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1. Introduction 

Recent modern fabrication technology allows us for the fabrication of nanometer-scaled 
devices, which is possible to observe single electronic or single electron tunneling phenomena 
(Averin & Likharev, 1991; Likharev, 1988; Likharev, 1999; Hanna et al., 1991; Tucker, 1992). On 
the other hand, MOSFET (metal-oxide-semiconductor field effect transistor) devices with 
channel length below 20 nanometer (nm) are no more properly operated because the down-
scaling of MOS devices causes a large statistical fluctuation of the threshold voltage. A possible 
approach to overcome this problem is to use the single electron devices for future VLSI (very 
large scale integrated circuit) (Takahashi et al., 1995; Saitoh et al., 2001). 
Nanometer scale single electron devices have the following features, i.e., low power 
consumption and small size. These are key features to realize ultra high density circuits. 
Single electron circuits with new architecture are also possible because the basic operation of 
single electron devices is quite different from that of conventional semiconductor devices. 
There are two major requirements for single electron tunneling phenomena (Coulomb 
blockade) to occur (Averin & Lhikarev, 1991; Likharev, 1988; Likharev, 1999). Firstly, 
thermal energy ݇஻ܶ must be much smaller than elemental charging energy ݁ଶ ⁄ܥʹ . This 
ensures that the transport of charges is in fact governed by the Coulomb charging energy. 
This condition can be fulfilled either by lowering the temperature or by decreasing the 
capacitance which means to reduce the island size. Usually, experiments are performed at 
temperatures of a few mK and for structures with island sizes of a few hundred nanometers. 
Second requirement is related to tunnel resistance which must exceed the quantum 
resistance (ℎ Ͷ݁ଶ⁄ ≈ ͸.ͷ kΩ). This condition ensures that the wave functions of excess 
electrons between the barriers are basically localized. On the other word, in the case of lower 
tunnel resistance, excess charges extend over the barriers so that no single electron tunneling 
event can be possible.  
There are several types of circuits where the single electron tunneling phenomena are being 
explored, such as single electron box (Likharev, 1999), single electron transistor (SET) (Tucker, 
1992; Takahashi et al., 1995; Saitoh et al., 2001; Wolf et al., 2010; Sun et al., 2011; Lee et al., 2009), 
single electron pump (Ono et al., 2003), single electron turnstile (Moraru et al., 2011) and single 
electron circuits with several junctions (1D and 2D arrays) (Nuryadi et al., 2003; Nuryadi et al., 
2005). A double junction system is most important single electron circuit because of a basic 
component of SET. At small applied voltage, the system remains in the Coulomb blockade 
state, and no current flows through the double junctions. On the other hand, at higher applied 
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voltage, the Coulomb blockade is defeated and the electrons can tunnel through the junctions 
and finally the current flows. If the island between two tunnel junctions is electrostatically 
controlled by the gate capacitance, the system became single electron transistor. This device is 
reminiscent of a MOSFET, but with a small island (dot) embedded between two tunnel 
capacitors/junctions, instead of the usual inversion channel. 
It is well known that a numerical simulation of the devices could help a great deal in their 
understanding of the devices. However, although so far several groups have reported the 
simulation and modeling of single electron tunneling devices (Amman et al., 1991; Kirihara et 
al., 1994; Fonseca et al., 1997; Wasshuber et al., 1997; Nuryadi et al., 2010), numerical 
simulation with detail explanation and easy examples is still needed, especially for beginners 
in the field of single electron devices. Basically there are two methods to simulate the single 
electron phenomena, i.e., master equation (Amman et al., 1991; Nuryadi et al., 2010) and 
Monte Carlo methods (Kirihara et al., 1994; Fonseca et al., 1997; Wasshuber et al., 1997).  
The goal of this chapter is to simulate numerically current-voltage characteristics in the 
single electron transistor based on master equation. A master equation for the probability 
distribution of electrons in the SET dot (see Fig. 1) is obtained from the stochastic process, 
allowing the calculation of device characteristics. First, I will start with an introduction of 
the basic equations in Master equation (section II). Next, the derivation of free energy 
change due to electron tunneling event is discussed in section III. The flowchart of 
numerical simulation based on Master equation and the Matlab implementation will be 
discussed in section IV and V, respectively. The examples of simulation resuls are presented 
in section V. Finally, section VI is conclusion.  

2. Basic equations in master equation based simulation 

Figure 1 shows the SET circuit consisting of a dot between the source and drain electrodes 
separated by tunnel capacitors ܥଵ and ܥଶ. Both tunnel capacitors ܥଵ and ܥଶ have tunnel 
resistances ܴଵ and ܴଶ, respectively. The dot is also coupled to the gate electrode with 
capacitor ீܥ  in order to control the current flow. The total capacitance between the dot and 
the outer environment can be writen as ఀܥ, where 

ఀܥ  = ଵܥ + ଶܥ + ீܥ .            (1) 

 

 

Fig. 1. Single electron transistor has a structure of the dot in the center coupled by two 
tunnel capacitors (ܥଵ and ܥଶ) and a gate capacitor ீܥ . Source is connected to a ground, 
where drain and gate are applied by voltages ܸ and ܸீ  (Tucker, 1992).  
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There are four main equations for current-voltage characteristics of single electron circuits, 
i.e., free energy change ∆ܨ, tunneling probability/rate ߁, steady state master equation and 
current equation ܫ, as follows. 
Free energy change: ∆ܨଵ±ሺ݊ଵ, ݊ଶሻ = ఀܥ݁ ቄ݁ʹ ± ሺܰ݁ − ܳ଴ሻ ∓ ሺீܥ + ଶሻܸܥ ± ீܸீܥ ቅ (2a)

,ଶ±ሺ݊ଵܨ∆ ݊ଶሻ = ఀܥ݁ ቄ݁ʹ ∓ ሺܰ݁ − ܳ଴ሻ ∓ ଵܸܥ ∓ ீܸீܥ ቅ (2b)

Tunneling probability/rate: 

ଵ±ሺܰሻ߁ = ͳܴଵ݁ଶ ቈ ଵ±ͳܨ∆− − ±ଵܨ∆ൣ݌ݔ݁ ݇஻ܶ⁄ ൧቉ (3a)

ଶ±ሺܰሻ߁ = ͳ௝ܴ݁ଶ ቈ ଶ±ͳܨ∆− − ±ଶܨ∆ൣ݌ݔ݁ ݇஻ܶ⁄ ൧቉ (3b)

Steady State Master equation: 

ଶି߁ሺܰሻሾߩ  ሺܰሻ + ଵାሺܰሻሿ߁ = ሺܰߩ + ͳሻሾ߁ଶାሺܰ + ͳሻ + ଵି߁ ሺܰ + ͳሻሿ         (4) 

Current equation: 

ሺܸሻܫ  = ݁ ∑ ଵାሺܰሻ߁ሺܰሻሾߩ − ଵି߁ ሺܰሻሿஶேୀିஶ = ݁ ∑ ଶାሺܰሻ߁ሺܰሻሾߩ − ଶି߁ ሺܰሻሿஶேୀିஶ         (5) 

where e is the elemental charge, ݇஻ is the Boltzmann constant, ܶ is the temperature, ܰ is the 
number of electrons in the dot, ݊ଵ and ݊ଵ are a number of electrons flows through the 
capacitor ܥଵ and capacitor ܥଶ, respectively, ܳ଴ is the background charge and +/- express that 
the electron tunnels through the capacitor with the direction from left to the right and from 
right to the left, respectively.  
Equations (2a) and (2b) are used to calculate the free (electrostatic) energy change ∆ܨ of the 
system due to the one electron tunneling event. It is important to be noted that only tunneling 
events decreasing the electrostatic energy (and dissipating the difference) are possible. 
The values ∆ܨ from equations (2a) and (2b) are used to calculate electron tunneling 
probability in the equations (3a) and (3b), respectively. The tunneling of a single electron 
through a particular tunnel junction is always a random event, with a certain rate ߁ (i.e., 
probability per unit time) which depends solely on the ∆ܨ. Equation (4) expresses the 
Master equation in steady state, resulting the value of ߩሺܰሻ, which is necessary to be used 
for  the current calculation in equation (5). 

3. Derivation of free energy change in single electron transistor circuit 

As explained above that the free energy change of the system before and after tunnel event 
plays a key role on the occurrence of the electron tunneling, i.e., whether the tunneling event 
occurs or dot. Therefore, the origin of the free energy change in SET system is important to 
be reviewed. The free energy of voltage-biased single electron transistor is defined by the 
difference in electrostatic energy stored in the circuit (total charging energy) and work done 
by the external voltage source due to tunnel events. 
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3.1 Total charging energy 
In order to calculate total charging energy, it is necessary to determine the voltage applied 
on the tunnel capacitor ܥଵ ( ଵܸ) and tunnel capacitor ܥଶ ( ଶܸ) using the following step. The 
configuration of the charges on each capacitor in the single-electron transistor circuit 
(Figure1) can be expressed as (Tucker, 1992), 

 ܳଵ = ଵܥ ଵܸ = ଵሺܸܥ − ଶܸሻ,       (6a) 

 ܳଶ = ଶܥ ଶܸ,       (6b) 

 ܳீ = ሺܸீீܥ − ଶܸሻ.       (6c) 

It is noted that the ଶܸ is also subjected to the voltage in the dot. Charge in the dot is given by, 

 ܳ = ܳଶ − ܳଵ − ܳீ = ܰ݁ − ܳ଴.         (7) 

Here, ܰ = ݊ଵ − ݊ଶ is a number of electrons in the dot.  
If the equations (6a), (6b) and (6c) are inserted into an equation (7), it can be obtained the ଶܸ 
as a function of drain voltage ܸ and gate voltage ܸீ , as follows, ܥଶ ଶܸ − ଵሺܸܥ − ଶܸሻ − ሺܸீீܥ − ଶܸሻ = ܳ,  

ଶܸ = ͳఀܥ ሺܥଵܸ + ீܸீܥ + ܳሻ (8)

From equation (8) and relationship of ଵܸ + ଶܸ = ܸ, it can be obtained the value of voltage on 
capacitor ܥଵ, as follows, 

ଵܸ = ܸ − ͳఀܥ ሺܥଵܸ + ீܸீܥ + ܳሻ 

ଵܸ = ͳఀܥ ሾሺܥଶ + ሻܸீܥ − ீܸீܥ − ܳሿ (9)

Note that both ଵܸ and ଶܸ are a function of ܰ, which is the number of electrons in the dot 
because of ܳ = ܰ݁ − ܳ଴. 
Next, total charging energy on the SET system can be calculated as follows,  

௖ܧ = ܳଵଶʹܥଵ + ܳଶଶʹܥଶ + ܳଶீʹீܥ 

௖ܧ = ͳʹఀܥ ሾܥீܥଵሺܸ − ܸீ ሻଶ + ଶܸଶܥଵܥ + ଶܸீଶܥீܥ + ܳଶሿ (10)

Since the values of external power supply ܸ and ܸீ  is constant, the effect on electron 
tunneling process only influences the term of ܳଶ ⁄ఀܥʹ . 

3.2 Work done by external voltage source due to tunnel event 
There are two types of tunnel events, i.e., electron tunnels through the capacitor ܥଵ and the 
electron tunnels through the capacitor ܥଶ. The amount of the work done by external voltage 
source is different from one event to another one. Therefore, the detail explanation of the 
work done for these two types is discussed. Figure 3 shows the charge flow  enter/exit from 
the voltage source when the electron tunnel through the capacitor ܥଵ (right direction). 
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Fig. 3. The charge flow in the single electron transistor circuit when one electron through the 
capacitor ܥଵ (Tucker, 1992). 

Work done by the power supply when the electron tunnel through the capacitor ܥଵis 
formulated as follows: 
1. Change in charge when one electron tunnels through capacitor ࡯૚ (࢔૚ ⟶ ૚࢔ + ૚) 
Change of dot potential due to this electron tunneling (ܳ ⟶ ܳ + ݁ or ܰ ⟶ ܰ + ͳ) is ߜ ଶܸ = ଶܸ௔௙௧௘௥ − ଶܸ௕௘௙௢௥௘

, thus: 

ߜ ଶܸ = ͳఀܥ ൫ܥଵܸ + ீܸீܥ + ሺܳ + ݁ሻ൯ − ൤ ͳఀܥ ሺܥଵܸ + ீܸீܥ + ܳሻ൨ 

ߜ ଶܸ = (11) ఀܥ݁

It is noted that ଶܸ௔௙௧௘௥
 and ଶܸ௕௘௙௢௥௘

 express the values of ଶܸ after and before tunneling, 
respectively. 

Change of charge in capacitor ܥଵ is ܳߜଵ + ݁, where ܳߜଵ = ܳଵ௔௙௧௘௥ − ܳଵ௕௘௙௢௥௘
. Consider the 

equation (6a) it is obtained the below relationship, ܳߜଵ = ଵ൫ܸܥ − ଶܸ௔௙௧௘௥൯ − ଵ൫ܸܥ − ଶܸ௕௘௙௢௥௘൯, 

ଵܳߜ  = ߜଵܥ− ଶܸ.       (12) 

By inserting equation (11) into equation (12), it is obtained 

ଵܳߜ = − ఀܥଵܥ e 

Therefore, total change of the charge in capacitor ܥଵ is, 

ଵܳߜ + ݁ = − ఀܥଵܥ e + e 

ଵܳߜ + ݁ = ଶܥ + ఀܥீܥ ݁ 
  
(13)
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Change of charge in capacitor ܥଶ is ܳߜଶ = ܳଶ௔௙௧௘௥ − ܳଶ௕௘௙௢௥௘
. Consider the equation (6b) ܳߜଶ 

becomes, ܳߜଶ = ଶܥ ଶܸ௔௙௧௘௥ − ଶܥ ଶܸ௕௘௙௢௥௘
ଶܳߜ , = ߜଶܥ ଶܸ, 

ଶܳߜ = ఀܥଶܥ e (14)

Change of charge in capacitor ீܥ  is ீܳߜ = ܳ௔ீ௙௧௘௥ − ܳ௕ீ௘௙௢௥௘
. Consider the equation (6c) ீܳߜ  

becomes, ீܳߜ = ൫ܸீீܥ − ଶܸ௔௙௧௘௥൯ − ൫ܸீீܥ − ଶܸ௕௘௙௢௥௘൯,  ீܳߜ = ߜீܥ− ଶܸ,  

ீܳߜ = − ఀܥீܥ e (15)

2. Work done when one electron tunnel through capacitor ࡯૚ (࢔૚ ⟶ ૚࢔ + ૚) 
Work done by power supply is a sum of multiplication between charge change in each 
terminal and a given power supply voltage. Thus, when one electron tunnel through the 
capacitor ܥଵ, the work becomes, 

ௌܹሺ݊ଵሻ = ݊ଵሾሺ݁ + ଵሻܸܳߜ + ሺீܳߜሻܸீ + ሺܳߜଶሻ × Ͳሿ,  
ௌܹሺ݊ଵሻ = ݊ଵ ൤ீܥ + ఀܥଶܥ ܸ݁ − ఀܥீܥ ܸ݁ீ ൨ (16)

The same calculation can be done when the single electron tunnel through the capacitor ܥଶ, 
as shown in Figure 3. 
 

 
Fig. 3. The charge flow in the single electron transistor circuit when an electron tunnels 
through the capacitor ܥଶ. 

1. Change in charge when an electron through the capacitor ࡯૛ (࢔૛ ⟶ ૛࢔ + ૚) 
Change of potential in the dot due to electron tunneling (ܳ ⟶ ܳ − ݁ or ܰ ⟶ ܰ − ͳ) is ߜ ଶܸ = ଶܸ௔௙௧௘௥ − ଶܸ௕௘௙௢௥௘

, thus : 
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ߜ ଶܸ = ଵ஼೸ ሺܥଵܸ + ீܸீܥ + ሺܳ − ݁ሻሻ − ቂ ଵ஼೸ ሺܥଵܸ + ீܸீܥ + ܳሻቃ,  
ߜ ଶܸ = −  ఀܥ݁

 
(17)

Change in charge on a capacitor ܥଵ is  ܳߜଵ = ܳଵ௔௙௧௘௥ − ܳଵ௕௘௙௢௥௘
. Consider the equation (6a), ܳߜଵbecomes, ܳߜଵ = ଵ൫ܸܥ − ଶܸ௔௙௧௘௥൯ − ଵ൫ܸܥ − ଶܸ௕௘௙௢௥௘൯, ܳߜଵ = ߜଵܥ− ଶܸ, 

ଵܳߜ = ఀܥଵܥ e 
 
(18)

Change in the charge on a capacitor ܥଶ is ܳߜଶ + ݁, where ܳߜଶ = ܳଶ௔௙௧௘௥ − ܳଶ௕௘௙௢௥௘
. Consider 

the equation (6b), ܳߜଶbecomes, ܳߜଶ = ଶܥ ଶܸ௔௙௧௘௥ − ଶܥ ଶܸ௕௘௙௢௥௘
ଶܳߜ , = ߜଶሺܥ ଶܸሻ, 

ଶܳߜ = − ఀܥଶܥ e 

So the total change in charge on the capacitor ܥଶ is, ܳߜଶ + ݁ = − ஼మ஼೸ e + e,  

ଶܳߜ + ݁ = ଵܥ + ఀܥீܥ ݁ 
 
(19)

Changes in the charge on a capacitor ீܥ  is ீܳߜ = ܳ௔ீ௙௧௘௥ − ܳ௕ீ௘௙௢௥௘
. Consider equation (6c), ீܳߜ  becomes, ீܳߜ = ൫ܸீீܥ − ଶܸ௔௙௧௘௥൯ − ൫ܸீீܥ − ଶܸ௕௘௙௢௥௘൯,  ீܳߜ = ߜீܥ− ଶܸ,  

ீܳߜ = ఀܥீܥ e (20)

2. Work done when one electron through the capacitor ࡯૛ (࢔૛ ⟶ ૛࢔ + ૚) 
From the above calculation, the work done by the power supply when the electrons tunnels 
through the capacitor ܥଶ becomes 

ௌܹሺ݊ଶሻ = ݊ଶሾሺܳߜଵሻܸ + ሺீܳߜሻܸீ + ሺ݁ + ଶሻܳߜ × Ͳሿ,  
ௌܹሺ݊ଶሻ = ݊ଶ ൤ܥଵఀܥ ܸ݁ + ఀܥீܥ ܸ݁ீ ൨ 

(21)
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3.3 Free energy 

The most important requirement for the accurence of single electron tunneling is that the total 

energy of the transistor system must decrease due to one electron tunneling. In the other word, 

the electron tunneling will not occur if the total energy of the system increases due to the 

electron tunneling. This condition is called as Coulomb blockade. The free energy is defined by 

the difference in the total charging energy and total work done by the power supply, as follows: ܨሺ݊ଵ, ݊ଶሻ = ௖ܧ − ௌܹ௧௢௧௔௟,  
,ሺ݊ଵܨ ݊ଶሻ = ܳଶʹఀܥ − ൜݊ଵ݁ ൤ீܥ + ఀܥଶܥ ܸ − ఀܥீܥ ܸீ ൨ + ݊ଶ݁ ൤ܥଵఀܥ ܸ + ఀܥீܥ ܸீ ൨ൠ + (22) ݐ݊ܽݐݏ݊݋ܿ

3.4 Change in free energy due to tunnel event 

Change in free energy after and before electron tunneling will determine whether the 
electron tunneling occurs or not. If the system becomes more stable (energy decreases) when 
the electron tunnels, electron tunneling will occur. Let's look at the conditions when the 
electron tunnels through the capacitor ܥଵ. The free energy change after and before tunneling 
can be calculated as follows: 
,ଵ±ሺ݊ଵܨ∆  ݊ଶሻ = ሺ݊ଵܨ ± ͳ, ݊ଶሻ − ,ሺ݊ଵܨ ݊ଶሻ,  
,ଵ±ሺ݊ଵܨ∆  ݊ଶሻ = ൝ሺܳ ± ݁ሻଶʹఀܥ − ൜ሺ݊ଵ ± ͳሻ݁ ൤ீܥ + ఀܥଶܥ ܸ − ఀܥீܥ ܸீ ൨ + ݊ଶ݁ ൤ܥଵఀܥ ܸ + ఀܥீܥ ܸீ ൨ൠൡ

− ൝ ܳଶʹఀܥ − ൜݊ଵ݁ ൤ீܥ + ఀܥଶܥ ܸ − ఀܥீܥ ܸீ ൨ + ݊ଶ݁ ൤ܥଵఀܥ ܸ + ఀܥீܥ ܸீ ൨ൠൡ 

 

 

,ଵ±ሺ݊ଵܨ∆  ݊ଶሻ = ఀܥ݁ ቄ݁ʹ ± ܳ ∓ ሺீܥ + ଶሻܸܥ ± ீܸீܥ ቅ 

 

(23)

By inserting ܳ = ܰ݁ − ܳ଴ into equation (23), the equation (2a) is obtained. 

On the other hand, when the electron tunnels through the capacitor ܥଶ, the free energy 

change when the after and before tunneling is calculated as follows: ∆ܨଶ±ሺ݊ଵ, ݊ଶሻ = ,ሺ݊ଵܨ ݊ଶ ± ͳሻ − ,ሺ݊ଵܨ ݊ଶሻ,  

,ଶ±ሺ݊ଵܨ∆ ݊ଶሻ = ൝ሺܳ ∓ ݁ሻଶʹఀܥ − ൜݊ଵ݁ ൤ீܥ + ఀܥଶܥ ܸ − ఀܥீܥ ܸீ ൨ 	 + ሺ݊ଶ ± ͳሻ݁ ൤ܥଵఀܥ ܸ + ఀܥீܥ ܸீ ൨ൠൡ		 
2

2 1
1 2 
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,ଶ±ሺ݊ଵܨ∆  ݊ଶሻ = ఀܥ݁ ቄ݁ʹ ∓ ܳ ∓ ଵܸܥ ∓ ீܸீܥ ቅ 

 

   
(24)

By inserting 0Q Ne Q= −  into equation (24), the equation (2b) is obtained. 
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4. Master equation 

Figure 4 shows the numerical simulation step to calculate IV curve based on Master 

equation method. First, the values of the physical constants (Boltzmann constant  

and elemental charge) and device parameters (ܥଵ, ܥଶ, ீܥ , ܴଵ and ܴଶ) are defined. Then,  

the external parameters (ܸ, ܸீ , ܳ଴ and ܶ) are given. Next, the free energy change of the 

system ∆F when the electron tunnels across the tunnel capacitance, is calculated. The ∆ܨ 

depends on the number of excess electrons ܰ in the dot, as expressed in equations (23)  

and (24). ∆ܨଵ±ሺ݊ଵ, ݊ଶሻ = ఀܥ݁ ቄ݁ʹ ± ሺܰ݁ − ܳ଴ሻ ∓ ሺீܥ + ଶሻܸܥ ± ீܸீܥ ቅ (25a)

,ଶ±ሺ݊ଵܨ∆ ݊ଶሻ = ఀܥ݁ ቄ݁ʹ ∓ ሺܰ݁ − ܳ଴ሻ ∓ ଵܸܥ ∓ ீܸீܥ ቅ (25b)

Using the values of ∆ܨ, single electron tunneling rates across each of two junctions is 

determined. Each rate depends on both the tunneling resistance of the junction and the total 

energy change of the system due to the tunneling event. On the other words, for single 

electron transistor circuit simulation, each electron tunneling has to be carefully monitored. 

The electron tunneling rate, which is represented by ߁±, can be easily obtained from the 

basic golden-rule calculation (Averin & Lhikarev, 1991), 

ଵ±ሺܰሻ߁ = ͳܴଵ݁ଶ ቈ ଵ±ͳܨ∆− − ±ଵܨ∆ൣ݌ݔ݁ ݇஻ܶ⁄ ൧቉ 
 
(26a)

ଶ±ሺܰሻ߁ = ͳ௝ܴ݁ଶ ቈ ଶ±ͳܨ∆− − ±ଶܨ∆ൣ݌ݔ݁ ݇஻ܶ⁄ ൧቉ 
   
(26b) 

Next, a stochastic process in SET circuit is considered. The island charge e will change by the 
tunneling of electrons from or to the island as described by the master equation.   ߲ߩሺܰ, ݐሻ߲ݐ = ሺܰߩ + ͳሻሾ߁ଶାሺܰ + ͳሻ + ଵି߁ ሺܰ + ͳሻሿ − ଶି߁ሺܰሻሾߩ ሺܰሻ + ଵାሺܰሻሿ (27)߁

Here, the dc characteristics is investigated, therefore the steady state solution of equation 
(27) is desired. The steady state master equation is found by setting the time derivative of 
the probability distribution function equal to zero. Therefore, equation (27) becomes (Hanna 
et al., 1991) 

ଶି߁ሺܰሻሾߩ  ሺܰሻ + ଵାሺܰሻሿ߁ = ሺܰߩ + ͳሻሾ߁ଶାሺܰ + ͳሻ + ଵି߁ ሺܰ + ͳሻሿ.       (28) 

In this condition, it is necessary to calculate ߩሺܰሻ for all of possible charge state N. By 
inserting ܰ from −∞ to ∞ into equation (28), the following equations are obtained. ߩሺ−∞ሻሾ߁ଶି ሺ−∞ሻ + ଵାሺ−∞ሻሿ߁ = ∞−ሺߩ + ͳሻሾ߁ଶାሺ−∞ + ͳሻ + ଵି߁ ሺ−∞ + ͳሻሿ ߩሺ−ͳሻሾ߁ଶି ሺ−ͳሻ + ଵାሺ−ͳሻሿ߁ = ଶାሺͲሻ߁ሺͲሻሾߩ + ଵି߁ ሺͲሻሿ ߩሺͲሻሾ߁ଶି ሺͲሻ + ଵାሺͲሻሿ߁ = ଶାሺͳሻ߁ሺͳሻሾߩ + ଵି߁ ሺͳሻሿ 
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ଶି߁ሺͳሻሾߩ ሺͳሻ + ଵାሺͳሻሿ߁ = ଶାሺʹሻ߁ሺͳሻሾߩ + ଵି߁ ሺʹሻሿ ߩሺ݊ሻሾ߁ଶି ሺ݊ሻ + ଵାሺ݊ሻሿ߁ = ሺ݊ߩ + ͳሻሾ߁ଶାሺ݊ + ͳሻ + ଵି߁ ሺ݊ + ͳሻሿ 
∞ሺߩ  − ͳሻሾ߁ଶି ሺ∞ − ͳሻ + ∞ଵାሺ߁ − ͳሻሿ = ଶାሺ∞ሻ߁ሺ∞ሻሾߩ + ଵି߁ ሺ∞ሻሿ       (29) 

To solve equations above, the ߩሺ݊ሻ must satisfy the standard boundary conditions, i.e. 

ሺܰሻߩ  → Ͳ, as ܰ → ±∞.               (30) 

Using this condition, all of the ߩሺܰሻ can be found. However, the ߩሺܰሻ here is not 

normalized, so that ߩሺܰሻ requires the normalization as follows: 

 ∑ ሺܰሻஶேୀିஶߩ = ͳ.     (31a) 

For this, the following transformation is need. 

ሺܰሻߩ → ∑ሺܰሻߩ ሺܰሻஶேୀିஶߩ  
   
(31b) 

Finally, the current can be calculated by, 

ሺܸሻܫ  = ݁ ∑ ଵାሺܰሻ߁ሺܰሻሾߩ − ଵି߁ ሺܰሻሿஶேୀିஶ .                (32a) 

Here, the multiplication of the probability and the difference of rate ߁ଵାሺܰሻ − ଵି߁ ሺܰሻ 

describes the net current flowing through the first junction. In addition, the current may also 

expressed in the terms of the rates at second junction, as follows. 

ሺܸሻܫ  = ݁ ∑ ଶାሺܰሻ߁ሺܰሻሾߩ − ଶି߁ ሺܰሻሿஶேୀିஶ .        (33b) 

5. Matlab implementation 

The above equations can be easily implemented in MATLAB. As explained in previous 
section, the flowchart of numerical simulation is as follows. In the first step, the following 
physical constant and device parameters are defined as follows. 

 
% Matlab program source for numerical simulation of Master equation 

% in single electron transistor 

% This program code is made by Dr. Ratno Nuryadi, Jakarta, Indonesia 

clear all; 

% Definition of Physical constant 

q=1.602e-19;            % electronic charge (C) 

kb=1.381e-23;           % Boltzman constant (J/K)  

% Definition of Device parameters 

c1=1.0e-20;          % tunnel capacitor C1 (F) 

c2=2.1e-19;          % tunnel capacitor C2 (F) 

cg=1.0e-18;          % gate capacitor Cg (F) 

ctotal=c1+c2+cg;       % total capacitance (F) 

mega=1000000;        % definition of mega=106 

r1=15*mega;          % tunnel resistance R1 (Ohm) 

r2=250*mega;         % tunnel resistance R2 (Ohm) 
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Second, the values of external parameters (ܸ, ܸீ , ܳ଴ and ܶ) is given. Here, the ܸீ , ܳ଴ and ܶ 
are kept a constant while the ܸ is varied from Vmin to Vmax, as follows: 
 
Vg=0;                   % gate voltage (V) 
q0=0;                   % background charge q0 is assumed to be zero 
temp=10;                % temperature T (K) 
  
vmin=-0.5;              % drain voltage minimum Vmin (V) 
vmax=0.5;               % drain voltage maximum Vmax (V) 
NV=1000;              % number of grid from Vmin to Vmax 
dV=(vmax-vmin)/NV;      % drain voltage increment of each grid point 
for iv=1:NV             % loop start for drain voltage 
V(iv)=vmin+iv*dV;       % drain voltage in each grid point 
% Note that loop end for drain voltage is located in the end of this 
program source 
  

Third step is calculation of ∆ܨ, as follows: 
  
Nmin=-20;               % minimum number of N (charge number in dot) 
Nmax=20;                % maximum number of N (charge number in dot) 
for ne=1:Nmax-Nmin      % loop start for N 
    n=Nmin+ne;          % N charge number in dot 

% Calculation of ∆ܨ in equations (25a) and (25b) 
    dF1p=q/ctotal*(0.5*q+(n*q-q0)-(c2+cg)*V(iv)+cg*Vg); 
    dF1n=q/ctotal*(0.5*q-(n*q-q0)+(c2+cg)*V(iv)-cg*Vg); 
    dF2p=q/ctotal*(0.5*q-(n*q-q0)-c1*V(iv)-cg*Vg); 
    dF2n=q/ctotal*(0.5*q+(n*q-q0)+c1*V(iv)+cg*Vg); 

% Noted that loop end for N is located after calculation of ߁ 
  

Forth, the values of ∆ܨ are identified and then used for the calculation of ߁. If ∆ܨ is negative, ߁ will be calculated by equations (26a) and (26b(. However, if the ∆ܨ is positive, ߁ is set to 
be closed to the zero (very small). Note that the value of  ߁ is always positive. These 
identifications are done for four conditiond of ∆ܨ. 
    if dF1p<0 
        T1p(ne)=1/(r1*q*q)*(-dF1p)/(1-exp(dF1p/(kb*temp)));  

 positive in equation (26a) ߁ %    
    else 

        T1p(ne)=1e-1;     % ߁ positive is assumed to be very small 
    end 
    if dF1n<0 
        T1n(ne)=1/(r1*q*q)*(-dF1n)/(1-exp(dF1n/(kb*temp)));  

 negative in equation (26a) ߁ %
    else 

        T1n(ne)=1e-1;       % ߁ negative is assumed to be very small 
    end 
    if dF2p<0 
        T2p(ne)=1/(r2*q*q)*(-dF2p)/(1-exp(dF2p/(kb*temp)));  

 positive in equation (26b) ߁ %                            
    else 

        T2p(ne)=1e-1;       % ߁ positive is assumed to be very small 
    end 
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    if dF2n<0 
        T2n(ne)=1/(r2*q*q)*(-dF2n)/(1-exp(dF2n/(kb*temp))); 

 negative in equation (26b) ߁ %
    else 

        T2n(ne)=1e-1;         % ߁ negative is assumed to 
        be very small 
    end 
end              % loop end for N 
  

Fiveth, the ߩሺܰሻ of equation (28) is calculated. For this, normalization of equation (31a) must 
be satisfied. Here, the values of ߩ(Nmin) and ߩ(Nmax) is assumed to be 0.01.   
  
p(1)=0.001;              % ρ(Nmin) is assumed to be 0.01 
p(Nmax-Nmin)=0.001;       % ρ(Nmax) is assumed to be 0.01 
  

Sixth, normalization of ߩ is done. Here, ∑ ሺܰሻஶேୀିஶߩ  is calculated. 

  
sum=0;               % sum=0 is initial value to calculate ρ 
for ne=2:Nmax-Nmin 
    p(ne)=p(ne-1)*(T2n(ne-1)+T1p(ne-1))/(T2p(ne)+T1n(ne)); 
                     % calculation of ρ(N) in equation (28) 
% The conditions below are used to avoid divergence of Matlab 
calculation 
    if p(ne)>1e250 
        p(ne)=1e250; 
    end 
    if p(ne)<1e-250 
        p(ne)=1e-250; 
    end     
% --------------------- 
    sum=sum+p(ne); 
end 
  
for ne=2:Nmax-Nmin 
    p(ne)=p(ne)/sum;       % Normalization in equation (31b) 
end 
  

Finally, the current is computed as follows: 
  
sumI=0;                                                            % sumI=0 is initial condition         
        for current calculation 
for ne=2:Nmax-Nmin 
    sumI=sumI+p(ne)*(T2p(ne)-T2n(ne));    
end 
I(iv)=q*sumI;                     % I in equation (32b) 
end                        % end of drain voltage loop 
plot(V,I);                    % plot of I vs V 
  
for iv=1:NV-1 
    dIdV(iv)=(I(iv+1)-I(iv))/dV;     % calculation of dIdV 
end 
figure; 
plot(V(1,1:NV-1),dIdV);           % plot of dIdV vs V 
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Fig. 4. Flow diagram of the Matlab program used to solve Master equation. 

Start

1. Definition of physical parameters 

and device parameters

2. Input external parameters (V, Vg, Q0 and T).

Here, V is varied from Vmin to Vmax

3. Calculation of ΔF in eqs. 

(25a) and (25b)

4. Is ΔF negative?
YesNo Calculation of ΔΓ

in eqs. (26a) and (26b)
ΔΓ 0

5. Calculation of ρ in eq. (28)

6. Normalization ρ in eq. (31b)

7. Calculation of current I in eq. (33b)

8. Is V > Vmax?
YesNo

Plot a graph

Stop

www.intechopen.com



  
Numerical Simulations of Physical and Engineering Processes 252 

6. Examples of simulated results 

Two examples will be used to demonstrate the numerical solution of Master equation in 
single electron transistor.  

Example 1:  

Figures 5(a) dan (b) shows current-drain voltage characteristic of the SET and its dI/dV 

curve. The parameter values are C1= 1.0x10-20 F, C2= 2.1x10-19 F, CG= 1.0x10-18 F, R1= 15 MΩ 

and R2=250 MΩ. The calculation was carried out for an operating temperature of 10 K, VG= 0 

V and Q0= 0. As shown in Fig. 5(a), at small source-drain voltage V there is no current, 

indicating the suppression of the current which is known as the Coulomb blockade. In this 

region, any tunneling event would lead to an increase of the total energy and also the 

tunneling rate is exponentially low. There is also evident that the I-V curve has staircase 

shape, which is called as Coulomb staircases.  

 

 

(a)     (b) 

Fig. 5. (a) The current – drain voltage characteristics for SET and (b) dI/dV curve with the 
device parameters are C1= 1.0x10-20 F, C2= 2.1x10-19 F, CG= 1.0x10-18 F, R1= 15 MΩ, R2=250 
MΩ and the external parameters are VG= 0 V and T=10 K. 

The Coulomb staircase can be understood simply in terms of simulation model in equation 

(28). Initially at drain voltage V=0, we have ρ(N=0)=1, and Γ1+(N=0)= Γ2+(N=0)=0. When 

V=Vt (Vt is threshold voltage), the rates Γ1+(N=0) and Γ2+(N=0) jump sharply allowing charge 

to flow through the junction capacitances, so that ρ(n=1)>0. When V=Vt+e/2C∑ there is 

jump in Γ1+(N=1) producing the next another step in I-V characteristics. Such steps happen 

due to each increase of V by e/2C∑. Simulation result in Fig. 5 has values of C2>C1 and 

R2>R1. According to Fig. 5(b), the width of the steps is ~131 mV, which is determined by 

e/2C∑. 

Example 2: 

The current-gate voltage characteristics of SET is plotted in Fig. 6. The parameter values are 
C1= 4.2x10-19 F, C2= 1.9x10-18 F, CG= 1.3x10-18 F, R1= 150 MΩ, R2=150 MΩ, T=10 K and V= 10 
mV. The program source for this I-V curve can be seen below, which is modified from the 
previous source. 
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V=0.01;              % drain voltage (V) 
q0=0;                % background charge q0 is assumed to be 
zero 
temp=10;             % temperature T (K) 
  
vgmin=-0.4;          % gate voltage minimum Vmin (V) 
vgmax=0.4;          % gate voltage maximum Vmax (V) 
NVg=800;           % number of grid from Vgmin to Vgmax 
dVg=(vgmax-vgmin)/NVg; % gate voltage increment of each grid point 
for iv=1:NVg          % loop start for gate voltage 
Vg(iv)=vgmin+iv*dVg;    % drain voltage in each grid point 
% Note that loop end for drain voltage is located in the end of this 
program source 
  
Nmin=-20;                  % minimum number of N (charge number in dot) 
Nmax=20;                 % maximum number of N (charge number in 
dot) 
for ne=1:Nmax-Nmin   % loop start for N 
    n=Nmin+ne;           % N charge number in dot 

% Calculation of ∆ܨ in equations (25a) and (25b) 
    dF1p=q/ctotal*(0.5*q+(n*q-q0)-(c2+cg)*V+cg*Vg(iv)); 
    dF1n=q/ctotal*(0.5*q-(n*q-q0)+(c2+cg)*V-cg*Vg(iv)); 
    dF2p=q/ctotal*(0.5*q-(n*q-q0)-c1*V-cg*Vg(iv)); 
    dF2n=q/ctotal*(0.5*q+(n*q-q0)+c1*V+cg*Vg(iv)); 

% Noted that loop end for N is located after calculation of ߁ 
 
 
 
 

 
 

 
 

Fig. 6. The current – gate voltage characteristics for SET with the parameter values are C1= 
4.2x10-19 F, C2= 1.9x10-18 F, CG= 1.3x10-18 F, R1= 150 MΩ, R2=150 MΩ and T=10 K.The drain 
voltage is 10 mV. 
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Fig. 7. 3D current – voltage characteristics for the SET. The range of source-drain voltage is 
from -100 mV to 100 mV and gate voltage is from -400 mV to 400 mV.  

The current is a periodic function of the gate voltage VG because the tunneling of one 

electron in or out of the dot is induced by the gate voltage. This periodic oscillations, which 

is also known as Coulomb oscillation, is the basis of the SET operation. In order to 

understand the overall of I-V characteristics, 3D plot is made as shown in Fig. 7. The 

Coulomb blockade region appears at very low source-drain voltage. The Coulomb blockade 

can be removed by the changing of gate voltage from inside Coulomb blockade to the 

outside. Outside the Coulomb blockade region, a current can flow the between the source 

and drain. At a given source-drain voltage V, the SET current can be modulated by gate 

voltage Vg. By sweeping the gate voltage, the currents oscillate between zero (Coulomb 

blockade) and non-zero (no Coulomb blockade), as shown in Fig. 6. The periodicity of the 

current is e/Cg along the gate voltage axis. Simulation results presented here reproduce the 

previous studies of the SET (Takahashi et al., 1995; Saitoh et al., 2001; Wolf et al., 2010; Sun 

et al., 2011; Lee et al., 2009), indicating that the simulation technique can be used to explain 

the basis of the SET.  

7. Conclusion 

This chapter has presented a numerical simulation of the single electron transistor using 

Matlab. This simulation is based on the Master equation method and is useful for both 

educational and research purposes, especially for beginners in the field of single electron 

devices. Simulated results produce the staircase behavior in the current-drain voltage 

characteristics and periodic oscillations in current-gate voltage characteristics. These results 

reproduce the previous studies of the SET, indicating that the simulation technique achieves 

good accuration. The resulting program can be also integrated into an engineering course on 

numerical analysis or solid-state physics. 
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