and unloading is added. Fig.2 is cross-section of indentation and the related parameters. Up 
to now, the Oliver-Pharr method (Oliver & Pharr, 1992) based on results by Sneddon 
(Sneddon, 1965) is most commonly used to analyze the load and penetration depth for 
nanoindentation measurements. 
 

 

Fig. 2. Cross-section of indentation 

According to Oliver-Pharr method, nanoindentation hardness is defined as the indentation 
load divided by the projected contact area of the indentation. In Fig.1, indentation hardness 
(H) can be obtained at the peak load given by 

 H = Pmax/Ac (1) 

where Pmax is the peak load and Ac is the projected contact area. And the projected contact 
area can be calculated from the relation as following 

 Ac = f (hc)  (2) 

where hc is the contact depth which is given by 

 max
c max

P
h h

S
   (3) 

where ε is a constant and depends on the geometry of the indenter (ε=0.72 for cone indenter, 
ε=0.75 for paraboloid of revolution, and ε=1.00 for flat indenter) (Sneddon, 1965). hmax is the 
maximum penetration depth and S is the contact stiffness. 
The contact stiffness S can be calculated from the slope of the initial portion of the unloading 
curve and S=dP/dh, which can be obtained by curve fitting of 25%-50% unloading data. 
Based on relationships developed by Sneddon, the contact stiffness S can also be expressed 
by 

 r2
A

S E


  (4) 
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where ǃ is a constant and depends on geometry of the indenter (ǃ =1.034 for a Berkovich 
indenter, ǃ =1.012 for a Vickers indenter and ǃ =1.000 for a cylinder indenter). 
Because both the sample and the indenter have elastic deformation during the indentation 
process, the reduced modulus Er is defined by 

 
2 2

i

r i

1 1 1

E E E

  
   (5) 

where E and ǎ are the elastic modulus and Poisson’s ratio for the sample; Ei and ǎi are the 
elastic modulus and Poisson’s ratio for the indenter, respectively. For a diamond indenter, Ei 
=1141GPa, ǎi =0.07. 
According to the Oliver-Pharr method mentioned above, the nanoindentation hardness, the 
contact stiffness and the elastic modulus of materials can be obtained.  

3. Idea of device design 

Fig.3 is the schematic diagram of indentation device which will be designed in this chapter. 
It mainly consists of two portions, precise driving unit including z-axis precise driving unit 
(4), x, y precise positioning platform (8) and precise measuring unit including capacitance 
displacement sensor (5), displacement amplification structure (9) and laser displacement 
sensor (10). Compared with most of commercial indentation equipments, the principle is 
different. Penetration load is not measured directly by a load sensor but it is obtained with 
the help of displacement amplification structure and laser displacement sensor. When the 
indenter is pushing into and withdrawing the sample located on the left of displacement 
amplification structure, the amplification structure will deform and the right will output 
enlarged displacement which is measured by high resolution laser displacement sensor. At 
the same time, displacement of the indenter is measured by the capacitance displacement 
sensor. Because deformation of displacement amplification structure is very small, it is 
elastic deformation. 
 

 

Fig. 3. Schematic diagram of the device which will be designed in this chapter  1 Base; 2(12) 
Supporting plates; 3(11) Macro-adjusting mechanism; 4 z-axis precise driving unit; 5 
Capacitance displacement sensor; 6 Indenter; 7 Sample; 8 x, y precise positioning platform; 9 
Displacement amplification structure; 10 Laser displacement sensor 

Calculation model and related parameters are shown in Fig.4. P is penetration load and h3 is 
left deformation of displacement amplification structure corresponding to the load P. h1 and 
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h2 are right deformation and displacement of the indenter measured by laser displacement 
sensor and capacitance displacement sensor, respectively. P, h1, h2, h3 and penetration depth 
h have relationships as follows 

 h3 = Ǎh1  (6) 

 P = ǌh1 (7) 

 h = h2 -h3 =h2 -Ǎh1 (8) 

where Ǎ and ǌ are calibration coefficients. 

 

Fig. 4. Calculation model and the related parameters. 

According to equations (6)—(8), penetration load P and depth h can be obtained, and 

material parameters can be calculated by the Oliver-Pharr method.  

4. Design and analysis of precise driving units 

Nanoindentation and scratch test technology mainly involves precise driving and precise 

measuring technology. For precise driving, there are many choices, for example, 

electromagnetic driver, shape memory alloy driver, micro-film, micro-beam and so on. Up 

to now, most of indentation devices are large because of using of electromagnetic and 

electrostatic drivers which also need complex control. Due to size limitation of SEM and 

TEM, these large indentation devices can not be used to realize in situ indentation test. So it 

is necessary to find more suitable driving mechanism to ensure miniaturization of 

indentation device. In this section, based on early research foundation on the piezoelectric-

driven and flexure hinge, kinds of precise driving units realized by piezoelectric actuator 

and flexure hinge were designed.  

4.1 Piezoelectric actuator 

Principle of piezoelectric actuator is shown in Fig.5 which is based on the inverse piezo 

effect. The piezoelectric actuator will deform when an electric voltage signal is applied to it.  
 

 

Fig. 5. Principle of piezoelectric actuator 

h1 

h3

P
h2Z

Y 
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The amount of movement is a function of the polarity of the voltage applied and the 

direction of the polarization vector. 

Piezoelectric actuator takes many advantages of small size, unlimited resolution, large force 

generation, fast response, low power consumption and no wear. So it is widely used in 

fields of actuators, micro- and nano-positioning, laser tuning, active vibration damping, 

micropumps, and so on. In this chapter, two kinds of piezoelectric actuator are selected, 

PT200/10*10/40 piezoelectric stack used for z axis and AE0505D16F for x-y axis.  

Hysteresis is an inherent property of piezoelectric ceramic. Hysteresis of the two kinds of 

piezoelectric stacks was measured and shown in Fig.6 and Fig.7.  

In Fig.6 and Fig.7, there are two curves, respectively. One is the output displacement when 

voltage increases and the other is the output displacement when the voltage decreases. It is 

obvious that the displacement is different at the same voltage and the two curves are not 

symmetrical. The hysteresis H can be expressed 

 100%DMAX

S

D
H

D
   (9) 

where DDMAX is the maximum difference of displacement at the same voltage; DS is the total 

output displacement. In Fig.6, the maximum difference of displacement is about 1.15μm at 

voltage 45V and the total output displacement is 12.91μm. According to equation (9), the 

hysteresis is about 8.91% for AE0505D16F. In Fig.7, the maximum difference of displacement 

is about 5.49μm at voltage 45V and the total output displacement is 35.92μm. According to 

equation (9), the hysteresis is about 15.28% for PT200/10*10/40 piezoelectric stack.  

So hysteresis is different for different kinds of piezoelectric stacks and some measurements 

for example close-loop control should be taken to decrease the hysteresis for special 

application.  

 
 
 
 

 
 
 
Fig. 6. Hysteresis curve of AE0505D16F 
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Fig. 7. Hysteresis curve of PT200/10*10/40 

4.2 Flexure hinges 

Materials and structures will deform under the external load and the deformation is usually 
very small and linear. Those are the working principle of flexure hinges. Compared to 
conventional mechanisms with sliding and rolling bearings, the flexure hinge takes many 
advantages of simple and compact structure, no lubrication and high positioning accuracy. 
For these reasons, flexure hinges have been widely used in fields of micro-positioning, 
micromanipulation, micro-gripper and so on. 
Stiffness and output displacement of flexure hinges are contradictory to each other. Larger 
elastic deformation is hoped to ensure output displacement. On the other hand, enough 
stiffness is also very important to ensure the device having good dynamic characteristic and 
the anti-interference ability. Also internal stress of materials should not exceed permissible 
stress. Currently, there are four kinds of materials—beryllium bronze, aluminium, steel and 

titanium alloy to be used to fabricate flexure hinges. For these four kinds of materials, 
titanium alloy has the highest inherent frequency and best anti- interference ability, while 
the displacement is too small. In contrast, beryllium bronze has larger elastic deformation, 
but cost of these two kinds of materials is too high, and they are not suitable to make flexure 
hinges. Here, 65Mn was chosen to process them, which had numerous advantages of cheap 
price, high sensitivity, low elastic lag, high fatigue resistance, etc. 

4.2.1 Z-axis flexure hinge 

Z-axis precise driving unit consists of z-axis flexure hinge and z-axis piezoelectric actuator, 
and it is used to realize the precise loading and unloading of the indenter. Z-axis 
piezoelectric actuator was PT200/10*10/40 piezoelectric stack. Large output displacement 
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was given to z-axis flexure hinge realized by the level-type enlarging structure as shown in 
Fig.8, which was convenient to estimate the initial contact point.  
Static and modal analysis was carried out to evaluate strength and dynamic performance of 
z-axis flexure hinge by finite element method. Displacement load of 10μm was applied to 
the area where piezoelectric actuator was located. And analysis results were shown in Fig.9 
and Fig.10. As shown in Fig.9, displacement of 42μm was obtained at the output end which 
indicated that magnification of the flexure hinge was about 4, while the maximum stress 
was 33MPa, which was less than permissible stress of 65Mn being 432MPa. The first three 
natural frequencies of the flexure hinge were about 1133.7Hz、1366.7Hz、4243.5Hz which 

indicated that z-axis flexure hinge had good stability in the indentation device working at 
low frequency condition. 
 

 

Fig. 8. Model of z-axis flexure hinge              

 

 

Fig. 9. Stress of z-axis flexure hinge 

 

 
a)    b)    c) 

Fig. 10. Mode shapes of z-axis flexure hinge (a) First mode shape (1133.7Hz); (b) Second 
mode shape (1366.7Hz); (c) Third mode shape (4243.5Hz) 
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4.2.2 x-y precise positioning hinge 

x-y precise positioning platform including y-axis macro-adjusting mechanism, x-y precise 
positioning hinge and x-y piezoelectric actuators, is used to realize precise positioning of 
sample during indentation test and to realize precise motion of the sample during the 
scratch test. y-axis macro-adjusting mechanism as well as another two macro-adjusting 
mechanisms was bought directly and the models were GCM-1253001BM. x-y piezoelectric 
actuators were AE0505D16F piezoelectric stacks. The designed x-y precise positioning hinge 
was shown in Fig.11. Static and modal analysis results were shown in Fig.12 and Fig.13. The 
maximum stress was 158.6MPa, which was less than permissible stress of 65Mn being 
432MPa. The first three natural frequencies of the flexure hinge were about 2669.5 Hz, 4831.0 
Hz, 6281.8 Hz and the hinge had good dynamic performance. 
 

 

Fig. 11. Model of x-y precise positioning hinge 

   

 

Fig. 12. Stress of x-y precise positioning hinge 

5. Precise measuring unit 

Parameters of materials are calculated by the penetration load and depth data. Because it is 
on very small scales, very high accuracy and resolution is required for sensors. As 
mentioned in section 3, penetration load and depth is obtained by indirect measurement 
method. 
The displacement amplification structure and two displacement sensors are used to realize 
measurement. The laser displacement sensor LK-G10 which has resolution of 10nm is used 
to measure the output end (the right) of the displacement amplification structure, and the 
capacitance displacement sensor MDSL-0500M6-1 which has resolution of 10nm is used to 

x

y
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measure the displacement of the indenter. Then the measurement data is collected by the 
A/D card and sent to the computer. The main parameters of the two sensors are shown in 
table 1. 
 

 
a)    b)    c) 

Fig. 13. Mode shapes of x-y precise positioning hinge (a) First mode shape (2669.5Hz); (b) 
Second mode shape (4831.0Hz); (c) Third mode shape (6281.8Hz) 

 

 LK-G10 MDSL-0500M6-1 

Measurement range ±1mm ±0.5mm 

Resolution 10nm 10nm 

Accuracy ±0.02% F.S. ±0.02% F.S. 

Reference distance 10mm 0mm 

Linearity ±0.03% F.S. ±0.025% F.S. 

Table 1. Main parameters of the two sensors 

In this section, we will focus on design and analysis of the displacement amplification 
structure which plays an important role in measuring unit as well as entire indentation 
device. The designed displacement amplification structure with a lever amplification 
mechanism is shown in Fig.14. The sample is located on point A during the indentation test. 
Work principle is shown in Fig.15. Assumptions are as follows: 
1. The upper thin plate rotates around the point O and the rotation angle is so small that 

the plate can be thought to be horizontal; 
2. There is no bend deformation for the upper thin plate during the rotation. 
 

 

Fig. 14. Model of amplification structure 
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Fig. 15. Work principle of amplification structure 

As shown in Fig.15, the displacement amplification structure not only works as a sample 
stage but also has the function of amplifying displacement signal. According to Fig.4 and 
Fig.15, the magnification factor is given by  

 1

3

h b
k

h a
   (10) 

where a is the horizontal distance between point A and the rotation point O; b is the 
horizontal distance between point B and the rotation point O.  
In this chapter, the magnification factor k was designed to be 4. Static and modal analysis 
was carried out to evaluate the strength, output displacement and dynamic performance of 
displacement amplification structure. Displacement load of 10μm was applied to point A. 
Output displacement of point B was 38.2μm shown in Fig.16, and the maximum stress was 
6.04MPa which was less than permissible stress of 65Mn being 432MPa. Fig.17 was the first 
three mode shapes and the first three natural frequencies were 170.53Hz, 407.42Hz, and 
909.51Hz. The displacement amplification structure would bend or rotate at the structure' 
first three natural frequencies which were a little low. So the work frequency of the 
indentation device should be away from natural frequencies to avoid sympathetic vibration 
and also it is better to take measures to alleviate and isolate the vibration existing in the 
surroundings. 
 

 

Fig. 16. Stress of amplification structure  
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a)   b)   c) 

Fig. 17. Mode shapes of displacement amplification structure (a) First mode shape 
(170.53Hz); (b) Second mode shape (407.42Hz); (c) Third mode shape (909.51Hz) 

Output performances of the amplification structure under small load were analyzed by 
finite element method when the load F was 0.1mN and 1mN, respectively. Analysis results 
were shown in Fig.18 and Fig.19 respectively. In these two figures, the amplification 
structure had 43.3nm and 433nm output displacements corresponding to the loads 0.1mN 
and 1mN. The magnifications of input loads and output displacements were coincident 
which indicated that the structure had good linear output performance. Output 
displacement of 43.3nm can be detected easily by laser displacement sensor with the 
resolution of 10nm. That was to say the load resolution of the displacement amplification 
structure was higher than 0.1mN. 
 

              

Fig. 18. Deformation of amplification structure when F=0.1mN 

 

 

Fig. 19. Deformation of amplification structure when F=1mN 
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6. Prototype design 

According to the analysis in the previous sections, the catia model of designed indentation 

device was shown in Fig.20. Parts were fabricated and the prototype was assembled as 

shown in Fig.21. The brief work processes are as follows: 

1. Clear the sample surface; 
2. Install the sample on the displacement amplification structure; 
3. Install the indenter and lock it with the lock screw; 
4. Adjust the macro-adjusting mechanism to make the laser displacement sensor in the 

suitable measuring range( the indicator light will be green); 
5. Apply voltage to electronic components and wait for a moment to make the 

components stabilization; 
6. Adjust the z-axis macro-adjusting mechanism to make the indenter close to the sample 

surface. When it is very close to the surface, stop macro-adjusting mechanism and apply 
voltage to the z-axis piezoelectric stack. Use the change of the read of the laser 
displacement sensor to judge the contact between the indenter and the sample surface; 

7. Choose suitable voltage step to load and unload the indenter. During the process, use 
software to record the data sent by the A/D card. And then, process the data and obtain 
parameters of the sample. 

   

 

Fig. 20. Catia model of designed indentation device 1 Base; 2(8) Supporting plates; 3(7,9) 

Macro-adjusting mechanism; 4 Laser displacement sensor; 5 Connector; 6 z-axis flexure 

hinge; 10 x-y precise positioning hinge; 11 Displacement amplification structure; 12 

Indenter; 13 z-axis piezoelectric stack; 14 Lock screws of the sensor ; 15 Capacitance 

displacement sensor; 16 Lock screw of the indenter; 17 x-axis piezoelectric stack. 

y x 

z 
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Fig. 21. Prototype of designed indentation device 

7. Experiments 

In this section, experiments of the designed indentation device were carried out to evaluate 
its performances. These experiments mainly include calibration of laser and capacitance 
displacement sensors as well as the displacement amplification structure, output 
performance test of the designed x-y precise positioning hinge and z-axis precise driving 
hinge and indentation test of optical glass. 

7.1 Calibration experiments of the sensors  

Use z-axis precise driving unit to generate precise displacement signal. Use the laser and 
capacitance displacement sensors to measure the signal, respectively. And then, record the 
reading and the output voltage, respectively. The experiment data was processed with the 
criteria of least squares. Curves and equations of linear fitting were obtained, which were 
shown in Fig.22 and Fig.23. From these two figures, relation between measured 
  

 

Fig. 22. Calibration curve of the laser displacement sensor 
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displacement h1/μm and output voltage X1/V of the laser displacement sensor was 
h1=9.967×X1-17.887 and relation between measured displacement h2/μm and output voltage 
X2/V of the capacitance displacement sensor was h2=49.538×X2－194.27. Their linear 

correlation coefficients R2 were both close to 1, which showed the two sensors had high 
linearity. So the equations of linear fitting can be used in the experiment without correction. 
 

 

 
 

Fig. 23. Calibration curve of the   capacitance displacement sensor 

7.2 Calibration experiments of the displacement amplification structure 

According to section 3, the displacement amplification structure plays an important role in 
the measuring unit as well as the entire indentation device. Calibration experiments were 
carried out to obtain the relation of load P and output displacement h1 of point B as well as 
the relation of deformation h3 of point A and output displacement h1 of point B, and the 
results were shown in Fig.24 and Fig.25.     
 
 

 

Fig. 24. Relation curve of load P and displacement h1 
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Fig. 25. Relation curve of displacement h3 and h1 

From these two figures, relation between the load P/mN and output displacement h1/μm of 

point B of the displacement amplification structure was P=1.1227Xh1-0.426, and relation 

between deformation h3/μm of point A and output displacement h1/μm of point B is 

h3=0.2783×h1+0.5153. Their linear correlation coefficients R2 were 0.9998 and 0.9991, which 

indicated that output of the structure was linear. Also equations of linear fitting can be used 

in the experiment without correction. 

7.3 Output performance of x-y precise positioning hinge and z-axis precise driving 
hinge 

Output performances of x-y precise positioning hinge and z-axis precise driving hinge were 

tested by laser displacement sensor. The range of applied voltage was form 0V to 120V for x 

and y piezoelectric stacks with step of 5V while the range was from 0V to 90V for z axis 

piezoelectric stack with step of 5V or various steps (5V to 1V). The testing results were 

shown in Fig.26 - Fig.29.  
 

 

 
 

Fig. 26. Output displacement in x direction 
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Fig. 27. Output displacement in y direction 

 

Fig. 28. Output displacement in z direction 

 

Fig. 29. Output displacement in z direction with various steps 

www.intechopen.com



 
Human Musculoskeletal Biomechanics 

 

202 

As shown in Fig.26 and Fig.27, the output performances were large different for x and y 

axis. The maximum output displacement was 1.86μm in x direction while it was 8.92μm in y 

direction. For 24 steps, the total output displacement was 77.5nm and 371.7nm in x and y 

directions respectively. So it had different output displacement resolution in the two 

directions. These differences were caused by different stiffness of flexure hinges in x and y 

directions.  

Fig.28 was the output curve of z-axis precise driving hinge when applied voltage was from 

0V to 90V with step of 5V. The maximum output displacement was about 60μm at voltage of 

90V, which was large than the maximum output displacement of z piezoelectric stack about 

40μm. So the z-axis precise driving hinge had the function of displacement magnification. 

Fig.29 was the output curve of z-axis precise driving hinge with various steps from 5V to 

1V. Due to the hysteresis of piezoelectric stack, the curve was asymmetrical. Through the 

manner of various steps, it was convenient to realize the judgement of contact between the 

indenter and the sample with large step and to realize loading and unloading process with 

small step. Also it can be used to research the mechanical performance of materials under 

different steps.  

In order to evaluate performance of the unit, parameters were defined as follows. Ds was the 

maximum output displacement. Dr was the residual displacement. ǃ was the absolute error. 

α was the average error of each step. And then, ǃ and ǂ can be expressed  

 ǃ = Dr/Ds×100%  (11)  

 ǂ= Dr/n  (12)  

where n was the total steps in a test circle.  
According to equations (11) and (12), parameters were obtained and listed in Table 4. When 

the voltage step decreases, higher resolution will be obtained and unlimited resolution will 

be possible under ideal conditions.  

 

 x axis y axis z axis 

Ds(μm) 1.86 8.92 60 

Dr(μm) 0.29 -0.2 2.3 

ǃ 15.6% 2.24% 3.83% 

ǂ(nm) 6.04 4.17 63.8 

Resolution (μm /5v) 0.0775 0.3717 3.33 

Table 4. Parameters of three directions 

7.4 Indentation test of optical glass 

Indentation experiments of optical glass were carried out and the P-h curves were shown in 

Fig.30 and Fig.31.  
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Fig. 30. P-h curve with maximum load 26mN    
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Fig. 31. P-h curve with maximum load 30mN 

The three polynomial fitting was used to fit the curve of partial unloading data. Fig.32 was 
fitted curves and equations corresponding to Fig.30, and Fig.33 was fitted curves and 
equations corresponding to Fig.31. As shown in Fig.32 and Fig.33, the correlation coefficients 
were close to 1 which indicated that the selected order was suitable. So the relation between 
load P and the depth of partial unloading for the two experiments were given： 

Test one with maximum load 26mN: P= 22.197×h3 -85.055×h2 + 131.78×h - 62.456; 

Test two with maximum load 30mN: P= 107.74×h3 - 570.35×h2 + 1033.6×h- 619.31. 
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Fig. 32. Fitted curves and equations of partial unloading data of test one 
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Fig. 33. Fitted curves and equations of partial unloading data of test two 

According to equations mentioned in section 2, contact stiffness between indenter and 

optical glass of the two experiments was 35.0801mN/μm for test one and 53.49705mN/μm 

for test two. The relation between hardness H and load P at the unloading portion was 

obtained shown in Fig.34 (test one) and Fig.35 (test two) from which we can see that 

material’s hardness would change with penetration depth but it would stabilise when the 

depth was larger than a certain value. 
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Fig. 34. Relation curve between hardness H and depth h of test one 
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Fig. 35. Relation curve between hardness H and depth h of test two 
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Compared with the result by commercial indentation device shown in Fig.36 (Zhao et al., 

2009), the measured penetration depth was larger at a same load which was caused by 

structure compliance, indenter installation as well as the sample surface process, and it 

would be reduced and eliminated in our future work.  

The indentation morphology was obtained through high resolution optical microscope 

shown in Fig.37. The material generated some cracks which had significant value to analyze 

the damage mechanism especially that the full measuring process was monitored by SEM, 

TEM as well as other monitoring methods.  
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Fig. 36. P-h curve obtained from a commercial indentation device  

   

Fig. 37. Indentation morphology of optical glass 

The designed indentation device integrating flexure hinges and piezoelectric actuators is 

smaller than commercial indentation devices but can realize high precise measurement 

which gives solid foundation for our future work. We will make the device more precise 

and design smaller indentation device that can be located on the platform of SEM to realize 

in situ measurement. 
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8. Conclusions 

A new kind of indentation measurement method through two displacement sensors and a 
displacement amplification structure was proposed and established. Based on this method, 
a miniaturization indentation device was designed and analyzed. Hysteresis of two kinds of 
piezoelectric stacks were measured and analyzed. The hysteresis was different for different 
piezoelectric stacks. 
Two key components of the device, the precise driving and precise measuring units, were 
designed and analyzed. Results from static and modal analysis indicated that designed 
hinges and amplification structure had enough strength. The dynamic performances of 
flexure hinges were good but the natural frequencies of the amplification structure were 
low. So the work frequency of the indentation device should be away from the natural 
frequencies of the amplification structure to avoid sympathetic vibration and also it is better 
to take measures to alleviate and isolate the vibration existing in the surroundings. 
Calibration experimental results of the two displacement sensors and the amplification 
structure showed that they all had high linearity. The amplification structure had functions 
of stage and load-sensing, and can be used to realize precise load measurement. 
Output performances of flexure hinges were measured and obtained. They all had stable 
output displacement and the output resolution was related with the voltage step applied to 
the piezoelectric stack. 
Indentation experiments of optical glass were carried out. Relation curves between load and 
penetration depth were obtained. Contact stiffness and hardness were discussed. Curves 
obtained from the designed device and commercial device were compared and analyzed. 
The designed indentation device had smaller volume and can realize indentation test but 
the accuracy should be improved more.  
The future work will focus on designing smaller indentation device and realizing in situ 
experiments. 
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