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1. Introduction

Cardiac fibrillation is the breakdown of the organized electrical activity in the heart into
disorganized self-sustained electrical activation patterns. Fibrillatory episodes when affecting
the ventricles, i.e. the main pumping chambers of the heart, result in loss of cardiac output
and unless timely intervention is administered, death quickly ensues. The only known
effective therapy for lethal disturbances in cardiac rhythm is defibrillation, the delivery of
a strong electric shock to the heart. This technique, as accomplished nowadays by automatic,
implantable cardioverter-defibrillator (ICD) devices, constitutes the most important means of
combating sudden cardiac death. Several multi-center clinical trials have provided consistent
evidence that ICD therapy prolongs patient life. This convincing demonstration of efficacy has
led to a nearly exponential growth, over the last decade, in the number of patients receiving
implantable devices. Currently, around 0.2 million ICDs are implanted every year throughout
the world.
Although ICD therapy has proved to be efficient and reliable in preventing sudden cardiac
death (Bardy et al., 1993), with success rates clearly superior to other therapeutic options such
as pharmacological anti-arrhythmia therapy (Zipes et al., 1997), it is far from ideal. There are
several known adverse effects secondary to the administration of electrical shocks, the most
prominent are linked to electroporation (DeBruin & Krassowska, 1998), (i.e. the formation
of pores in the cellular membrane that allow the free and indiscriminate redistribution of
ions, enzymes and large molecules between intracellular and interstitial space), and its
after-effects which are indirectly caused by the high field strengths required to terminate
arrhythmias such as ventricular fibrillation (VF) with sufficiently high probability. Moreover,
psychological effects on patients play an important role. Conscious patients may perceive
shock delivery as extremely painful which leads to traumatization and reduction in quality
of life. Although pain may be tolerable in those cases where shock delivery saves human
lives, this is less likely in those cases where inadequate shocks are delivered due to high
voltage component malfunctions of the device. A recent meta-analysis of industrial reports
(Maisel, 2006) concluded that such malfunctions are much more frequent than expected, with
thousands of patients being affected. Further, clinical data from ICD trials suggested that 6 out
of 7 shocks delivered can be classified as inadequate, indicating the amount of over-treatment
in the ICD population is significant (Zipes et al., 1997). Therefore, despite the impressive
clinical success and efficacy of ICD implant, the therapy is clearly suboptimal due to these
numerous adverse side effects and as such research on defibrillation mechanisms remains
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to be an important topic. Achieving defibrillation reliably with shocks of much lower energy
than those delivered by ICD devices today, would constitute a major step forward. Advancing
our understanding towards a full appreciation of the mechanisms by which a shock interacts
with the heart is the most promising approach to achieve this goal.

1.1 Experimental approaches to investigate defibrillation mechanisms

Elucidating the biophysical underpinnings of defibrillation mechanisms has been a long
and arduous process. The key to understanding the cardiac defibrillation process is to
uncover those mechanisms by which electric current delivered to the heart during shock
delivery traverses myocardial structures and interacts with the wavefronts of fibrillation.
The quest for uncovering these mechanistic links between applied electric fields and evoked
membrane responses has proved to be enormously challenging. In no small part these
difficulties can be attributed to the lack of suitable experimental methodologies which would
allow to observe electrical events occurring before, during and after shock delivery with
sufficiently high spatio-temporal resolution. Early studies relied on recordings of extracellular
potentials following the defibrillation shock, since overwhelming electrical artifacts had
prevented researchers from recording during and shortly after the shock. Although these
pioneering electrical mapping studies provided some insights which laid the basis for
developing the first theories such as the upper limit of vulnerability (ULV) hypothesis,
there was no direct experimental evidence to prove the putative mechanisms. A major
breakthrough occur ed with the introduction of potentiometric dyes, which allowed to
record electrical events before, during and after shock delivery at a higher spatio-temporal
resolution. The ability of these optical mapping techniques to provide optical fluorescence
signals, Vopt, which are proportional to the transmembrane voltage, ∝ Vm, proved to be a
further advantage. Unlike extracellularly recorded electric potentials, Φe, which integrate
contributions of bioelectric activity in the vicinity of a recording site via the volume conductor
in which the heart is immersed, Vm provides a more direct measure for shock-induced
membrane responses, although optical signals are not purely local representations of Vm at
a recording site either, since fluorescence detectors collect photons emerging from within
a certain scattering volume (Bishop et al., 2007). Although optical mapping setups allow
to elegantly visualize shock-induced changes in tissue polarizations, these observations are
confined to record electrical activity from cardiac surfaces only. However, in a complex
three-dimensional anatomical structure such as the heart electrical events occur throughout
the entire myocardium including the depth of the myocardial walls. Therefore, the restricted
capabilities of current optical mapping techniques to detect events which may occur in
deeper layers of the myocardial wall without any signature at the surfaces (Ashihara et al.,
2008), poses a severe limitation, rendering investigations of defibrillation mechanisms by
experimental means alone a challenging endeavor.

1.2 Role of computer modeling

The absence of experimental methodology for observing shock-induced membrane
polarizations in 3D inspired the theoretical community to develop and refine computer
models of the cardiac defibrillation process. Since there is insufficient direct experimental
evidence which would allow a direct verification of model predictions in the depth of the
myocardium, computer models are compared against optical maps recorded at the ventricular
surfaces. Assuming that model formulations are valid quantitatively correct representation
of cardiac bioelectricity, models which correctly predict experimental observations at the
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Fig. 1. Left panel: In most experimental setups the field of view (FOV) of optical recordings,
as indicated by a gray dashed rectangle, is confined to the surface. Shown are polarization
patterns at the end of the shock delivered via plate electrodes, with the cathode being located
next to the left ventricle (top) and the right ventricle (bottom). Right panel: Computer
models allow to observe shock-induced changes in polarization throughout the entire
myocardium, revealing important shock-induced changes in electrical state of the tissue,
such as shape, size and location of the post-shock excitable gap (blue regions).

surfaces could be used with some confidence to take a look inside the depth of myocardial
walls, thus allowing to bridge the gap between experimental observations recorded at
epicardial and endocardial surfaces (Fig. 1).
In earlier computational studies of defibrillation mechanisms monodomain models were
employed. Such monodomain formulations do not account explicitly for current flow in the
extracellular domains. This simplification reduces model complexity and computational costs
at the cost of biophysical accuracy. Although monodomain models were well established for
studying impulse propagation in the heart, their suitability in the context of simulating the
process of defibrillation quickly turned out to be of limited value. Theoretical considerations
based on the monodomain equations predicted shock-induced changes in transmembrane
voltage, ∆Vm, only along tissue boundaries and around conductive discontinuities in the
heart, leaving the bulk of the myocardium essentially unaffected. However, such predictions
contradicted experimental findings which had established that a critical mass of the tissue of
∼ 95% (Adgey et al., 2005; Ideker et al., 1991) has to be affected by a sufficiently strong gradient
of > 5 V/cm (Frazier et al., 1989; Zhou et al., 1993) to be effective. To resolve this dilemma
the theoretical community put forward the more comprehensive bidomain model which
explicitly accounts for current flow in both the intracellular and interstitial domains. The
bidomain model proved quickly to be an invaluable powerful tool for studying defibrillation
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mechanisms, providing the sought after “missing link” (Roth & Krassowska, 1998) between
externally applied electric field and membrane responses in the tissue bulk. Using a bidomain
model Sepulveda and coworkers (Sepulveda et al., 1989) demonstrated in a seminal study
that shock-induced changes in membrane polarizations can be much more complex than
previously anticipated. Their simulation results suggested that the tissue response in the
vicinity of a strong unipolar stimulus involved the simultaneous occurrence of both positive
(depolarizing) and negative (hyperpolarizing) effects in close proximity, if the anisotropy
ratios between intracellular and interstitial space comprising the myocardium are unequal,
i.e. both spaces are anisotropic, but to a different degree. In the absence of unequal anisotropy
ratios, as it is the case with monodomain models which inherently assume equal anisotropies,
no polarizations of opposite polarity can occur (Fig. 2). This prediction of the existence of

Fig. 2. Unequal anisotropy ratios between intracellular and interstitial space is a necessary
condition for the existence of bulk VEPs. A) A unipolar anodal stimulus is delivered to the
center of a tissue sheet of equal anisotropy ratios. Shock induced polarizations of only one
polarity (hyperpolarizing) are observed and the tissue affected by the shock is limited the
immediate vicinity of the electrode. B) The exact same shock delivered to tissue of unequal
anisotropy ratios induced polarizations of both polarities and the area of tissue affected
extends far beyond the electrotonic space constant. Dashed lines indicate the longitudinal
axis of myocyte orientation.

“virtual electrodes” departed from the established view that tissue responses should only
be depolarizing if the stimulus is cathodal, or hyperpolarizing if the stimulus is anodal.
Optical mapping studies that followed convincingly confirmed these theoretical predictions
(Wikswo Jr et al., 1995). Since, “virtual electrode polarization” (VEP) has been documented
in experiments involving various stimulus configurations (Efimov, Aguel, Cheng, Wollenzier
& Trayanova, 2000; Efimov et al., 1997; Efimov, Gray & Roth, 2000; Evans et al., 2002; Knisley
et al., 1999).

1.3 Current understanding of defibrillation mechanisms

Conceptually, defibrillation can be considered to be a two-step process. First, the applied
shock drives currents that traverse the myocardium and cause complex polarization changes
in transmembrane potential distribution (Sobie et al., 1997). Secondly, post-shock active
membrane reactions are invoked that eventually result either in termination of fibrillation
in the case of shock success, or in reinitiation of fibrillatory activity in the case of shock
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failure. Using computer models to analyze the etiology of VEP patterns during the shock
application phase revealed that shape, location, polarity, and intensity of shock-induced
VEP are determined by both the cardiac tissue structure as well as the configuration of
the applied field (Knisley et al., 1999; Rodriguez et al., 2005; Sobie et al., 1997). Based on
theoretical considerations VEPs can be classified either as “surface VEP”, which penetrates
the ventricular wall over a few cell layers, or as “bulk VEP” where polarizations arise
throughout the ventricular wall (Entcheva et al., 1999; Trayanova et al., 1998). Analysis of the
bidomain equations revealed that a necessary condition for the existence of the bulk VEP is
the presence of unequal anisotropies in the myocardium. Sufficient conditions include either
spatial non-uniformity in applied electric field, or non-uniformity in tissue architecture, such
as fiber curvature, fiber rotation, fiber branching and anastomosis, and local changes in tissue
conductivity due to resistive heterogeneities (Plank et al., 2005) (Fig. 3).
The cellular response depends on VEP magnitude and polarity as well as on pre-shock state
of the tissue. APD can be either extended (by positive VEP) or shortened (by negative VEP)
to a degree that depends on VEP magnitude and shock timing, with strong negative VEP
completely abolishing (de-exciting) the action potential thus creating post-shock excitable
gaps. As demonstrated in bidomain modeling studies (Ashihara et al., 2008; Roth, 1995), the
post-shock VEP pattern is also the major determinant of the origin of post-shock activations.
In those regions where shock-induced virtual anodes and virtual cathodes are in close
proximity, a “break” excitation at shock-end (i.e, the “break” of the shock) can be elicited.
The virtual cathode serves as an electrical stimulus eliciting a regenerative depolarization and
a propagating wave in the newly created excitable area. Whether or not break excitations
arise depends on whether the transmembrane potential gradient across the border spans the
threshold for regenerative depolarization (Cheng, Mowrey, Van Wagoner, Tchou & Efimov,
1999). The finding of break excitations, combined with the fact that positive VEP can result in
“make” excitations (where “make” refers to the onset of a shock) in regions where tissue is at
or near diastole, resulted in a novel understanding of how a strong stimulus can trigger the
development of new activations.
According to VEP theory, mechanisms for shock success or failure are multifactorial
depending mainly on post-shock distribution of Vm as well as timing and speed of
propagation of shock-induced wavefronts. Whether the depolarization of the post-shock
excitable gap is achieved in time critically depends on number and conduction velocity
of post-shock activations, as well as the available time window which is bounded by the
instant at which refractory borders enclosing the excitable regions recover excitability. All
factors depend, ultimately, on shock strength. Increasing shock strength results in higher
voltage gradients across borders between regions of opposite polarity, leading to more
break-excitations (Cheng, Mowrey, Van Wagoner, Tchou & Efimov, 1999) which then start
to traverse the post-shock excitable gap earlier (Skouibine et al., 2000a) and at a faster velocity
(Cheng, Mowrey, Van Wagoner, Tchou & Efimov, 1999), as well as extending refractoriness to
a larger degree (Knisley et al., 1994).

2. Computationally modeling defibrillation and shock-induced arrhythmogenesis

Comprehensive mechanistic insight into defibrillation remains a major scientific frontier and
the 3D bidomain model is an important tool to complement and interpret experimental
observations. The quest to unravel how shocks could succeed in terminating fibrillation
or how they could re-instate arrhythmia has driven the technological aspects of computer
simulations of 3D bidomain activity. In order to be able to simulate electrical processes
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Fig. 3. An important insight learned from the bidomain model is that the etiology of VEPs is
determined by both field configuration as well as tissue structure. Shown are shock-induced
polarization patterns as a function of field and tissue configuration. Top panels: Shown are
the extracellular electric potentials Φe as induced by two point-like electrodes (left) and
line-like electrodes (right). Red(blue) indicates cathodal (anodal) stimulus. Left panels: Two
tissue configurations are shown, a homogeneous configuration with straight fibers only
(top), and a configuration where fiber orientation varies as a function of space (bottom).
Preferred longitudinal axes of the tissue is indicated by dashed lines. Central panels:
Shock-induced polarization patterns for all possible combinations between field and tissue
configuration. In the case of plate electrodes with a homogeneous tissue structure only
surface polarizations close to the electrode locations are observed. The bulk of the tissue
remains essentially unaffected.

driven by the delivery of shocks to the ventricles, computational research has managed to
overcome tremendous difficulties associated with obtaining solutions of very large systems
of unknowns, involving stiff equations and computational meshes of irregular geometry. A
brief overview of the computational approaches involved in conducting simulations of shock
administration and post-shock arrhythmogenesis is presented below.

2.1 Simulating cardiac bioelectric activity at the tissue and organ level

Computer models of cardiac biolelectric activity are built upon first principles which represent
the movement of ions in within the myocardial tissue. A building block of central importance
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are cardiac myocytes which make up the tissue. A myocyte is of roughly cylindrical shape,
∼100µm long and 10-20µm in diameter. The intracellular spaces of adjacent myocytes are
interconnected by specialized connexins referred to as gap junctions (Desplantez et al., 2007).
The connexin expression over the cell is heterogeneous with a higher density of gap junctions
at the intercalated discs located at the cell ends (along the long axis of the cell) and a lower
density along the lateral boundaries (Gourdie et al., 1991; Hoyt et al., 1989), and different
connexins of varying conductance are expressed in different regions of the heart (Severs et al.,
2008). As a consequence of the elongated cellular geometry as well as the directionally varying
gap junction density current flows more readily along the longitudinal axes of the cells than
transverse to it. This property is referred to as anisotropy. Cardiac tissue is composed of two
spaces: an intracellular space formed by the interconnected network of myocytes, and the cleft
spaces between myocytes referred to as interstitial space which is made up of the extracellular
matrix and the interstitial fluid. The extracellular matrix consists of networks of collagen
fibers which determine the passive mechanical properties of the myocardium. Electrically, it
is assumed that the preferred directions are co-aligned between the two spaces, but that the
conductivity ratios between the principal axes are unequal between the two domains (Clerc,
1976; Hooks et al., 2007; Roberts & Scher, 1982; Roth, 1997). All parameters influencing the
electrical properties of the tissue, such as density and conductance of gap junctions, cellular
geometry, orientation and cell packing density, and the composition of the interstitial space,
are heterogeneous and may vary at all size scales, from the cellular level up to the organ.
As a consequence, direction and speed of a propagating electric wave is constantly modified
by interactions with discontinuous spatial variations in material properties at various size
scales. At a finer size scale below the space constant, λ, of the tissue, i.e. <1mm, the tissue
is best characterized as a discrete network in which the electrical impulse propagates in a
discontinuous manner (Kleber & Rudy, 2004; Spach & Heidlage, 1995). At a larger more
macroscopic size scale (≫ λ) the tissue behaves as a continuous functional syncytium where
the effects of small-scale discontinuities are assumed to play a minor role.
Theoretically, the idea of modeling an entire heart by using models of a single cell as
the basic building block is conceivable. However, the associated computational costs are
prohibitive with current computing hardware, since a single heart consists of roughly 5
billion cells. Although a few high resolution modeling studies have been conducted where
small tissue preparations were discretized at a sub-cellular resolution (Hooks et al., 2007;
Roberts et al., 2008; Spach & Heidlage, 1995), in general the spatial discretization steps
were chosen based on the spatial extent of electrical wave fronts and not on the size scales
of the tissue’s micro-structures. For this sake cardiac tissue is treated as a continuum for
which appropriate material parameters have to be determined which translate the discrete
cellular matrix into an electrically analog macroscopic representation. In principle, this is
achieved by averaging material properties over suitable length scales such that both potential
and current solution match between homogenized and discrete representation. A rigorous
mathematical framework for this procedure is provided by homogenization theory which
has been applied by several authors to the bidomain problem (Hand et al., 2009; Henriquez,
1993; Neu & Krassowska, 1993; Pennacchio M. et al., 2006). Homogenization is a two-step
process where the intracellular and interstitial domain are homogenized in a first step and
the two respective domains are spread out and overlapped to fill the entire tissue domain.
This concept of interpenetrating domains states that everywhere within the entire myocardial
volume intracellular space, extracellular space and the cellular membrane coexist (Fig. 4).
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Fig. 4. a) Cardiac tissue is made up of discrete myocytes which are interconnected via gap
junctions. b) Discrete structures in both the intracellular as well as the interstitial space are
homogenized to arrive at a continuum representation, which matches electrical properties
between discrete microscopic size scale and continuous macroscopic size scale. Further, both
homogenized domains are overlapped, separated by a membrane at each point in space
(interpenetrating domains). c) Discrete representation of both conductive domains and
membrane, as discretized by a finite difference approach.

2.2 Governing equations

The bidomain equations(Plonsey, 1988) describe the electrical behavior of cardiac tissue as a
syncytium, where all tissue parameters are accounted for in an averaged sense. The domains
of interest, intracellular and extracellular, and the cellular membranes which physically
separate the two domains, are distributed over the entire tissue volume. The bidomain
equations state that currents that enter the intracellular or extracellular spaces by crossing the
cell membrane represent the sources for the intracellular potential, φi, and the extracellular
potential, φe,

∇ ·σi∇φi = βIm (1)

∇ ·σe∇φe = −βIm − Ie (2)

Im = Cm
∂Vm

∂t
+ Iion(Vm,η)− Istim (3)

Vm = φi − φe, (4)

where σi and σe are the intracellular and extracellular conductivity tensors, respectively, β
is the bidomain membrane surface to volume ratio, Im is the transmembrane current density,
Istim is the current density of the transmembrane stimulus used to initiate an action potential,
Ie is the current density of the extracellular stimulus, Cm is the membrane capacitance per unit
area, Vm is the transmembrane potential, and Iion is the density of the total current flowing
through the membrane ionic channels, pumps and exchangers, which depends on Vm and a
set of state variables, η. At the tissue boundaries, electrical isolation is assumed, which is
accounted for by imposing no-flux boundary conditions on φe and φi.
If, however, cardiac tissue is surrounded by a conductive medium, such as blood in the
ventricular cavities or a perfusing bath (Tyrode solution) in which the heart is submerged,
then Laplace equation has to be additionally solved

∇ · σb∇φe = 0, (5)
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where σb is the isotropic conductivity of the conductive medium. In this case no-flux boundary
conditions are assumed at the boundaries of the conductive medium, whereas continuity of
the normal component of the extracellular current and continuity of φe are enforced at the
tissue-bath interface. The no-flux boundary conditions for φi remain the same.
For most applications the bidomain equations are recast into other forms by substituting eq.(4)
into (1) and (2) and executing algebraic transformations. Several ways to recast the bidomain
equations have been proposed; a systematic overview of the different linear transformations
is found in (Hooke et al., 1994). A widely used transformation is to add eqs. (1) and (2) and
replace φi by Vm + φe (Pollard et al., 1992)

∇ · (σi +σe)∇φe = −∇ ·σi∇Vm − Ie (6)

∇ ·σi∇Vm = −∇ ·σi∇φe + βIm, (7)

which retains Vm and φe as the independent variables. For comparison of tissue and organ
level simulations with experimental data this is advantageous since φe can be measured via
electrical mapping techniques and optical mapping techniques allow to record signals Vopt ∝

Vm.

2.3 Computational considerations

Large-scale computational studies employing the bidomain model in general, and
defibrillation studies in particular, have remained a challenge even though computer speed
and memory have dramatically increased. There are numerous factors which render any
numerical solution of the bidomain equations computationally challenging. First, the
upstroke of the action potential is very fast, lasting only ∼ 1ms. These fast transients translate
into a steep propagating wavefront in space where the depolarization wavefront extends
only a few hundreds of µm. As a consequence, both spatially fine-grained computational
grids and a high temporal resolution is required to faithfully capture wavefront propagation.
Further, the discretized domain of interest has to be chosen large enough to support reentrant
wave propagation when studying the formation, maintenance and termination of cardiac
arrhythmias. With constraints on spatial discretization as mentioned above, the results is a
large system, on the order of 0.1 to 100 million degrees of freedom. Finally, the maximum time
step which can be taken to advance the solution of the bidomain equations in time is limited,
either by stability (Courant et al., 1928) or accuracy constraints. Since the physiological
processes of interest take place over seconds or minutes, temporal step size limits necessitate
a large number of time steps, typically in the range from tens to hundreds of thousands.
Beyond the high computational load imposed by bidomain simulations in general, there are
numerous additional methodological challenges which need to be addressed when using
computer models for studying the delivery of defibrillation shocks. To model the effect
of extracellularly applied fields, the use of unstructured grids for anatomically realistic
models of the heart is mandatory as to allow smooth representation of the organ’s surfaces.
Jagged boundaries, which inevitably form along the organ surfaces when regular structured
or block structured grids are employed, cause spurious polarizations upon delivery of a
defibrillation-strength shock. Further, even finer spatial discretization may be required since
large transmembrane voltage gradients are induced by the shock; for instance, in a passive
2D bidomain study (Aguel et al., 1999) a voltage drop of 1V over a distance as short as 100
µm has been reported. Another serious difficulty is the use of state-of-the-art ionic models
which incorporate now up to several tens of state variables of ever increasing stiffness. These
models are developed and tested within the normal physiological range of action potentials,
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however, during the shock administration transmembrane voltages may rise significantly
beyond this range, even when ionic models are augmented with additional currents such
as electroporation currents (DeBruin & Krassowska, 1998) or hypothetical potassium currents
(Cheng, Tung & Sobie, 1999). Although these currents kick in at elevated transmembrane
voltages to cap the rise of Vm at a few hundreds of mV, transmembrane voltages still rises
well beyond the physiological range which could potentially entail undesirable behavior of
the model equations. Moreover, due to the even faster transients in state variables during
shock onset enforce, even smaller time steps may be required, making computations during
the shock very burdensome. Typically, modifications are required to render an ionic model
suitable for defibrillation studies (Ashihara & Trayanova, 2004; Skouibine et al., 2000b).
Finally, due to the nature of defibrillation, where shock success depends on a multitude of
parameters such as shock strength and timing, pulse shape and polarity or electrode geometry
and location, a large number of simulations is required to sweep the parameter space. For
instance, a standard problem is to determine the window of vulnerability for a given electrode
configuration, that is, for which range of shock strength and coupling intervals the tissue is
vulnerable to arrhythmia induction. Such studies involve the construction of vulnerability
grids where N timings and M shock strengths have to be tested. Therefore a total of N × M
shocks need to be computed and N × M simulations of post-shock evolution need to be
performed to determine arrhythmia inducibility for each combination.

2.4 Spatial discretization

Various spatial discretization techniques have been applied to the cardiac bidomain problem,
most notably the finite difference method (FDM) (Potse et al., 2006; Skouibine et al., 2000a),
the finite volume method (FVM) (Harrild & Henriquez, 1997; Trew, Le Grice, Smaill &
Pullan, 2005) and the finite element method (FEM) (Rogers & McCulloch, 1994; Vigmond
et al., 2002), although other non-standard techniques such as the interconnected cable model
have been employed successfully as well (Leon & Roberge, 1991; Wang et al., 1996). In
general, the FDM is easiest to implement, but the method does not accommodate complex
boundaries as naturally as the FEM or the FVM do. Although suggestions were made to
overcome this limitation by employing the phase-field approach (Fenton et al., 2005) or other
generalizations (Buist et al., 2003; Trew, Smaill, Bullivant, Hunter & Pullan, 2005), the FDM
looses its most appealing advantage, the ease of implementation. FEM and FVM are both very
well suited for spatial discretizations of complex geometries with smooth representations of
the boundaries, which is a key feature when polarization patterns induced via extracellularly
applied currents are to be studied. Both FVM and FEM have been used to model electrical
activity in anatomical realistic models of the atria (Harrild & Henriquez, 2000; Seemann et al.,
2006; Vigmond et al., 2004; Virag et al., 2002) as well as the ventricles (Ashihara et al., 2008;
Plank et al., 2009; Potse et al., 2006; Ten Tusscher et al., 2007). Mesh generation requirements
are similar for both techniques, that is, the domain of interest has to be tessellated into a set of
non-overlapping and conformal geometric primitives (Fig. 5). With the FVM, quadrilaterals
in 2D (Harrild & Henriquez, 1997) and hexahedral elements in 3D (Harrild & Henriquez,
2000; Trew, Le Grice, Smaill & Pullan, 2005) have been preferred, whereas with the FEM,
triangles and quadrilaterals were used in 2D and tetrahedral (Plank et al., 2009) or hexahedral
elements in 3D (Munteanu et al., 2009; Seemann et al., 2006). Typically, monolithic meshes
consisting of one element type only were used, but exception exist (Prassl et al., 2009; Rocha
et al., 2011) where hybrid meshes consisting of tetrahedra, hexahedra, pyramids and prisms
were used. Further, most FEM studies relied on the Galerkin FEM where linear test functions
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with tetrahedral elements (Franzone et al., 2006; Sundnes et al., 2006; Vigmond et al., 2002),
isoparametric trilinear test functions with hexahedral elements (Munteanu et al., 2009) or
cubic-hermite hexahedral elements (Rogers & McCulloch, 1994; Saucerman et al., 2004) were
used.
Independently of the spatial discretization technique, the choice of space step, h, is of major
importance. It is known since very early modeling studies that the solution of the bidomain
equations does depend, to a certain degree, on h, even with very fine spatial discretizations
(Pollard et al., 1993). This sensitivity has to be attributed to the non-linearity and stiffness of
the reaction term which entails an extremely fast upstroke of the cardiac action potential,
lasting ∼ 1 ms only. When propagating, a fast upstroke in time translates into a steep
wavefront in space. Depending on tissue conductivity and cellular excitability, physiological
conduction velocities range between 0.2 - 0.7 m/s within the myocardium which translates an
upstroke duration of 1 ms duration into a wavefront that extends 200-700 µm in space. Under
pathological situations where tissue conductivity and/or excitability is reduced, conduction
velocity may be substantially slower, leading to wavefronts where the spatial extent may be
even below 100 µm. The spatial extent of a wavefront along a direction ζ is proportional to
the space constant, λζ ,

λζ =

√

1
β

σiζ σeζ

σiζ + σeζ
. (8)

It has been shown that for sufficiently small effective discretizations, Hζ = λζ /hζ < 0.15,
solutions converge with deviations in conduction velocity <1% (Pollard et al., 1993). In
practice, a trade-off has to be made between accuracy and computational tractability. In tissue
and organ scale modeling studies a standard choice for h, or for an average discretization h̄
when unstructured grids are considered, is 250µm, but finer (Plank et al., 2009) as well as
coarser discretizations (Ashihara et al., 2008; Saucerman et al., 2004) have been reported as
well. With very coarse discretizations, h >500 µm, and physiologically realistic models of
cellular dynamics simulations deviate substantially from results obtained at finer resolutions.
Conduction velocities at such coarse grids are underestimated to different degrees as a
function of direction, leading to wavefront distortions (Clayton et al., 2011), even conduction
block may occur as a numerical side effect due to spatial undersampling.

2.5 Construction of models of cardiac anatomy

In order to construct geometrically-realistic models of cardiac anatomy, such information must
be first obtained via various different imaging modalities, to then be processed and used in
model construction. In the past decade or so, efforts have been focused towards developing
techniques to construct 3D computational cardiac models directly from non-invasive 3D
imaging modalities such as magnetic resonance (MR). In the last few years, the advent of
stronger magnets and refined scanning protocols has significantly increased the resolution of
anatomical MR scans, such that small mammalian hearts now can have MR voxel dimensions
of ≈ 20 − 25 µm (Burton et al., 2006; Plank et al., 2009). An example of a high resolution
anatomical MR scan of a rabbit heart with voxel resolution ≈ 25 µm isotropic is shown
in Fig. 5. As a result of this increase in attainable resolution, anatomical MR imaging is
now capable of providing a wealth of information regarding fine-scaled cardiac structural
complexity. Such MR data is currently allowing accurate identification of microscopic features
such as the coronary vasculature, extracellular cleft spaces and the free-running Purkinje
system, as well as macroscopic structures such as trabeculations and papillary muscles.
In addition, information regarding the organization of cardiomyocytes into cardiac fibers
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(Streeter et al., 1969), as well as the laminar structure of the myocardial wall (LeGrice et al.,
1995) is required to account for orthotropic tissue properties. Such data is unattainable with
normal anatomical MR imaging, however, the eigenaxes of the tissue can be estimated in 3D
using diffusion-tensor MR imaging (DT-MRI).
This information must then be processed and transformed into a usable format to facilitate
the generation of anatomically-detailed computational cardiac models. A first processing step
is to faithfully extract the complex geometrical information present in the image stacks. This
procedure, referred to as segmentation, involves labeling voxels based-on their association
with different regions, types of tissue, objects or boundaries within the image. Ideally,
computational algorithms are employed, which automatically segment regions of interest
within the image with little or no manual input. For generating a computational model it
is required to discriminate those voxels in the MR data set which belong to cardiac ‘tissue’
from those which represent non-tissue or ’background’, effectively translating a gray-scale
MR image data set into a binary black/white (0/1) image mask.
In a final step, classified objects in the binarized image stacks are tessellated into finite
element meshes. The construction of such meshes is a highly non-trivial task. Recent
advances in image-based mesh generation techniques allow the direct construction of finite
element meshes using segmented image stacks as input (Prassl et al., 2009). Although
the exceptionally high resolution of such data sets currently being obtained can provide
unprecedented insight regarding intact cardiac anatomical structure, faithfully transferring
this information into a finite element mesh that is both of good quality and is computationally
tractable, is a significant challenge. A widely used approach is based on a recently
published image-based unstructured mesh generation technique (Prassl et al., 2009) or its
commercial implementation Tarantula (www.meshing.at, CAE-Software Solutions,

Eggenburg, Austria). This method uses a modified dual mesh of an Octree applied
directly to segmented 3D image stacks. The algorithm operates fully automatically with no
requirements for interactivity and generates accurate volume-preserving representations of
arbitrarily complex geometries with smooth surfaces. The generated unstructured meshes
are hybrid, hexahedra-dominant, boundary fitted, locally refined, conformal finite element
meshes (see Fig. 5, middle panel). The smooth nature of the surfaces ensures general
applicability of the meshes generated, in particular for studies involving the application of
strong external stimuli, since the smooth, unstructured grids lack jagged boundaries that can
introduce spurious currents due to tip effects, as is the case for structured grids. To reduce
the overall computational load of the meshes, unstructured grids can be generated adaptively
such that the spatial resolution varies throughout the domain. Fine discretizations with little
adaptivity can be used to model the myocardium thus minimizing undesired effects of grid
granularity on propagation velocity, whilst coarser elements that grow in size with distance
from myocardial surfaces are generated to represent a surrounding volume conductor (e.g.
tissue bath or torso for example). Using adaptive mesh generation techniques facilitates the
execution of bidomain simulations with a minimum of overhead due to the discretization of
a surrounding volume conductor.

2.6 Numerical schemes

Among the possible castings of the bidomain equations, the one presented as (6) and (7) is the
most popular. In the most general case, where a conducting medium is in contact with the
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Fig. 5. Image based mesh generation pipeline for constructing geometrically detailed models
of cardiac anatomy. Medical image stacks are segmented and fed into an image-based mesh
generation algorithm which tessellates classified objects in the image stack into finite element
meshes which are suitable for being used in bidomain simulations.

myocardium, the bidomain equations are written as
[

−∇ · (σi +σe)∇φe

−∇ · σb∇φe

]

=

[

∇ ·σi∇Vm

Ie

]

(9)

∂Vm

∂t
=

1
βCm

(∇ ·σi∇Vm +∇ ·σi∇φe)

−
1

Cm
Iion(Vm,η) (10)

dη

dt
= g(Vm,η) (11)

Numerically, the bidomain equations can be solved as a coupled system (Vigmond et al., 2002)
or alternatively, operator splitting techniques are applied (Keener & Bogar, 1998) to decouple
the computing scheme into three components, an elliptic partial differential equation (PDE),
a parabolic PDE, and a set of non-linear ODEs. It has been shown that the decoupled scheme
converges quickly against the coupled scheme by employing a Block Gauss-Seidel iteration
(Pennacchio & Simoncini, 2002). However, in most studies the components are essentially
treated as independent. Solutions are then found by leap-frogging between the decoupled
components where either Vm in (9) or Φe in (10) are considered as constant. In (Vigmond
et al., 2002) it has been found that with small error tolerances the differences between coupled
and decoupled approaches are negligible.
Discretizing the decoupled bidomain equations leads to a three-step scheme, which involves
a solution of the parabolic PDE, the elliptic PDE and the non-linear system of ODEs at each
time step. The inner loop of this scheme is given by

Vk∗
m = Vk

m +
∆t

βCm

[

θ∇ ·

(

σi∇Vk∗
m

)

+ (1 − θ)∇ ·

(

σi∇Vk
m

)]

(12)

η
k+1
f = η

k
f e−

∆t
τ + η∞

(

1 − e−
∆t
τ

)

(13)
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η
k+1
s = η

k
s + g(Vk∗

m ,ηk
s )∆t (14)

Vk+1
m = Vk∗

m −
∆t

Cm
Iion(V

k∗
m ,ηk+1) (15)

−∇ ·

(

(σi +σe)∇Φ
k+1
e

)

= ∇ ·

(

σi∇Vk+1
)

(16)

−∇ ·

(

σb∇Φ
k+1
e

)

= Ie, (17)

where the reaction and diffusion part of the parabolic PDE is split by employing a Strang
or a Gudunov scheme (Qu & Garfinkel, 1999; Sundnes et al., 2005). The parabolic portion
(12) is solved either by choosing θ = 0.5, which results in a Crank-Nicholson scheme, or
θ = 0.0, which results in an explicit forward Euler scheme. Depending on the choice of θ the
overall system is solved then either with a fully explicit scheme, or an implicit-explicit (IMEX)
scheme. The ODE integration approach in (13)-(14) is based on the Rush-Larsen method (Rush
& Larsen, 1978) where an analytical solution was used to update the fast gating variables, η f ,
where τ and η∞ are functions of the rate coefficients which govern channel gating, and an
explicit Euler step to update all other slower state variables, ηs (Maclachlan et al., 2007; Plank
et al., 2008).
Typically, additional Dirichlet boundary conditions have to be enforced for the elliptic PDE to
eliminate the Nullspace, otherwise the elliptic system is singular. This is usually achieved by
adding a grounding electrode, i.e. choosing nodes in the mesh where φe is set to zero, which
serves as the reference potential when simulating the shock, as it is the case in a real physical
setup.

2.7 Linear solvers

Although the PDEs are solved most efficiently with direct methods, this is possible for small
grids only (Plank et al., 2007; Vigmond et al., 2002); otherwise memory demands increase
quickly which, in turn, significantly increases the required number of operations per solver
step. Although direct methods have been implemented to run in parallel environments
(Amestoy et al., 2001; Li & Demmel, 2003), typically they are harder to parallelize due to
the fine-grained parallelism, which is communication-intense. For large systems, iterative
methods are mandatory.
When executing bidomain simulations on sequential computers, the main computational
burden can be attributed to the solution of the elliptic problem and the set of ODEs. Typically,
with simple ionic models, the elliptic problem contributes more than 90% to the overall
workload, whereas with recent ionic models involving very stiff ODEs (Cortassa et al., 2006;
Iyer et al., 2004), the ODE solution may even begin to dominate the computations. The
parabolic problem is typically less of a concern. On coarser meshes, where time steps are
limited by the ODEs, simple forward Euler steps can be employed to update Vm. In this case,
the contributions of the diffusional component (PDE) and the local membrane component
to changes in Vm can be updated separately, which renders the PDE linear. On finer grids,
semi-implicit Crank-Nicholson schemes perform well. Even when relatively cheap iterative
solvers are employed, the parabolic portion can be updated efficiently due to the diagonal
dominance of the linear system.
For large systems, on the order of several hundreds of thousands of unknowns, parallel
computing approaches are necessary to reduce execution times. The parallel computing
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context alleviate the problem of solving the set of ODEs. State variables in an ionic
model do not diffuse, which qualifies the ODEs as an embarrassingly parallel problem.
No communication between processors is required to update the state variable and thus
the parallel scaling of the ODE portion is linear. The parabolic problem is efficiently
solved in parallel as well (Niederer S. et al., 2011). Either only a forward Euler step
is required (essentially a matrix-vector product for which good scalability is expected),
or the well-posed diagonally-dominant linear system is solved efficiently with relatively
cheap iterative methods, such as preconditioned conjugate-gradient (CG). Typically, with an
incomplete LU (ILU) preconditioner for the iterative CG solver the parabolic problem can be
solved in less than 10 iterations.
The elliptic PDE is the most challenging problem. Standard iterative solvers like ILU-CG
typically require several hundreds of iterations to converge, which makes this solution
significantly more expensive than that of the parabolic system, although both systems share
the same sparsity pattern. The parallel scaling of standard iterative solvers is fairly good
(Plank et al., 2007); for instance, a parallel ILU-CG solver, where the system is decomposed
by a Block Jacobi preconditioner with ILU(0), i.e. an incomplete LU factorization with zero
fill-in levels that preserves the sparsity pattern of the original matrix, used as a subblock
preconditioner, exhibits good parallel scaling (Plank et al., 2007). With fewer number of
processors, ILU(N) with N levels of fill-in tends to be more efficient, however, with an
increasing number of processors the efficiency of the preconditioning deteriorates since the
preconditioner is applied to the main diagonal block only. This can be circumvented by
employing overlapping block preconditioners such as additive Schwarz methods, however,
they increase the communication burden, which, depending on the particular hardware, may
be undesirable.
It has been demonstrated in several recent studies (Austin et al., 2006; Plank et al.,
2007; Weber dos Santos et al., 2004) that multilevel preconditioners for CG methods both
significantly improve the overall performance and show reasonable parallel efficiency (better
than 80%) for up to 128 processors. A generally applicable algebraic multigrid preconditioner
(AMG) in conjunction with an iterative Krylov solver reduces the number of iterations per
solver step by almost two orders of magnitude compared to ILU-CG. Although a single
iteration with AMG is significantly more expensive than with ILU, the reduction in number
of iterations clearly favors a multilevel approach. In (Plank et al., 2007), a speedup of 6 was
reported. Using AMG-CG is, to date, the most efficient method for solving the elliptic portion
of the bidomain equations. The method is particularly well suited for defibrillation studies
since it is computationally efficient and handles unstructured grids straightforwardly.
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