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1. Introduction 

The flavivirus genus in the Flaviviridae family comprises over 70 species, most of which are 

tick- or mosquito-borne. They are single-stranded, plus-sense RNA viruses, responsible for 

significant human and animal morbidity and mortality on all inhabited continents. 

Medically important viscerotropic flaviviruses include dengue, found equatorially across 

the world, and the prototypic yellow fever virus, found in Africa and South America. 

Neurotropic members include tick-borne encephalitis virus (TBEV) in Europe, West Nile 

virus (WNV) in Africa, parts of Europe and the Indian subcontinent, as well as the USA, St 

Louis encephalitis virus in the USA, and Japanese encephalitis (JEV) and Murray Valley 

encephalitis (MVE) viruses in Australasia. Many of these have a history of emergence and 

re-emergence; indeed, following a novel outbreak in 1999 in New York (Lanciotti et al., 1999; 

CDC, 2010), WNV spread virtually throughout the Americas in less than 10 years and is the 

most common cause of meningoencephalitis in North America. WNV is now perhaps the 

most widely spread of all flaviviruses and may comprise 4 or more lineages, based on 

isolate homologies (C.G. Hayes, 2001; Bakonyi et al., 2005; Vazquez et al., 2010), with 

Lineage I and II well-defined and of obvious clinical importance in animals and humans 

(E.B. Hayes et al., 2005; Venter et al., 2009). WNV was first isolated in 1937 in the West Nile 

region of Uganda (Smithburn et al., 1940). It is a member of the Japanese encephalitis 

serogroup, together with JEV, Murray Valley and Saint Louis encephalitis viruses 

(Poidinger et al., 1996). These viruses are usually propagated in a zoonotic cycle between 

mosquitoes and amplifying hosts, particularly birds (or pigs in the case of JEV), with 

humans being incidental, since they may not develop high enough virus titres to infect 

arthropod vectors (C.G. Hayes, 2001). Rare cases of human-to-human WNV transmission 

have been documented via organ transplants and blood transfusion, as well as vertical 

transmission to the foetus in utero (Iwamoto et al., 2003; Lindsey et al., 2009). Although less 

than one percent of WNV infections develop neuroinvasive disease, in some 60% of patients 

presenting with central nervous system (CNS) symptoms denoting neuroinvasive disease, 

life-threatening encephalitis supervenes (Samuel & Diamond, 2009). The young, 
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immunocompromised and elderly are at highest risk of developing encephalitis (Weiss et 

al., 2001; Guarner et al., 2004; Lindsey et al., 2009). Climate change, geographic factors and 

international travel, as well as local factors, such as mosquito rates and land clearing (E.A. 

Gould & Higgs, 2009) are cited as influencing the spread and prevalence of arbovirus 

infections across the globe. Despite considerable effort, the only successful live attenuated 

vaccine for neurotropic flaviviruses is for JEV (X. Liu et al., 2011), although considerable 

success has been achieved with a killed vaccine for TBEV (Barrett et al., 2003; Heinz et al., 

2007). Treatment for all flavivirus encephalitides remains palliative. Indeed, one of the 

cardinal features of flavivirus infection complicating treatment approaches is 

immunopathology, evident in human cases and demonstrable in various animal models. In 

this review, we analyse the principal elements involved in the immunopathogenesis of 

flavivirus disease, with a view to novel constructive approaches to disease intervention. 

2. Local flavivirus infection - responses of infected cells 

Live WNV infection of various cell types leads to an upregulation of various cellular 

adhesion molecules, either directly or co-modulated by cytokines (Shen et al., 1995b; Shen et 

al., 1997; Arnold et al., 2004). These molecules include major histocompatibility complex 

(MHC) class I and II, intracellular adhesion molecule-1 (ICAM-1), vascular cellular adhesion 

molecule-1 (VCAM-1) and E-selectin (King & Kesson, 1988; Argall et al., 1991; Shen et al., 

1997; Verma et al., 2009). The increase in MHC-I in mouse embryonic fibroblasts is 

independent of tumour necrosis factor (TNF) (Cheng et al., 2004b), although many cell types 

produce it in response to infection. In both mouse embryonic fibroblasts and human skin 

fibroblasts it can be induced by type I interferon (IFN)-dependent and -independent 

pathways (King & Kesson, 1988; Kesson & King, 2001; Cheng et al., 2004a), with the IFN-

independent pathway relying on the activation of the transcription factor nuclear factor-κB 

(Kesson & King, 2001). This seemingly paradoxical increase in immune recognition molecule 

expression may enable evasion of early NK responses in vivo (Lobigs et al., 2003). 

3. Earliest local changes in dermis and draining lymph nodes 

Flaviviruses, transmitted by the bite of an infected mosquito, are injected with saliva during 

feeding. While several structural cell types are likely to come into contact with injected 

virus, the first leukocyte subset that virus is likely to encounter is the Langerhans cell (LC). 

LC are dendritic cells (DC) in the epidermis replenished by myeloid precursors in the bone 

marrow (BM) (Steinman, 1991; Merad et al., 2002). Following cutaneous inoculation, virus 

may infect LC, which increases cell surface expression of MHC-I, MHC-II, adhesion 

molecules, as well as costimulatory molecules, such as CD80, differentiating into a 

migratory phenotype in the process (Johnston et al., 1996). LC migrate to draining lymph 

nodes (DLN) in an accelerated manner in response to live virus, due to the induced soluble 

factor milieu (Johnston et al., 2000). In vivo experiments in mice show that the cytokine IL-1β 

is crucial for the emigration of LC from the epidermis to DLN (Byrne et al., 2001). It is 

presumed that these DC pass antigen to CD8α+ DC in the DLN, since LC alone evidently do 

not initiate antiviral immune responses (Allan et al., 2003; Kissenpfennig et al., 2005; Hildner 

et al., 2008), but direct evidence of WNV antigen transfer has yet to be shown. While 

mosquito saliva may skew adaptive responses towards a more Th2-like response profile 
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(Schneider et al., 2007; Schneider et al., 2010), it is still unclear how its early presence 

influences disease outcome, since WNV infection in the genetic absence of IFN-γ still results 

in the generation of neutralising immunity (King et al., 2003). Arrival of virus in the DLN is 

accompanied by significant induction of CCL2 expression there that recruits monocyte-

derived macrophages (MDM) from the bone marrow. The bone marrow undergoes a 

significant myeloid response to infection, releasing monocytes with a qualitatively different 

phenotype from the homeostatic state. Monocytes rapidly become TipDC (producing TNF 

and nitric oxide) in the DLN and likely contribute to the initiation of type 1 immune 

responses by inducing more IFN-γ from responding T cells than other DC subtypes in the 

DLN (Davison & King, 2011). Since flaviviruses significantly upregulate MHC expression on 

infected cells (King & Kesson, 1988; Shen et al., 1997), it is of interest how this influences the 

outcomes of innate immune interactions, such as with NK cells, and/or bears on the 

ultimate affinities of later adaptive cytotoxic T cell responses, reviewed in detail elsewhere 

(King & Kesson, 2003; Lobigs et al., 2003; King et al., 2009). 
At the same time, at the dermal site of infection, CCL2, produced by infected cells, also 
recruits considerable numbers of MDM, which surround the infected focus, becoming DC 
within 24h of arrival. While it would appear that the DLN and dermis, by both producing 
CCL2, compete for MDM from the bone marrow, it seems likely that a subtly different 
cytokine milieu at each site selects for specific MDM subsets. This is suggested by adoptive 
transfer studies of flow cytometrically-sorted BM-derived monocyte subsets during 
infection. Thus, although similar numbers of inflammatory (Ly6Chi) monocytes migrated to 
each site, 5-fold more Ly6Clo monocytes migrated to the DLN than Ly6Chi, while some 2-
fold more Ly6Chi monocytes migrated to the focus of infection in the skin than Ly6Clo 
monocytes. Perhaps consonant with these proportions, immigrant Ly6Clo monocytes in the 
DLN were 3-fold more likely to become DC, while in the dermis, immigrant Ly6Chi cells 
were 2-fold more likely to become DC. This suggests that other chemokines may 
differentially contribute to the recruitment of these cells to the relevant site, but more 
importantly, it suggests that relevant precursors to specific cells are already ordained before 
they reach their target site, rather than necessarily being randomly and non-specifically 
recruited (e.g., by CCL2) and induced to differentiate once they have arrived. Irrespective, it 
is evident that Ly6C expression on immigrating monocytes quickly changes at both sites, 
with downregulated Ly6C expression being the end point in both subsets. Thus, as shown in 
ours and other studies, Ly6Chi monocytes arriving in response to infection quickly 
downregulate expression of this molecule (Sunderkotter et al., 2004; Leon et al., 2007; Getts 
et al., 2008; Davison & King, 2011). In contrast, at both sites, within 24h, immigrating Ly6Clo 
monocytes become Ly6Chi at the site, only to downregulate expression of this molecule 
again within a further 24h, while also upregulating CD11c to become DC. Furthermore, in 
the dermis, it is exclusively these cells originally entering the dermis as Ly6Clo monocytes, 
that then migrate from the dermis to the DLN, presumably carrying viral antigen with 
them (Davison & King, 2011). Since so many Ly6Clo cells also migrate from the BM to the 
DLN to become DC, it is tempting to speculate that these cells may differentiate into the 
final migratory couriers of antigen between the subcapsular sinus of the DLN, where DC 

arrive from the dermis via the afferent lymphatics, to the CD8α+ DC in the deep 
paracortex. 

Early antiviral activity by Ly6Chi monocyte-derived TipDC in the dermis may influence the 

outcome of infection by reducing virus titres locally; indeed, antiviral activity may account 
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for the high survival rates observed in a mucosal model of flavivirus infection after 

intravaginal inoculation of a viral dose that is lethal by all other routes. In this model, large 

numbers of DC accumulate just beneath the epidermal site of infection, essentially 

separating infected epithelium from uninfected stroma below (Burke et al., 2004). 

Interestingly, CCL2 is also strongly expressed at this site (King, Unpublished observations).  

4. Entry into the CNS 

Virus undoubtedly spreads via the bloodstream at some point to further infect peripheral 

organs, including the CNS, where neurons are the main target (Xiao et al., 2001; Shrestha et 

al., 2003; Cheeran et al., 2005; Samuel & Diamond, 2009). However, the factors controlling 

these phases of virus spread are virtually unknown. The blood of acutely viraemic human 

donors shows substantial increases in IFN-γ and α as well as IFN-stimulated CXCL10 and 

CCL2. This upregulation of cytokines and chemokines occurs before IgM seroconversion 

and is therefore argued to be involved in the initial response to acute viraemia. On the other 

hand, this could be the result of chemokine gradients from the WNV-infected brain, since 

both chemokines are increased in the WNV-infected brain (Klein et al., 2005; Getts et al., 

2008). Upregulated IL-4 was also detected in the same time frame, implicating IL-4 in early 

modulation of immune responses (Tobler et al., 2008). 

How virus gains entry into the CNS is still unclear. In some models it is argued that 

breakdown of the blood-brain barrier (BBB) enables virus entry into the CNS. Toll-like 

receptors, TLR3, 7 and 8, are responsible for detecting RNA products of viral replication and 

although TLR3 and 7 are protective against WNV (Daffis et al., 2008; Town et al., 2009; 

(Daffis et al., 2008), TLR3 has also been implicated in aiding entry of WNV into the brain. 

TLR3 knockout mice have less BBB leakiness and significantly lower viral levels in the brain 

than wild type mice, with higher viral loads in the periphery, thought to be due to reduced 

production of TNF, a cytokine strongly implicated in BBB breakdown (T. Wang et al., 2004). 

Interestingly, macrophages isolated from young humans show a marked reduction in TLR3 

levels during WNV infection, while those from elderly donors do not. TLR3 levels are 

controlled by a signal transducer and activator of transcription 1 (STAT1)-mediated 

pathway, which is downregulated by WNV E-protein in cells from young, but not elderly 

donors. Cells from elderly donors produced increased levels of inflammatory cytokines, 

including TNF (Kong et al., 2008), supporting the notion that TLR3 may play a role in 

immunopathology in the elderly, ironically via an overly aggressive immune response to 

WNV. Endothelial tight junction proteins (TJP), such as ZO-1 and claudin-1, are crucial 

components of BBB integrity and this seal is maintained, inter alia, by astrocytes, non-

neuronal support cells of the CNS that are susceptible to WNV infection in vitro (Y. Liu et al., 

1989; Cheeran et al., 2005; Verma et al., 2010). WNV-infected astrocytes increase matrix 

metalloproteinase (MMP) production to degrade TJP (Verma et al., 2010). However, 

astrocyte infection in vivo has not been reported and furthermore, BBB breakdown is quite 

variable in flavivirus infection (T.H. Liu et al., 2008; Verma et al., 2010). Alternative ways in 

which virus could cross the BBB include endothelial transcytosis and/or endothelial 

infection (German et al., 2006). However, there are few if any reports of endothelial infection 

itself in vivo by flaviviruses. Moreover, in 167 mice examined at various timepoints after 

intraperitoneal infection, where significant viraemia occurs within 6 h of inoculation, we 

saw unequivocal endothelial infection only once (King, Unpublished).  
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Trojan horse transmission into the brain by infected monocytes remains a possibility. 
Macrophages are susceptible to WNV infection (Cardosa et al., 1986; Shen et al., 1995a; Rios 
et al., 2006) and could be a crucial cell type contributing to transmission of virus into the 
brain. However, this has not been shown, and in our hands, while both human and mouse 
monocytes are readily infectable in vitro, they also very effectively control flavivirus 
infection, a point further supported in vivo by the lack of infected microglia (or for that 
matter, infiltrating macrophages) in flavivirus encephalitis (Getts et al., 2007; Getts et al., 
2008). A recent study has shown that neutrophils, recruited to the intraperitoneal infection 
site in large numbers by CXCL-1 and -2 produced by WNV-infected macrophages, exhibited 
much higher viral loads than macrophages. The removal of these chemokines or depletion 
of neutrophils prior to WNV infection resulted in delayed death of animals and reduced 
viral levels, suggesting a possible role for neutrophils as reservoirs for viral replication and 
dissemination during the early stages of WNV infection (Bai et al., 2010). However, of the 
leukocytes attracted to the brain after intranasal infection, less than 3% are neutrophils 
(King, Unpublished). The intranasal route of infection enables the separation of systemic 
anti-viral responses from those mediated by the CNS. Thus, insignificant numbers are in 
and of themselves attracted to the brain during infection, making it unlikely that they are a 
primary source of virus in neuroinvasion, although they may be a source of spread to other 
organs. Notwithstanding the susceptibility of most cells to in vitro infection with 
flaviviruses, it has yet to be convincingly demonstrated that cells in the brain parenchyma 
other than neurons become infected in in vivo infection. This begs the question of how 
infected macrophages and neutrophils specifically contribute to neuronal infection. 
Furthermore, infection via a Trojan horse scenario would presumably occur only if infected 
leukocytes or monocytes were attracted by chemotactic signals originating in the 
parenchyma of the brain, whether or not the BBB was intact. This assumes a response to 
infection, either directly, e.g., via infected neurons producing CCL2 (Getts et al., 2008), or 
indirectly via other leukocytes already attracted by infection producing chemokines that in 
turn attract infected neutrophils and monocytes, i.e., once the immune response is well and 
truly under way. Increases in virus in the brain temporally consistent with this scenario 
have not to our knowledge been reported. 
In vitro cellular adhesion molecules like E-selectin, VCAM-1 and ICAM-1 are upregulated in 
WNV infection and could support the extravasation of leukocytes into the brain (Shen et al., 
1997). Expression of ICAM-1 and VCAM-1 is clearly increased on cerebrovascular 
endothelium in WNV-infected mice in vivo and this is also associated with infiltration of 
large numbers of macrophages and microglia into the brain (Figure 1). In primary human 
brain microvascular endothelial cells, an increase in VCAM-1 and E-selectin is induced 
when viral replication is at its highest (Verma et al., 2009). Together with TLR3-mediated 
BBB breakdown, upregulated adhesion molecules could facilitate the infiltration of infected 

leukocytes into the CNS. However, it is worth noting that WNV-infected IFN-γ knockout 
mice upregulate cerebrovascular endothelial ICAM-1 and VCAM-1 expression significantly, 
but have substantially fewer immigrant leukocytes than wild type mice (King, 
Unpublished). Moreover, although WNV induces BBB permeability in some models, it may 
not be the primary route of entry into the CNS. Mice and hamsters infected with WNV 
exhibited signs of BBB leakiness at the same timepoint they succumbed to virus, indicating 
that infection of the brain began prior to the BBB becoming compromised (Morrey et al., 
2006; Morrey et al., 2008) (King, Unpublished). Similarly, in TBEV infection in mice, BBB 
breakdown occurs 2-3 days after virus is detectable in the brain (Růžek et al., 2011). 
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There is however, good evidence of centripetal nerve spread from the periphery (Engle & 

Diamond, 2003; Hunsperger & Roehrig, 2006; Getts et al., 2007). In the footpad model, viral 

infection occurs in the dermal layer of the epithelium in the footpad, which is enervated by 

sensory fibres of the dorsal root ganglion (DRG) of the peripheral nervous system (PNS). In 

vitro, PNS neurons support WNV infection and in mice the DRG is highly susceptible to 

WNV infection, suggesting that it may be involved in retrograde axonal transport of virus 

from the PNS to CNS (Hunsperger & Roehrig, 2005, 2006). This is consistent with our own 

studies using intraperitoneal inoculation of WNV in mice, where WNV is seen in the 

cervical spinal cord 1-2 days before it is seen in the brain parenchyma, spreading in a caudal 

to rostral manner. In contrast, intranasal infection results in rostral to caudal spread through 

the brain, with spread to various anatomical regions via known neural connections (King, 

Unpublished). If the sciatic nerve of golden hamsters is transected above the infection site, a 

systemic infection with less severe clinical symptoms of CNS invasion occurs (Samuel et al., 

2007), denoting a contribution to spread by intact axons. Treatment of mice with 

nocodazole, a microtubule inhibitor that prevents retrograde axonal transport, prior to 

inoculation, delays virus spread to the CNS by 6 days (Hunsperger & Roehrig, 2009). 

However, taken together, it is likely that more than one pathway is involved in WNV spread 

to the CNS, with inoculation site, dose, age and genetics all influencing this. 

 

 

Fig. 1. WNV infection results in the upregulation of ICAM-1 and VCAM-1 on brain 
vasculature in WNV encephalitis. Green = macrophages and microglia (lectin staining),  
Red = ICAM-1 (top right), VCAM-1 (bottom right) Blue = DAPI.  
Left panels = mock-infected, Right panels = d7 WNV-infected 
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5. CNS infection 

In vitro, virions attaching to the plasma membrane enter cells via clathrin-mediated 

endocytosis to form endosomes. A lysosomal, pH-dependent fusion mechanism expels the 

nucleocapsid into the cytoplasm in close proximity to the ER where the virus is thought to 

replicate (Chu & Ng, 2004). All cells of the CNS are readily susceptible to WNV infection in 

vitro within 16-24 h, including neurons, Schwann cells and astrocytes, although microglia 

are more resistant (Y. Liu et al., 1989; Argall et al., 1991; Shrestha et al., 2003; Cheeran et al., 

2005). In contrast, in animal models, detectable infection is seen in the brain between d3 and 

6 post infection (p.i.), depending on the model, with virus in all cases evidently replicating 

exclusively within neurons, a behaviour distinguishing it from the encephalitic DNA viruses 

(Steele et al., 2000; Xiao et al., 2001; King et al., 2003; Shrestha et al., 2003; Getts et al., 2007; 

Brehin et al., 2008). Antibody labelling of monkey brain sections for neuron-specific endose, 

glial fibrillary acidic protein and WNV were argued to indicate WNV infection of both glia 

and neurons, but this interpretation is not well supported by the examples provided (He et 

al., 2009). In humans, viral antigen is found in neuronal cytoplasm and processes, usually at 

the centre of microglial nodules (Sampson et al., 2000; Guarner et al., 2004). 
 

 

Fig. 2. Virus titres in the WNV-infected brain. IN = intranasal, IP = intraperitoneal infection 

Following inoculation at the periphery, WNV replicates in lymphoid tissues, but once in the 

CNS, titres increase until the onset of encephalitis (Brehin et al., 2008). Plaque assays of brain 

tissue from mice intranasally infected with WNV show much higher viral titres at the time 

of death on d7 p.i. than peripherally inoculated animals (Figure 2). After footpad 

inoculation, virus RNA can be isolated from parts of the nervous system like the brainstem, 

as early as 24 h p.i., long before the peak of viraemia and symptoms are present. There are 

also indications that the virus may be cleared, only to be followed by re-emergence in that 

area (Hunsperger & Roehrig, 2006). In the murine model of WNV infection the brain 

structures most susceptible and showing the highest viral titres appear to be the cortex, 

hippocampus, brainstem and spinal cord (Xiao et al., 2001; Hunsperger & Roehrig, 2006). In 
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humans, WNV seems to affect the brainstem and anterior horn of the spinal cord (Sejvar et 

al., 2003; Guarner et al., 2004). Neuroinvasion also occurs in animals that do not succumb to 

infection (Hunsperger & Roehrig, 2006; Appler et al., 2010). Damage to neurons can result 

from either excessive virus replication or an over-exuberant immune response, or both, with 

death ensuing in either eventuality. Increases in CD45+ leukocyte numbers as well as viral 

antigen are associated with areas of neuronal injury, degeneration by apoptosis and onset of 

encephalitis, making it difficult to distinguish between viral and immune-mediated injury 

(Xiao et al., 2001; Shrestha et al., 2003; Brehin et al., 2008). In general, mice die soon after 

seizures become evident; if seizures can be suppressed, then survival may be extended 

several days and virus growth in the brain increases by a further 10-fold or more (Getts et 

al., 2007). This indicates that the neurons are capable of supporting much higher levels of 

virus replication than is usually evident at death. Microglial nodules, perivascular cuffing, 

principally comprised of infiltrating macrophages and T cells, and in advanced disease, 

neuronal loss, are prominent among the neurohistopathological and immunohistochemical 

findings (Steele et al., 2000; Guarner et al., 2004; Petzold et al., 2010). Significant leukocyte 

infiltration seems to occur around d5 p.i., irrespective of the model used, associated with full 

activation of the adaptive immune response.  

Cells of the CNS each respond differently towards infiltrating virus. In vitro one of the 

responses to viral infection of astrocytes and microglia is the production of chemoattractants 

like CCL5 and CXCL10 (Cheeran et al., 2005), which recruit T cells and possibly monocytes; 

both astrocytes and microglia can produce CXCL9, which similarly attracts T cells (Muller et 

al., 2007) (Getts, Unpublished). Infected neurons produce copious amounts of CCL2, which 

recruit macrophages and microglia from the bone marrow (Getts et al., 2008). IFN-γ plays an 

important role in the formation of the seizure cascade during the development of the CNS, 

as IFN-γ knockout mice do not develop seizures during WNV infection. Seizures cannot be 

recapitulated by IFN-γ-producing T cells infiltrating into the brain in WNV-infected IFN-γ 

knockout chimeras previously reconstituted with wild type bone marrow. The role of the 

glutamate receptor, N-methyl-D-aspartate in the development of these seizures has also 

been shown (Getts et al., 2007). While it is clear that many soluble factors are produced in 

the brain, it is not so obvious which cells produce them in vivo. Much work will be required 

to fully characterise the sequence of inductive and inhibitory interactions between local 

cells, infected cells and immigrant leukocytes. 

6. Microglial activation 

Microglial activation is clearly associated with virus infection of neurons rather than 

immune leukocyte infiltration. After intraperitoneal inoculation, WNV can be seen in the 

brain by d6 p.i., when activated microglia are first observed, one day after leukocyte 

infiltration is first evident. However, in the intranasal model, microglial activation is seen 

at d3 p.i. when virus is first observed, while leukocyte infiltration is still seen first at d5 

p.i., as in the intraperitoneal model (Getts et al., 2008) (King, Unpublished). Microglia 

form nodules around infected neurons soon after infection (King et al., 2003; Guarner et 

al., 2004; Petzold et al., 2010), presumably recruited by the soluble factor outputs from 

infected neurons, including CCL2. Consistent with this, microglia, at first dendritic, 

quickly lose these normal projections to assume a more motile amoeboid phenotype 
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(Getts et al., 2008). Interestingly, as the number of infected neurons increases, these 

nodules become less apparent, perhaps because the concentrations of these soluble factors 

reach a virtual equilibrium within the brain, thus abrogating the concentration gradients 

likely required for nodule formation (King, Unpublished). Whether the formation of 

nodules is protective or damaging to neurons is not known, but relatively few infected 

neurons at the centre of microglial nodules are TUNEL-positive in WNV encephalitis 

(Getts et al., 2007). There is a significant increase in microglial numbers in the brain 

during infection, with a decrease in resting microglial numbers. This increase is accounted 

for by bone marrow-derived monocyte immigration and is not due to in situ proliferation 

of microglia (Getts et al., 2008). Whether immigrant microglia subsequently return to a 

resting state in the brain if the host survives and/or whether these cells have a role in the 

causation of any subsequent neurological sequelae, remains to be elucidated. 

 

 

Fig. 3. Flow cytometry showing infiltration of macrophages and microglia in the WNV-
infected and mock-infected mouse brain. R1 (green profile at right) = CD45lo-int microglia 
(mock-infected), R2 (red profile at right) = CD45lo-int microglia (WNV-infected), R3 (blue 
profile at right) = CD45hi macrophages (WNV-infected) 

Usually by d6 p.i. the whole microglial population in the brain is activated and this can be 

detected as an increase in CD45 expression by flow cytometry (Figure 3) and by their 

amoeboid morphology using lectin immunohistochemistry (Brehin et al., 2008; Getts et al., 

2008). Similar to infiltrating macrophages, activated microglia in the WNV-infected brain 

also express higher levels of Ly6C, compared to mock-infected mice. In Rhesus monkeys 

infected intracerebrally with three antigenically divergent flaviviruses, activated microglia 

are identified by their enlarged morphology, short thicker processes and CD68 expression. 

In this model, microglia are found next to dying neurons and neuronal debris where they 

perform a phagocytic function (Maximova et al., 2009). They also secrete various 

proinflammatory mediators and cytokines as part of the response to local and systemic 

infection. The increased microglial production of leukocyte-recruiting chemokines, CXCL10 

and CCL2, is triggered by the activation of the p53-mitogen-activated protein kinase and 

extracellular signal-regulated kinase intracellular signaling pathways by WNV infection 

(Cheeran et al., 2005). Neutralisation of CCL2 by antibody on d6 p.i., results in prolonged 

survival, strongly implicating microglia as contributors to fatal neuropathology (Getts et al., 
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2008). In Japanese encephalitis, bystander damage caused by activated microglia is a major 

contributor to the severity of the disease. Microglial activation is associated with elevation of 

proinflammatory mediators like TNF, IL-1β, IL-6, (inducible) nitric oxide synthase-2 (NOS2) 

and cyclooxygenase-2 (Cox-2), all of which have the potential to be neurotoxic (Ghoshal et 

al., 2007; Chen et al., 2010). Nitric oxide (NO), formed from the catalysis of arginine by 

sustained high levels of induced NOS2, can cause significant oxidative damage to neurons, 

while the production of Cox-2 results in reactive oxygen species as a byproduct that is also 

capable of inflicting irreversible damage on neurons (Ghoshal et al., 2007). TNF-induced 

endothelial expression of NOS2 and the formation of reactive nitrogen- and oxygen species 

is also implicated in the apoptosis of cells and development of hemorrhage in the murine 

model of dengue virus infection (Yen et al., 2008). 

7. Macrophage infiltration 

In mice infected with WNV by intranasal inoculation, virus is detectable only in the brain, 

making this model ideal to study brain responses to neuronal infection. In this model, the 

predominant leukocyte subtype immigrating into the brain in flavivirus encephalitis is the 

MDM (Figure 4, 5). By d7 p.i. large numbers of infiltrating macrophages can be seen 

surrounding infected neurons in the brains of WNV-infected mice. Neutralisation of CCL2 

reduces macrophage immigration into the brain, indicating that CCL2, produced by infected 

neurons, is a major driver of MDM immigration into the CNS (Getts et al., 2008; Lim et al., 

2011), however, this may later be supplemented with IL-23, which may intensify 

macrophage infiltration, or result in the recruitment of different functional macrophage 

subsets (Town et al., 2009). IL-23 is argued to originate from microglia, but this has not been 

shown. Some 35-50% of infiltrating leukocytes in the brain are Ly6Chi macrophages, with 

NK cells and Ly6C+ immigrant microglia in each case making up approximately half these 

numbers (Figure 5).  

 

 

Fig. 4. Immunohistochemistry showing myeloid lineage cells infiltrating the WNV-infected 
brain. Green = macrophages and microglia (lectin staining); Red = anti-NS-1 (WNV-infected 
neurons); Blue = DAPI. Left = Mock-infected, Right = d7 p.i. WNV-infected 
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Once in the brain, both MDM and activated microglia can process antigen and reactivate 

WNV-specific memory T cells (Ford et al., 1996; Olson & Miller, 2004), but cannot initiate 

responses in naïve T cells (Getts, Unpublished). Both cell types produce significant amounts 

of NO, presumably via NOS2 induced by IFN-γ from infiltrating T cells (Schoneboom et al., 

2000; Jana et al., 2001) (Figure 6). Pharmacological inhibition of NO at specific time points in 

an MVE model results in extended survival (Andrews et al., 1999). This is different from 

models in which NO is abrogated throughout infection, where survival is reduced (Fenyk-

Melody et al., 1998; King et al., 2007). This highlights a crucial point about models used to 

determine susceptibility to lethal flavivirus infection. While the absence or presence of a 

particular gene may dictate susceptibility, the involvement of this gene in the disease 

process may vary significantly during the course of infection. It may be critical for virus 

control at one point, but be responsible for immunopathological damage at another. This is 

further emphasised by the fact that depletion of the macrophage population throughout the 

disease course results in accelerated death (Ben-Nathan et al., 1996), while temporally 

targeted inhibition of macrophage immigration into the brain in WNV encephalitis results in 

long term survival and immunity (Getts et al., 2008). 

 

 

Fig. 5. Leukocyte subsets in the WNV-infected brain on d7 p.i. RM= resident microglia,  
IM= immigrant microglia 

Peripheral production of NO is also involved in DC-programmed T cell responses. Bone 

marrow-derived DC from NOS2 knockout mice elicited a much stronger Th1 immune 

response with increased chemokine expression. Interestingly, lack of NO-mediated 

modulation resulted in expansion of a Ly6Chi type inflammatory DC subset, implicating NO 

as a potential negative regulator of immune-mediated pathology (Giordano et al., 2010). On 

the other hand, in influenza infection, increased Th1 responses in the absence of NOS2 may 

result in higher antiviral antibody titres and more effective virus clearance with less 

immunopathology (Jayasekera et al., 2006). As with WNV encephalitis, neuroinflammation 

plays a significant role in the severity of experimental autoimmune encephalomyelitis 

(EAE). NOS2 knockout mice are much more susceptible to EAE than wild type mice (Fenyk-

d7 p.i. WNV-infected 
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Melody et al., 1998). This raises the question of the role of Ly6Chi inflammatory cells in the 

severity of neuropathology in WNV infection (Giordano et al., 2010). 
 

 

Fig. 6. Macrophages and microglia produce NO in response to WNV infection. Green = 
macrophages and microglia (lectin staining); Red = iNOS/NOS2; Blue = DAPI. Left = Mock 
infected, Right = d7 WNV 

Mice and human peripheral blood monocytes are divided into circulating and inflammatory 
subsets. As mentioned above, inflammatory monocytes are recruited to inflamed tissue by 
chemokines like CCL2, while circulating monocytes may replace resident macrophages in 
the steady state. In the murine model, circulating monocytes have Gr1-(Ly6Clo)/CX3CR1+ 
phenotype; inflammatory monocytes have a Gr1hi(Ly6Chi)/CCR2+ phenotype (Geissmann et 
al., 2003; Tacke & Randolph, 2006). As mentioned, Ly6Chi monocytes can differentiate into 
DC in the spleen and lung as well as into LC and macrophages under inflammatory 
conditions, where they are capable of stimulating naïve T-cells (Geissmann et al., 2003; Leon 
et al., 2004; Ginhoux et al., 2006; Landsman et al., 2007). During WNV infection there is a 
substantial increase in CD45int/CD11b+/CD11c- activated microglia in the brain. Depletion 
of blood monocytes reduces numbers of activated microglia in the CNS and adoptive 
transfer of Ly6Chi inflammatory monocytes from the bone marrow confirms that activated 
microglia in the CNS are derived from inflammatory monocytes in WNV infection (Getts et 
al., 2008). 
CCR2 and its ligand, CCL2, are important in the emigration of inflammatory monocytes 
from the bone marrow and migration to inflamed sites, including the CNS (Serbina & 
Pamer, 2006; Tsou et al., 2007; Getts et al., 2008; Lim et al., 2011). Immunohistochemical 
staining shows CCL2 expression by WNV-infected neurons, often with macrophages and 
microglia in close attendance (Figure 7). Recent findings however, indicate that CCR2 does 
not control the accumulation of Ly6Chi monocytes from blood to CNS directly, but rather by 
regulating the levels of monocytes in the blood (Lim et al., 2011). Interestingly the 
neutralisation of CCL2 leads to increased survival rates in WNV-infected mice, indicating 
the possible role that inflammatory cells play in the immunopathology of WNV encephalitis 
(Getts et al., 2008). CCR2 and CCR4 also seem to be involved in the pathogenesis of dengue 
virus disease. Dengue-infected CCR2 and CCR4 knockout mice show increased survival 
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rates and have decreased levels of systemic cytokines like IL-6 and IFN-γ, as well as lower 
numbers of activated NKT, CD4+, CD8+ T cells and macrophages in the spleen compared to 
wild type mice. Although the viral load in the CCR4 knockout and wild type mice was 
similar, it was suggested that the reduced mortality rates in these mice is due to reduced 
damage to organs and tissues associated with the abrogated inflammatory response 
(Guabiraba et al., 2010).  
 

 

Fig. 7. Infected neurons produce CCL2 which recruits monocytes to the brain.  
Green = macrophages and microglia (lectin staining); Red = NS-1 (actively infected 
neurons); Blue = CCL2. Left = Mock-infected, Right = d7 p.i. WNV-infected 

8. Infiltration of other leukocyte subtypes 

While up to 50% of leukocytes infiltrating into the CNS following infection are MDM, 
significant numbers of CD4+, CD8+ T cells (10-15%) and NK cells (10-20%) also immigrate 
into the brain, although there are relative few neutrophils (1-3%) (Figure 5, 8). T cells are 
recruited by increased astrocyte and microglial CXCL10 and CXCL9 expression, as well as 
CCL5 (Glass et al., 2005).  
As for mice, T cell effector subsets migrate into the perivascular space and brain 
parenchyma during flavivirus infection of monkeys. T cells are seen spread evenly 
throughout the parenchyma and perivascular space, whereas labelling for CD4+ and CD8+ 
subsets shows a more compartmentalised distribution, with CD4+ cells located mainly in the 
perivascular space. Either the CD4+ or CD8+ T cell subset may be the dominant lymphocyte 
present in CNS in infection (Kelley et al., 2003; Maximova et al., 2009). Whether they 
contribute to immunopathology or not, T cells are clearly crucial to virus clearance; mice 
deficient in this subpopulation exhibit higher mortality rates (Y. Wang et al., 2003; Y. Wang 
et al., 2006; Brien et al., 2008). Further highlighting these points, despite significantly lower 
myeloid cell infiltration in WNV infection in RAG knockout mice and prolonged survival, 
these animals die with high titres of virus in the CNS (King, Unpublished). In contrast to 
WNV, in TBEV infection in mice, immunopathology is evidently mediated by CD8+ T-
cells, although these cells are not responsible for BBB breakdown (Růžek et al., 2011). 

CD4+ T cells evidently play a protective role in TBEV, possibly via secretion of IFN-γ and 
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other pro-inflammatory cytokines and/or stimulation of ‘macrophage-like’ cells (Růžek et 
al., 2009). 
The chemokine receptor CXCR3 is a key regulator of T-cell recruitment and thus plays a 

pivotal role in the pathogenesis of many diseases (Muller et al., 2007). During WNV 

encephalitis in mice the chemokine receptor CXCR3 enables recruitment of antiviral CD8+ T 

cells to the CNS in a region-specific manner. Loss of this receptor leads to increased 

mortality rates in these animals (B. Zhang et al., 2008). TNF is also essential in the 

recruitment of antiviral CD8+ T cells to the CNS in WNV infection (Shrestha et al., 2008).  

 

 

Fig. 8. Flow cytometry showing regional analysis of infiltrating leukocytes in murine brain. 
R1 denotes CD45hi, CD11blo lymphocytes, which can be further divided into T cells and NK 
cells; R2 denotes CD45hi, CD11bhi neutrophils, which are Ly6G+, Ly6C+ 

Although B cells are also observed in the brain in some studies (Brehin et al., 2008), CD20+ B 

cells are predominantly found in the perivascular space surrounding neurons. Proportions 

of B and T cells in the brain vary depending on the infecting flavivirus (Maximova et al., 

2009). By flow cytometry, we find few B cells in the brain parenchyma and while the BBB is 

intact it seems unlikely that antibodies have a significant effect against WNV within the 

brain, although antibody is clearly important systemically in protection against WNV 

(Diamond et al., 2003). NK cells, while present in significant numbers in the brain 

parenchyma, have not been studied in any detail. Indeed, to date they have been regarded 

as redundant in flavivirus infection, since upregulated MHC expression on infected cells 

reduces NK cell recognition. However, in vitro, under artificially-stimulated conditions, NK 

cells are cytotoxic for WNV-infected cells (M. Zhang et al., 2010).  

The lack of neutrophil infiltration is perhaps not surprising as there is little or no CXCL1 

expression in the brain during infection. However, in MVE, infiltration of NO-producing 

neutrophils, attracted by TNF and N51/KC, are a significant part of the inflammatory 

leukocyte infiltration and contribute to the severity of disease. Neutrophil depletion and 

inhibition of NOS prolongs survival of infected animals and reduces the severity of 

pathology in the CNS (Andrews et al., 1999). Since the neutrophil-depleting antibody used 

also depletes monocytes, however, it is not clear to what extent immigrating macrophages 

may have contributed to lethal pathology. Nevertheless, this again highlights the point  

that temporally selective depletion may reduce pathology, while genetic deletion may 

exacerbate it. 
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9. Immunomodulating therapies 

Despite the large amount of research in the field, there is currently no approved antiviral 

therapy against WNV in humans and treatment remains symptomatic. Currently, the only 

live flavivirus vaccines with a relatively good record of safety are against yellow fever 

(Monath, 2010) and JEV (X. Liu et al., 2011) and the only commercially available live 

vaccines against WNV are for horses. Two highly purified formalin-inactivated whole 

virus vaccines against TBEV have been used in Europe since 1976 (FSME Immun, Baxter) 

and 1999 (Encepur, Novartis) and an efficacy of 99% has been reported in Austria, with no 

difference between age groups, and no major safety issues reported (Barrett et al., 2003; 

Heinz et al., 2007). Another avenue that is currently being investigated is antivector 

vaccines that target mosquitoes or ticks directly (Kortekaas et al., 2010). Recently, stable 

infection with the bacterium, Wolbachia, has been achieved, with significant potential for 

limiting the transmission of dengue (McMeniman et al., 2009; Bian et al., 2010). Antivirals 

like Ribavirin can successfully act against WNV in vitro (Jordan et al., 2000; Anderson & 

Rahal, 2002), but have no notable antiviral effect when used to treat infected humans 

(Chowers et al., 2001). Although initial studies with antiviral medication appeared 

promising, increased mortality rates led to several candidates being disqualified. This and 

the fact that a significant amount of neuropathology is induced by the immune system 

itself has led to more research being conducted into modulation of the immune system. 

Indeed, general immunomodulators that inhibit inflammatory mediator synthesis and can 

cross the BBB are potential candidates. Patients infected with TBEV receiving the anti-

inflammatory antibiotic, tetracycline, had reduced levels of IL-6, IL-1β, TNF, quicker 

improvement of symptoms and faster clinical recovery than untreated patients 

(Atrasheuskaya et al., 2003). 

Because interferons play such a prominent role in mitigating viral infection and modulating 

the adaptive immune system, they have been prime candidates for immunomodulating 

therapies (Samuel & Diamond, 2005; Jiang et al., 2010). IFN-α2b has protective and 

therapeutic properties in Vero cells (Anderson & Rahal, 2002). IFN-γ and β play a role in 

inhibiting viral spread and replication in the periphery as well as the CNS and are also 

argued to reduce WNV-induced neuronal death (Samuel & Diamond, 2005). RNA for 

interferon-stimulated genes (ISG) and their protein expression are upregulated during viral 

infections (Wacher et al., 2007). Five of the IFN-α-induced ISG, namely Viperin, ISG20, 

protein kinase R (PKR) and IFN-induced transmembrane proteins 2 and 3 (IFITM2, IFITM3) 

have been shown to disrupt multiple steps in the dengue and WNV life cycle. IFITM2 and 3 

in particular serve to inhibit viral entry into host cells (Jiang et al., 2010). The matrix 

metalloproteinase (MMP) inhibitor, GM6001 has been shown to reverse the damage to BBB 

integrity induced by MMPs with WNV infection (Verma et al., 2010). Cytotoxic T cells can 

eradicate WNV by lysing infected cells and this could potentially be used in developing 

treatment against WNV. The vaccination of individuals with a chimeric WNV/yellow 

fever vaccine, coding a WNV envelope antigen, results in the production of CD8+ T cells 

that persist for up to a year with similar qualities to memory T cells (Smith et al., 2010). 

Cytotoxic T lymphocytes generated against WNV-specific epitopes are able to eradicate 

infected cells in vitro as well as increase survival rates when transferred into mice. This 

approach may thus result in a more targeted immune response and optimised eradication 

of virus (Purtha et al., 2007).  
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Neutralising antibodies have also been successful in treating and preventing early infection 

in animal models and humanised antibodies could provide the basis for treatment after 

known exposure to infection (Throsby et al., 2006; Vogt et al., 2009). The use of certain 

human single chain variable fragments fused with an IgG1 Fc region is able to confer some 

protection against lethal WNV in mice. The addition of Fc region to this protein is critical for 

the effectiveness of its neutralising function and suggests whole monoclonal antibodies 

(mAbs) may more effectively neutralise WNV (L.H. Gould et al., 2005). Further supporting 

this, the neutralising potential of mAb E16 is less effective in mice lacking the Fc receptor 

(Oliphant et al., 2005). It is tempting to speculate also, that NK cell-mediated antibody-

dependent cell-mediated cytotoxicity may contribute to viral clearance in the periphery. 

Of the myriad antibodies induced by WNV infection only a few neutralise WNV and have a 

possible therapeutic role. Neutralising antibodies are mainly directed against domain III of 

the WNV envelope-protein where they prevent the conformational change in the virus 

required to fuse to cellular membranes, consequently inhibiting it from entering the cell 

(Oliphant et al., 2005; Throsby et al., 2006; Morrey et al., 2007; S. Zhang et al., 2009). 

Polyclonal antibodies promote survival in B- and T cell-deficient mice, indicating their 

therapeutic potential (Engle & Diamond, 2003). The axonal spread of virus can also be 

blocked by neutralising antibodies in vitro and in vivo (Samuel et al., 2007). Two neutralising 

human monoclonal antibodies with therapeutic potential are CR4348 and CR4354, both 

capable of inhibiting WNV in vitro and in vivo. They bind to epitopes on the E-protein of the 

virus and neutralise the virus at the postattachment step, it is thought by preventing fusion 

of the virus to the endosomal membrane. Prophylactic treatment with these antibodies 

protects mice against lethal WNV infection (Vogt et al., 2009). On the other hand, humanised 

mAb E16 is able to increase survival of both mice and hamsters, even when administered 

after the CNS is infected (Oliphant et al., 2005; Morrey et al., 2007). The treatment of 

hamsters 5 days after WNV inoculation with this E16 antibody also results in decreased 

viral burden in the CNS and increased survival (Morrey et al., 2006). The affinity of 

neutralising antibodies has also been associated with neutralising efficacy. Affinity alone, 

however, does not ensure the efficacy of inhibiting WNV activity, as some non-neutralising 

antibodies bind with high affinity to their epitopes. Thus, not surprisingly, both the specific 

epitope and binding affinity play a role (Sanchez et al., 2005).  

Other factors limiting antibody-mediated treatment include the poor movement of 

antibodies across an intact BBB to enable them to act on virus-infected neurons (Cheeran et 

al., 2005; Morrey et al., 2007) and the possibility that mutant virus strains might arise 

through antibody treatment. For example, mutations of the E16 epitope of the virus can 

abrogate the neutralising activity of monoclonal antibodies (Li et al., 2005; Sanchez et al., 

2005). Thus, although resistant strains to specific mAbs are currently rare, they need to be 

considered in the design of antibody therapy (S. Zhang et al., 2009). Time of therapeutic 

administration and viable administration routes for human patients are also important 

considerations because of the possibility that antibodies could further exacerbate disease via 

antibody-dependent enhancement of infection. This classically occurs in a second dengue 

infection. Here, virus-specific antibodies from a first dengue infection with a low affinity for 

the second strain of dengue do not neutralise, but complex with virus. This enables virus to 

gain access to monocytes, macrophages and mature DC via Fcγ receptors typically borne by 

the myeloid lineage, resulting in increased viral loads in individual cells, as well as 
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increasing numbers of productively-infected cells (Halstead & O’Rourke, 1977; Boonnak et 

al., 2011). 

This currently leaves cell subset targeting as an immunomodulating therapy, but issues 

about which subset(s) to target, how to target them effectively and when to target them 

during disease remain to be resolved. However, the temporal targeting of 

immunopathological subsets and/or the enhancement of potentially anti-inflammatory 

subsets in viral encephalitis, with the idea of enabling successful virus clearance by the 

remaining elements of the adaptive immune response, remain a legitimate goal, since, 

unlike the long-term requirement for subset blockers in e.g., multiple sclerosis, which may 

be associated with progressive multifocal leukoencephalopathy, short-term use is much less 

likely to have permanent sequelae. 

10. Conclusion 

Research on WNV and flaviviruses in general has increased dramatically in the last 10 years, 

since the advent of WNV in New York in August 1999. It has become clear that different 

flaviviruses have different interactions with the immune system and what may be 

pathogenic in one infection may prolong survival in another. This is undoubtedly further 

complicated by the variability of human (and mouse) genetics, as well as the variety of 

disease models. While it may eventually be possible to personalise treatments ranging from 

cancer to infectious disease, at this stage we do not know enough about the pathogenesis of 

these infections to inform the kind of generic approach required to intervene to prevent 

lethal disease in a meaningful number of patients successfully. While it seems likely that an 

effective vaccine will eventually be available, many issues have to be addressed before 

general immunisation is a viable proposition. Notwithstanding the success of this 

endeavour, there will always be individuals in which it will be necessary to intervene 

clinically, due to poor vaccine compliance, failure of vaccination, as well as other 

uncontrollable factors. Unlike species-specific viruses like smallpox, the pleotropic nature of 

flaviviruses, their carriage by migratory wild birds capable of amplifying them, the 

difficulty of eradicating their arthropod vectors, in addition to other factors, many of our 

own making, that continue to extend vector habitats, will make them virtually impossible to 

eradicate by vaccination. 

11. References 

Allan, R.S., Smith, C.M., Belz, G.T., Van Lint, A.L., Wakim, L.M., Heath, W.R. & Carbone, 

F.R. (2003) Epidermal viral immunity induced by CD8alpha+ dendritic cells but not 

by Langerhans cells. Science, 301, 5641, pp. 1925-1928, ISSN 0036-8075. 

Anderson, J.F. & Rahal, J.J. (2002) Efficacy of interferon alpha-2b and ribavirin against West 

Nile virus in vitro. Emerg Infect Dis, 8, 1, pp. 107-108, ISSN 1080-6059. 

Andrews, D.M., Matthews, V.B., Sammels, L.M., Carrello, A.C. & Mcminn, P.C. (1999) The 

severity of murray valley encephalitis in mice is linked to neutrophil infiltration 

and inducible nitric oxide synthase activity in the central nervous system. J Virol, 

73, 10, pp. 8781-8790, ISSN 0022-538X. 

www.intechopen.com



  
Flavivirus Encephalitis 

 

42

Appler, K.K., Brown, A.N., Stewart, B.S., Behr, M.J., Demarest, V.L., Wong, S.J. & Bernard, 

K.A. (2010) Persistence of West Nile virus in the central nervous system and 

periphery of mice. PLoS One, 5, 5, pp. e10649, ISSN 1932-6203. 

Argall, K.G., Armati, P.J., King, N.J.C. & Douglas, M.W. (1991) The effects of West Nile 

virus on major histocompatibility complex class I and II molecule expression by 

Lewis rat Schwann cells in vitro. J Neuroimmunol, 35, 1-3, pp. 273-284, ISSN 0165-

5728. 

Arnold, S.J., Osvath, S.R., Hall, R.A., King, N.J.C. & Sedger, L.M. (2004) Regulation of 

antigen processing and presentation molecules in West Nile virus-infected human 

skin fibroblasts. Virology, 324, 2, pp. 286-296, ISSN 0042-6822. 

Atrasheuskaya, A.V., Fredeking, T.M. & Ignatyev, G.M. (2003) Changes in immune 

parameters and their correction in human cases of tick-borne encephalitis. Clinical 

and experimental immunology, 131, 1, pp. 148-154, ISSN 0009-9104. 

Bai, F., Kong, K.F., Dai, J., Qian, F., Zhang, L., Brown, C.R., Fikrig, E. & Montgomery, R.R. 

(2010) A paradoxical role for neutrophils in the pathogenesis of West Nile virus. J 

Infect Dis, 202, 12, pp. 1804-1812, ISSN 1537-6613. 

Bakonyi, T., Hubálek, Z., Rudolf, I. & Nowotny, N. (2005) Novel flavivirus or new lineage 

of West Nile virus, central Europe. Emerg Infect Dis, 11, 2, pp. 225-231, ISSN 1080-

6059. 

Barrett, P.N., Schober-Bendixen, S. & Ehrlich, H.J. (2003) History of TBE vaccines. Vaccine, 21 

Suppl 1, pp. S41-49, ISSN 0264-410X. 

Ben-Nathan, D., Huitinga, I., Lustig, S., Van Rooijen, N. & Kobiler, D. (1996) West Nile virus 

neuroinvasion and encephalitis induced by macrophage depletion in mice. Arch 

Virol, 141, 3-4, pp. 459-469, ISSN 0304-8608. 

Bian, G., Xu, Y., Lu, P., Xie, Y. & Xi, Z. (2010) The endosymbiotic bacterium Wolbachia 

induces resistance to dengue virus in Aedes aegypti. PLoS Pathog, 6, 4, pp. 

e1000833. 

Boonnak, K., Dambach, K.M., Donofrio, G.C., Tassaneetrithep, B. & Marovich, M.A. (2011) 

Cell type specificity and host genetic polymorphisms influence antibody-

dependent enhancement of dengue virus infection. J Virol, 85, 4, pp. 1671-1683, 

ISSN 1098-5514. 

Brehin, A.C., Mouries, J., Frenkiel, M.P., Dadaglio, G., Despres, P., Lafon, M. & Couderc, T. 

(2008) Dynamics of immune cell recruitment during West Nile encephalitis and 

identification of a new CD19+B220-BST-2+ leukocyte population. J Immunol, 180, 

10, pp. 6760-6767, ISSN 0022-1767. 

Brien, J.D., Uhrlaub, J.L. & Nikolich-Zugich, J. (2008) West Nile virus-specific CD4 T cells 

exhibit direct antiviral cytokine secretion and cytotoxicity and are sufficient for 

antiviral protection. J Immunol, 181, 12, pp. 8568-8575, ISSN 1550-6606. 

Burke, S.A., Wen, L. & King, N.J.C. (2004) Routes of inoculation and the immune response to 

a resolving genital flavivirus infection in a novel murine model. Immunol Cell Biol, 

82, 2, pp. 174-183, ISSN 0818-9641. 

Byrne, S.N., Halliday, G.M., Johnston, L.J. & King, N.J.C. (2001) Interleukin-1beta but not 

tumor necrosis factor is involved in West Nile virus-induced Langerhans cell 

migration from the skin in C57BL/6 mice. J Invest Derm, 117, 3, pp. 702-709, ISSN 

0022-202X. 

www.intechopen.com



 
The Immunopathogenesis of Neurotropic Flavivirus Infection 

 

43 

Cardosa, M.J., Gordon, S., Hirsch, S., Springer, T.A. & Porterfield, J.S. (1986) Interaction of 

West Nile virus with primary murine macrophages: role of cell activation and 

receptors for antibody and complement. J Virol, 57, 3, pp. 952-959, ISSN 0022-

538X. 

Cdc (2010) West Nile Virus Activity — United States, 2009. Morbidity and Mortality Weekly 

Report, 59, 25, ISSN 0149-2195. 

Cheeran, M.C., Hu, S., Sheng, W.S., Rashid, A., Peterson, P.K. & Lokensgard, J.R. (2005) 

Differential responses of human brain cells to West Nile virus infection. J 

Neurovirol, 11, 6, pp. 512-524, ISSN 1355-0284. 

Chen, C.J., Ou, Y.C., Lin, S.Y., Raung, S.L., Liao, S.L., Lai, C.Y., Chen, S.Y. & Chen, J.H. 

(2010) Glial activation involvement in neuronal death by Japanese encephalitis 

virus infection. J Gen Virol, 91, Pt 4, pp. 1028-1037, ISSN 1465-2099. 

Cheng, Y., King, N.J.C. & Kesson, A.M. (2004a) Major histocompatibility complex class I 

(MHC-I) induction by West Nile virus: involvement of 2 signaling pathways in 

MHC-I up-regulation. J Infect Dis, 189, 4, pp. 658-668, ISSN 0022-1899. 

Cheng, Y., King, N.J.C. & Kesson, A.M. (2004b) The role of tumor necrosis factor in 

modulating responses of murine embryo fibroblasts by flavivirus, West Nile. 

Virology, 329, 2, pp. 361-370, ISSN 0042-6822. 

Chowers, M.Y., Lang, R., Nassar, F., Ben-David, D., Giladi, M., Rubinshtein, E., Itzhaki, A., 

Mishal, J., Siegman-Igra, Y., Kitzes, R., Pick, N., Landau, Z., Wolf, D., Bin, H., 

Mendelson, E., Pitlik, S.D. & Weinberger, M. (2001) Clinical characteristics of the 

West Nile fever outbreak, Israel, 2000. Emerg Infect Dis, 7, 4, pp. 675-678, ISSN 1080-

6059. 

Chu, J.J. & Ng, M.L. (2004) Infectious entry of West Nile virus occurs through a clathrin-

mediated endocytic pathway. J Virol, 78, 19, pp. 10543-10555, ISSN 0022-538X. 

Daffis, S., Samuel, M.A., Suthar, M.S., Gale, M., Jr. & Diamond, M.S. (2008) Toll-like receptor 

3 has a protective role against West Nile virus infection. J Virol, 82, 21, pp. 10349-

10358, ISSN 1098-5514. 

Davison, A.M. & King, N.J.C. (2011) Accelerated dendritic cell differentiation from 

migrating Ly6C(lo) bone marrow monocytes in early dermal West Nile virus 

infection. J Immunol, 186, 4, pp. 2382-2396, ISSN 1550-6606. 

Diamond, M.S., Shrestha, B., Marri, A., Mahan, D. & Engle, M. (2003) B cells and antibody 

play critical roles in the immediate defense of disseminated infection by West Nile 

encephalitis virus. J Virol, 77, 4, pp. 2578-2586, ISSN 0022-538X. 

Engle, M.J. & Diamond, M.S. (2003) Antibody prophylaxis and therapy against West Nile 

virus infection in wild-type and immunodeficient mice. J Virol, 77, 24, pp. 12941-

12949, ISSN 0022-538X. 

Fenyk-Melody, J.E., Garrison, A.E., Brunnert, S.R., Weidner, J.R., Shen, F., Shelton, B.A. & 

Mudgett, J.S. (1998) Experimental autoimmune encephalomyelitis is exacerbated 

in mice lacking the NOS2 gene. J Immunol, 160, 6, pp. 2940-2946, ISSN 0022-1767. 

Ford, A.L., Foulcher, E., Lemckert, F.A. & Sedgwick, J.D. (1996) Microglia induce CD4 T 

lymphocyte final effector function and death. J Exp Med, 184, 5, pp. 1737-1745, ISSN 

0022-1007. 

www.intechopen.com



  
Flavivirus Encephalitis 

 

44

Geissmann, F., Jung, S. & Littman, D.R. (2003) Blood monocytes consist of two principal 

subsets with distinct migratory properties. Immunity, 19, 1, pp. 71-82, ISSN 1074-

7613. 

German, A.C., Myint, K.S., Mai, N.T., Pomeroy, I., Phu, N.H., Tzartos, J., Winter, P., Collett, 

J., Farrar, J., Barrett, A., Kipar, A., Esiri, M.M. & Solomon, T. (2006) A preliminary 

neuropathological study of Japanese encephalitis in humans and a mouse model. 

Trans R Soc Trop Med Hyg, 100, 12, pp. 1135-1145, ISSN 0035-9203. 

Getts, D.R., Matsumoto, I., Muller, M., Getts, M.T., Radford, J., Shrestha, B., Campbell, I.L. 

& King, N.J.C. (2007) Role of IFN-gamma in an experimental murine model of 

West Nile virus-induced seizures. J Neurochem, 103, 3, pp. 1019-1030, ISSN 0022-

3042. 

Getts, D.R., Terry, R.L., Getts, M.T., Muller, M., Rana, S., Shrestha, B., Radford, J., Van 

Rooijen, N., Campbell, I.L. & King, N.J.C. (2008) Ly6c+ "inflammatory monocytes" 

are microglial precursors recruited in a pathogenic manner in West Nile virus 

encephalitis. J Exp Med, 205, 10, pp. 2319-2337, ISSN 1540-9538. 

Ghoshal, A., Das, S., Ghosh, S., Mishra, M.K., Sharma, V., Koli, P., Sen, E. & Basu, A. (2007) 

Proinflammatory mediators released by activated microglia induces neuronal death 

in Japanese encephalitis. Glia, 55, 5, pp. 483-496, ISSN 0894-1491. 

Ginhoux, F., Tacke, F., Angeli, V., Bogunovic, M., Loubeau, M., Dai, X.M., Stanley, E.R., 

Randolph, G.J. & Merad, M. (2006) Langerhans cells arise from monocytes in vivo. 

Nat Immunol, 7, 3, pp. 265-273, ISSN 1529-2908. 

Giordano, D., Li, C., Suthar, M.S., Draves, K.E., Ma, D.Y., Gale, M., Jr. & Clark, E.A. (2010) 

Nitric oxide controls an inflammatory-like Ly6ChiPDCA1+ DC subset that 

regulates Th1 immune responses. J Leukoc Biol, ISSN 1938-3673. 

Glass, W.G., Lim, J.K., Cholera, R., Pletnev, A.G., Gao, J.L. & Murphy, P.M. (2005) 

Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival 

in West Nile virus infection. J Exp Med, 202, 8, pp. 1087-1098, ISSN 0022-1007. 

Gould, E.A. & Higgs, S. (2009) Impact of climate change and other factors on emerging 

arbovirus diseases. Trans R Soc Trop Med Hyg, 103, 2, pp. 109-121, ISSN 1878-3503. 

Gould, L.H., Sui, J., Foellmer, H., Oliphant, T., Wang, T., Ledizet, M., Murakami, A., 

Noonan, K., Lambeth, C., Kar, K., Anderson, J.F., De Silva, A.M., Diamond, M.S., 

Koski, R.A., Marasco, W.A. & Fikrig, E. (2005) Protective and therapeutic capacity 

of human single-chain Fv-Fc fusion proteins against West Nile virus. J Virol, 79, 23, 

pp. 14606-14613, ISSN 0022-538X. 

Guabiraba, R., Marques, R.E., Besnard, A.G., Fagundes, C.T., Souza, D.G., Ryffel, B. & 

Teixeira, M.M. (2010) Role of the chemokine receptors CCR1, CCR2 and CCR4 in 

the pathogenesis of experimental dengue infection in mice. PLoS One, 5, 12, pp. 

e15680, ISSN 1932-6203. 

Guarner, J., Shieh, W.J., Hunter, S., Paddock, C.D., Morken, T., Campbell, G.L., Marfin, A.A. 

& Zaki, S.R. (2004) Clinicopathologic study and laboratory diagnosis of 23 cases 

with West Nile virus encephalomyelitis. Hum Pathol, 35, 8, pp. 983-990, ISSN 0046-

8177. 

Halstead, S.B. & O’Rourke, E.J. (1977) Dengue viruses and mononuclear phagocytes. I. 

Infection enhancement by non-neutralizing antibody. J Exp Med, 146, 1, pp. 201-217. 

www.intechopen.com



 
The Immunopathogenesis of Neurotropic Flavivirus Infection 

 

45 

Hayes, C.G. (2001) West Nile virus: Uganda, 1937, to New York City, 1999. Ann N Y Acad 

Sci, 951, pp. 25-37, ISSN 0077-8923. 

Hayes, E.B., Sejvar, J.J., Zaki, S.R., Lanciotti, R.S., Bode, A.V. & Campbell, G.L. (2005) 

Virology, pathology, and clinical manifestations of West Nile virus disease. Emerg 

Infect Dis, 11, 8, pp. 1174-1179, ISSN 1080-6059. 

He, X., Ren, J., Xu, F., Ferguson, M.R. & Li, G. (2009) Localization of West Nile Virus in 

monkey brain: double staining antigens immunohistochemically of neurons, 

neuroglia cells and West Nile Virus. Int J Clin Exp Pathol, 3, 2, pp. 156-161, ISSN 

1936-2625. 

Heinz, F.X., Holzmann, H., Essl, A. & Kundi, M. (2007) Field effectiveness of vaccination 

against tick-borne encephalitis. Vaccine, 25, 43, pp. 7559-7567, ISSN 0264-410X. 

Hildner, K., Edelson, B.T., Purtha, W.E., Diamond, M., Matsushita, H., Kohyama, M., 

Calderon, B., Schraml, B.U., Unanue, E.R., Diamond, M.S., Schreiber, R.D., Murphy, 

T.L. & Murphy, K.M. (2008) Batf3 deficiency reveals a critical role for CD8alpha+ 

dendritic cells in cytotoxic T cell immunity. Science, 322, 5904, pp. 1097-1100, ISSN 

0036-8075. 

Hunsperger, E.A. & Roehrig, J.T. (2005) Characterization of West Nile viral replication and 

maturation in peripheral neurons in culture. J Neurovirol, 11, 1, pp. 11-22, ISSN 

1355-0284. 

Hunsperger, E.A. & Roehrig, J.T. (2006) Temporal analyses of the neuropathogenesis of a 

West Nile virus infection in mice. J Neurovirol, 12, 2, pp. 129-139, ISSN 1355-0284. 

Hunsperger, E.A. & Roehrig, J.T. (2009) Nocodazole delays viral entry into the brain 

following footpad inoculation with West Nile virus in mice. J Neurovirol, 15, 3, pp. 

211-218, ISSN 1538-2443. 

Iwamoto, M., Jernigan, D.B., Guasch, A., Trepka, M.J., Blackmore, C.G., Hellinger, W.C., 

Pham, S.M., Zaki, S., Lanciotti, R.S., Lance-Parker, S.E., Diazgranados, C.A., 

Winquist, A.G., Perlino, C.A., Wiersma, S., Hillyer, K.L., Goodman, J.L., Marfin, 

A.A., Chamberland, M.E. & Petersen, L.R. (2003) Transmission of West Nile virus 

from an organ donor to four transplant recipients. N Engl J Med, 348, 22, pp. 2196-

2203, ISSN 1533-4406. 

Jana, M., Liu, X., Koka, S., Ghosh, S., Petro, T.M. & Pahan, K. (2001) Ligation of CD40 

stimulates the induction of nitric-oxide synthase in microglial cells. J Biol Chem, 276, 

48, pp. 44527-44533, ISSN 0021-9258. 

Jiang, D., Weidner, J.M., Qing, M., Pan, X.B., Guo, H., Xu, C., Zhang, X., Birk, A., Chang, J., 

Shi, P.Y., Block, T.M. & Guo, J.T. (2010) Identification of five interferon-induced 

cellular proteins that inhibit west nile virus and dengue virus infections. J Virol, 84, 

16, pp. 8332-8341, ISSN 1098-5514. 

Johnston, L.J., Halliday, G.M. & King, N.J.C. (1996) Phenotypic changes in Langerhans' cells 

after infection with arboviruses: a role in the immune response to epidermally 

acquired viral infection? J Virol, 70, 7, pp. 4761-4766, ISSN 0022-538X. 

Johnston, L.J., Halliday, G.M. & King, N.J.C. (2000) Langerhans cells migrate to local lymph 

nodes following cutaneous infection with an arbovirus. J Invest Dermatol, 114, 3, pp. 

560-568, ISSN 0022-202X. 

www.intechopen.com



  
Flavivirus Encephalitis 

 

46

Jordan, I., Briese, T., Fischer, N., Lau, J.Y. & Lipkin, W.I. (2000) Ribavirin inhibits West Nile 

virus replication and cytopathic effect in neural cells. J Infect Dis, 182, 4, pp. 1214-

1217, ISSN 0022-1899. 

Kelley, T.W., Prayson, R.A., Ruiz, A.I., Isada, C.M. & Gordon, S.M. (2003) The 

neuropathology of West Nile virus meningoencephalitis. A report of two cases 

and review of the literature. Am J Clin Pathol, 119, 5, pp. 749-753, ISSN 0002-

9173. 

Kesson, A.M. & King, N.J.C. (2001) Transcriptional regulation of major histocompatibility 

complex class I by flavivirus West Nile is dependent on NF-kappaB activation. J 

Infect Dis, 184, 8, pp. 947-954, ISSN 0022-1899. 

King, N.J.C., Davison, A., Getts, D.R., Lu, D.P., Getts, M.T., Yeung, A., Peterson, J.K. & 

Kesson, A.M. (2009) Enhanced antigen processing or immune evasion? West Nile 

virus and the induction of immune recognition molecules. In: West Nile Encephalitis 

Virus Infection: Viral Pathogenesis and the Host Immune Response Diamond, M.S. (Ed.) 

pp. 309-339, Springer, sbn 978-0-387-79839-4, New York. 

King, N.J.C., Getts, D.R., Getts, M.T., Rana, S., Shrestha, B. & Kesson, A.M. (2007) 

Immunopathology of flavivirus infections. Immunol Cell Biol, 85, 1, pp. 33-42, ISSN 

0818-9641. 

King, N.J.C. & Kesson, A.M. (1988) Interferon-independent increases in class I major 

histocompatibility complex antigen expression follow flavivirus infection. J Gen 

Virol, 69 ( Pt 10), pp. 2535-2543, ISSN 0022-1317. 

King, N.J.C. & Kesson, A.M. (2003) Interaction of flaviviruses with cells of the vertebrate 

host and decoy of the immune response. Immunol Cell Biol, 81, 3, pp. 207-216, ISSN 

0818-9641. 

King, N.J.C., Shrestha, B. & Kesson, A.M. (2003) Immune modulation by flaviviruses. In: The 

Flaviviruses: Pathogenesis and Immunity. Monath, T. & Chambers, T. (Eds.) pp. 121-

155, Elsevier Academic Press, sbn 0-12-039860-5. 

Kissenpfennig, A., Henri, S., Dubois, B., Laplace-Builhé, C., Perrin, P., Romani, N., Tripp, 

C.H., Douillard, P., Leserman, L., Kaiserlian, D., Saeland, S., Davoust, J. & Malissen, 

B. (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells 

colonize lymph node areas distinct from slower migrating Langerhans cells. 

Immunity, 22, 5, pp. 643-654, ISSN 1074-7613. 

Klein, R.S., Lin, E., Zhang, B., Luster, A.D., Tollett, J., Samuel, M.A., Engle, M. & Diamond, 

M.S. (2005) Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West 

Nile virus encephalitis. J Virol, 79, 17, pp. 11457-11466, ISSN 0022-538X. 

Kong, K.F., Delroux, K., Wang, X., Qian, F., Arjona, A., Malawista, S.E., Fikrig, E. & 

Montgomery, R.R. (2008) Dysregulation of TLR3 impairs the innate immune 

response to West Nile virus in the elderly. J Virol, 82, 15, pp. 7613-7623, ISSN 1098-

5514. 

Kortekaas, J., Ergonul, O. & Moormann, R.J. (2010) Interventions against West Nile virus, 

Rift Valley fever virus, and Crimean-Congo hemorrhagic fever virus: where are 

we? Vector Borne Zoonotic Dis, 10, 7, pp. 709-718, ISSN 1557-7759. 

Lanciotti, R.S., Roehrig, J.T., Deubel, V., Smith, J., Parker, M., Steele, K., Crise, B., Volpe, 

K.E., Crabtree, M.B., Scherret, J.H., Hall, R.A., Mackenzie, J.S., Cropp, C.B., 

Panigrahy, B., Ostlund, E., Schmitt, B., Malkinson, M., Banet, C., Weissman, J., 

www.intechopen.com



 
The Immunopathogenesis of Neurotropic Flavivirus Infection 

 

47 

Komar, N., Savage, H.M., Stone, W., Mcnamara, T. & Gubler, D.J. (1999) Origin of 

the West Nile virus responsible for an outbreak of encephalitis in the northeastern 

United States. Science, 286, 5448, pp. 2333-2337, ISSN 0036-8075. 

Landsman, L., Varol, C. & Jung, S. (2007) Distinct differentiation potential of blood 

monocyte subsets in the lung. J Immunol, 178, 4, pp. 2000-2007, ISSN 0022-1767. 

Leon, B., Lopez-Bravo, M. & Ardavin, C. (2007) Monocyte-derived dendritic cells formed at 

the infection site control the induction of protective T helper 1 responses against 

Leishmania. Immunity, 26, 4, pp. 519-531, ISSN 1074-7613. 

Leon, B., Martinez Del Hoyo, G., Parrillas, V., Vargas, H.H., Sanchez-Mateos, P., Longo, N., 

Lopez-Bravo, M. & Ardavin, C. (2004) Dendritic cell differentiation potential of 

mouse monocytes: monocytes represent immediate precursors of CD8- and CD8+ 

splenic dendritic cells. Blood, 103, 7, pp. 2668-2676, ISSN 0006-4971. 

Li, L., Barrett, A.D. & Beasley, D.W. (2005) Differential expression of domain III neutralizing 

epitopes on the envelope proteins of West Nile virus strains. Virology, 335, 1, pp. 99-

105, ISSN 0042-6822. 

Lim, J.K., Obara, C.J., Rivollier, A., Pletnev, A.G., Kelsall, B.L. & Murphy, P.M. (2011) 

Chemokine receptor Ccr2 is critical for monocyte accumulation and survival in 

West Nile virus encephalitis. J Immunol, 186, 1, pp. 471-478, ISSN 1550-6606. 

Lindsey, N.P., Hayes, E.B., Staples, J.E. & Fischer, M. (2009) West Nile virus disease in 

children, United States, 1999-2007. Pediatrics, 123, 6, pp. e1084-1089, ISSN 1098-

4275. 

Liu, T.H., Liang, L.C., Wang, C.C., Liu, H.C. & Chen, W.J. (2008) The blood-brain barrier in 

the cerebrum is the initial site for the Japanese encephalitis virus entering the 

central nervous system. J Neurovirol, 14, 6, pp. 514-521, ISSN 1538-2443. 

Liu, X., Yu, Y., Li, M., Liang, G., Wang, H., Jia, L. & Dong, G. (2011) Study on the protective 

efficacy of SA14-14-2 attenuated Japanese encephalitis against different JE virus 

isolates circulating in China. Vaccine, 29, 11, pp. 2127-2130, ISSN 0264-410X. 

Liu, Y., King, N.J.C., Kesson, A.M., Blanden, R.V. & Mullbacher, A. (1989) Flavivirus 

infection up-regulates the expression of class I and class II major histocompatibility 

antigens on and enhances T cell recognition of astrocytes in vitro. J Neuroimmunol, 

21, 2-3, pp. 157-168, ISSN 0165-5728. 

Lobigs, M., Mullbacher, A. & Regner, M. (2003) MHC class I up-regulation by flaviviruses: 

Immune interaction with unknown advantage to host or pathogen. Immunol Cell 

Biol, 81, 3, pp. 217-223, ISSN 0818-9641. 

Maximova, O.A., Faucette, L.J., Ward, J.M., Murphy, B.R. & Pletnev, A.G. (2009) Cellular 

inflammatory response to flaviviruses in the central nervous system of a primate 

host. J Histochem Cytochem, 57, 10, pp. 973-989, ISSN 0022-1554. 

Mcmeniman, C.J., Lane, R.V., Cass, B.N., Fong, A.W.C., Sidhu, M., Wang, Y.-F. & O'neill, 

S.L. (2009) Stable introduction of a life-shortening Wolbachia infection into the 

mosquito Aedes aegypti. Science, 323, 5910, pp. 141-144, ISSN 0036-8075. 

Merad, M., Manz, M.G., Karsunky, H., Wagers, A., Peters, W., Charo, I., Weissman, I.L., 

Cyster, J.G. & Engleman, E.G. (2002) Langerhans cells renew in the skin throughout 

life under steady-state conditions. Nat Immunol, 3, 12, pp. 1135-1141, ISSN 1529-

2908. 

www.intechopen.com



  
Flavivirus Encephalitis 

 

48

Monath, T.P. (2010) Suspected yellow fever vaccine-associated viscerotropic adverse events 

(1973 and 1978), United States. Am J Trop Med Hyg, 82, 5, pp. 919-921, ISSN 0002-

9637. 

Morrey, J.D., Olsen, A.L., Siddharthan, V., Motter, N.E., Wang, H., Taro, B.S., Chen, D., 

Ruffner, D. & Hall, J.O. (2008) Increased blood-brain barrier permeability is not a 

primary determinant for lethality of West Nile virus infection in rodents. J Gen 

Virol, 89, Pt 2, pp. 467-473, ISSN 0022-1317. 

Morrey, J.D., Siddharthan, V., Olsen, A.L., Roper, G.Y., Wang, H., Baldwin, T.J., Koenig, S., 

Johnson, S., Nordstrom, J.L. & Diamond, M.S. (2006) Humanized Monoclonal 

Antibody against West Nile Virus Envelope Protein Administered after Neuronal 

Infection Protects against Lethal Encephalitis in Hamsters J Infect Dis, 194, 9, pp. 

1300-1308, ISSN 0022-1899. 

Morrey, J.D., Siddharthan, V., Olsen, A.L., Wang, H., Julander, J.G., Hall, J.O., Li, H., 

Nordstrom, J.L., Koenig, S., Johnson, S. & Diamond, M.S. (2007) Defining limits of 

treatment with humanized neutralizing monoclonal antibody for West Nile virus 

neurological infection in a hamster model. Antimicrob Agents Chemother, 51, 7, pp. 

2396-2402, ISSN 0066-4804. 

Muller, M., Carter, S.L., Hofer, M.J., Manders, P., Getts, D.R., Getts, M.T., Dreykluft, A., Lu, 

B., Gerard, C., King, N.J.C. & Campbell, I.L. (2007) CXCR3 signaling reduces the 

severity of experimental autoimmune encephalomyelitis by controlling the 

parenchymal distribution of effector and regulatory T cells in the central nervous 

system. J Immunol, 179, 5, pp. 2774-2786, ISSN 0022-1767. 

Oliphant, T., Engle, M., Nybakken, G.E., Doane, C., Johnson, S., Huang, L., Gorlatov, S., 

Mehlhop, E., Marri, A., Chung, K.M., Ebel, G.D., Kramer, L.D., Fremont, D.H. & 

Diamond, M.S. (2005) Development of a humanized monoclonal antibody with 

therapeutic potential against West Nile virus. Nat Med, 11, 5, pp. 522-530, ISSN 

1078-8956. 

Olson, J.K. & Miller, S.D. (2004) Microglia initiate central nervous system innate and 

adaptive immune responses through multiple TLRs. J Immunol, 173, 6, pp. 3916-

3924, ISSN 0022-1767. 

Petzold, A., Groves, M., Leis, A.A., Scaravilli, F. & Stokic, D.S. (2010) Neuronal and glial 

cerebrospinal fluid protein biomarkers are elevated after West Nile virus infection. 

Muscle Nerve, 41, 1, pp. 42-49, ISSN 1097-4598. 

Poidinger, M., Hall, R.A. & Mackenzie, J.S. (1996) Molecular characterization of the Japanese 

encephalitis serocomplex of the flavivirus genus. Virology, 218, 2, pp. 417-421, ISSN 

0042-6822. 

Purtha, W.E., Myers, N., Mitaksov, V., Sitati, E., Connolly, J., Fremont, D.H., Hansen, T.H. & 

Diamond, M.S. (2007) Antigen-specific cytotoxic T lymphocytes protect against 

lethal West Nile virus encephalitis. Eur J Immunol, 37, 7, pp. 1845-1854, ISSN 0014-

2980. 

Rios, M., Zhang, M.J., Grinev, A., Srinivasan, K., Daniel, S., Wood, O., Hewlett, I.K. & 

Dayton, A.I. (2006) Monocytes-macrophages are a potential target in human 

infection with West Nile virus through blood transfusion. Transfusion, 46, 4, pp. 

659-667, ISSN 0041-1132. 

www.intechopen.com



 
The Immunopathogenesis of Neurotropic Flavivirus Infection 

 

49 

Růžek, D., Salát, J., Palus, M., Gritsun, T.S., Gould, E.A., Dykova, I., Skallova, A., Jelinek, J., 

Kopecký, J. & Grubhoffer, L. (2009) CD8+ T-cells mediate immunopathology in 

tick-borne encephalitis. Virology, 384, 1, pp. 1-6, ISSN 1096-0341. 

Růžek, D., Salát, J., Singh, S.K. & Kopecký, J. (2011) Breakdown of the Blood-Brain Barrier 

during Tick-Borne Encephalitis in Mice Is Not Dependent on CD8 T-Cells. PLoS 

ONE, 6, 5, pp. e20472, ISSN: 1932-6203 

Sampson, B.A., Ambrosi, C., Charlot, A., Reiber, K., Veress, J.F. & Armbrustmacher, V. 

(2000) The pathology of human West Nile Virus infection. Hum Pathol, 31, 5, pp. 

527-531, ISSN 0046-8177. 

Samuel, M.A. & Diamond, M.S. (2005) Alpha/beta interferon protects against lethal West 

Nile virus infection by restricting cellular tropism and enhancing neuronal 

survival. J Virol, 79, 21, pp. 13350-13361, ISSN 0022-538X. 

Samuel, M.A. & Diamond, M.S. (2009) West Nile Virus Infection of the Central Nervous 

System. In: West Nile Encephalitis Virus Infection: Viral Pathogenesis and the Host 

Immune Response. Diamond, M.S. (Ed.) pp. 474, Springer, sbn 978-0-387-79839-4, 

New York. 

Samuel, M.A., Wang, H., Siddharthan, V., Morrey, J.D. & Diamond, M.S. (2007) Axonal 

transport mediates West Nile virus entry into the central nervous system and 

induces acute flaccid paralysis. Proc Natl Acad Sci U S A, 104, 43, pp. 17140-17145, 

ISSN 0027-8424. 

Sanchez, M.D., Pierson, T.C., Mcallister, D., Hanna, S.L., Puffer, B.A., Valentine, L.E., 

Murtadha, M.M., Hoxie, J.A. & Doms, R.W. (2005) Characterization of neutralizing 

antibodies to West Nile virus. Virology, 336, 1, pp. 70-82, ISSN 0042-6822. 

Schneider, B.S., Mcgee, C.E., Jordan, J.M., Stevenson, H.L., Soong, L. & Higgs, S. (2007) Prior 

exposure to uninfected mosquitoes enhances mortality in naturally-transmitted 

West Nile virus infection. PLoS One, 2, 11, pp. e1171, ISSN 1932-6203. 

Schneider, B.S., Soong, L., Coffey, L.L., Stevenson, H.L., Mcgee, C.E. & Higgs, S. (2010) 

Aedes aegypti saliva alters leukocyte recruitment and cytokine signaling by 

antigen-presenting cells during West Nile virus infection. PLoS One, 5, 7, pp. 

e11704, ISSN 1932-6203. 

Schoneboom, B.A., Lee, J.S. & Grieder, F.B. (2000) Early expression of IFN-alpha/beta and 

iNOS in the brains of Venezuelan equine encephalitis virus-infected mice. J 

Interferon Cytokine Res, 20, 2, pp. 205-215, ISSN 1079-9907. 

Sejvar, J.J., Haddad, M.B., Tierney, B.C., Campbell, G.L., Marfin, A.A., Van Gerpen, J.A., 

Fleischauer, A., Leis, A.A., Stokic, D.S. & Petersen, L.R. (2003) Neurologic 

manifestations and outcome of West Nile virus infection. JAMA, 290, 4, pp. 511-515, 

ISSN 1538-3598. 

Serbina, N.V. & Pamer, E.G. (2006) Monocyte emigration from bone marrow during 

bacterial infection requires signals mediated by chemokine receptor CCR2. Nat 

Immunol, 7, 3, pp. 311-317, ISSN 1529-2908. 

Shen, J., Devery, J.M. & King, N.J.C. (1995a) Adherence status regulates the primary cellular 

activation responses to the flavivirus West Nile. Immunology, 84, 2, pp. 254-264, 

ISSN 1365-2567. 

Shen, J., Devery, J.M. & King, N.J.C. (1995b) Early induction of interferon-independent 

virus-specific ICAM-1 (CD54) expression by flavivirus in quiescent but not 

www.intechopen.com



  
Flavivirus Encephalitis 

 

50

proliferating fibroblasts--implications for virus-host interactions. Virology, 208, 2, 

pp. 437-449, ISSN 0042-6822. 

Shen, J., T-To, S.S., Schrieber, L. & King, N.J.C. (1997) Early E-selectin, VCAM-1, ICAM-1, 

and late major histocompatibility complex antigen induction on human endothelial 

cells by flavivirus and comodulation of adhesion molecule expression by immune 

cytokines. J Virol, 71, 12, pp. 9323-9332, ISSN 0022-538X. 

Shrestha, B., Gottlieb, D. & Diamond, M.S. (2003) Infection and injury of neurons by West 

Nile encephalitis virus. J Virol, 77, 24, pp. 13203-13213, ISSN 0022-538X. 

Shrestha, B., Zhang, B., Purtha, W.E., Klein, R.S. & Diamond, M.S. (2008) Tumor necrosis 

factor alpha protects against lethal West Nile virus infection by promoting 

trafficking of mononuclear leukocytes into the central nervous system. J Virol, 82, 

18, pp. 8956-8964, ISSN 1098-5514. 

Smith, H.L., Monath, T.P., Pazoles, P., Rothman, A.L., Casey, D.M., Terajima, M., Ennis, 

F.A., Guirakhoo, F. & Green, S. (2010) Development of antigen-specific memory 

CD8+ T cells following live-attenuated chimeric West Nile virus vaccination. J Infect 

Dis, 203, 4, pp. 513-522, ISSN 1537-6613. 

Smithburn, K.C., Hughes, T.P., Burke, A.W. & Paul, J.H. (1940) A Neurotropic virus isolated 

from the blood of a native of Uganda. Am J Trop Med Hyg, 20, pp. 471-492, ISSN 

0002-9637. 

Steele, K.E., Linn, M.J., Schoepp, R.J., Komar, N., Geisbert, T.W., Manduca, R.M., Calle, P.P., 

Raphael, B.L., Clippinger, T.L., Larsen, T., Smith, J., Lanciotti, R.S., Panella, N.A. & 

Mcnamara, T.S. (2000) Pathology of fatal West Nile virus infections in native and 

exotic birds during the 1999 outbreak in New York City, New York. Vet Pathol, 37, 

3, pp. 208-224, ISSN 0300-9858. 

Steinman, R.M. (1991) The dendritic cell system and its role in immunogenicity. Annu Rev 

Immunol, 9, pp. 271-296, ISSN 0732-0582. 

Sunderkotter, C., Nikolic, T., Dillon, M.J., Van Rooijen, N., Stehling, M., Drevets, D.A. & 

Leenen, P.J. (2004) Subpopulations of mouse blood monocytes differ in 

maturation stage and inflammatory response. J Immunol, 172, 7, pp. 4410-4417, 

ISSN 0022-1767. 

Tacke, F. & Randolph, G.J. (2006) Migratory fate and differentiation of blood monocyte 

subsets. Immunobiology, 211, 6-8, pp. 609-618, ISSN 0171-2985. 

Throsby, M., Geuijen, C., Goudsmit, J., Bakker, A.Q., Korimbocus, J., Kramer, R.A., Clijsters-

Van Der Horst, M., De Jong, M., Jongeneelen, M., Thijsse, S., Smit, R., Visser, T.J., 

Bijl, N., Marissen, W.E., Loeb, M., Kelvin, D.J., Preiser, W., Ter Meulen, J. & De 

Kruif, J. (2006) Isolation and characterization of human monoclonal antibodies from 

individuals infected with West Nile Virus. J Virol, 80, 14, pp. 6982-6992, ISSN 0022-

538X. 

Tobler, L.H., Cameron, M.J., Lanteri, M.C., Prince, H.E., Danesh, A., Persad, D., Lanciotti, 

R.S., Norris, P.J., Kelvin, D.J. & Busch, M.P. (2008) Interferon and interferon-

induced chemokine expression is associated with control of acute viremia in West 

Nile virus-infected blood donors. J Infect Dis, 198, 7, pp. 979-983, ISSN 0022-1899. 

Town, T., Bai, F., Wang, T., Kaplan, A.T., Qian, F., Montgomery, R.R., Anderson, J.F., Flavell, 

R.A. & Fikrig, E. (2009) Toll-like receptor 7 mitigates lethal West Nile encephalitis 

www.intechopen.com



 
The Immunopathogenesis of Neurotropic Flavivirus Infection 

 

51 

via interleukin 23-dependent immune cell infiltration and homing. Immunity, 30, 2, 

pp. 242-253, ISSN 1074-7613. 

Tsou, C.L., Peters, W., Si, Y., Slaymaker, S., Aslanian, A.M., Weisberg, S.P., Mack, M. & 

Charo, I.F. (2007) Critical roles for CCR2 and MCP-3 in monocyte mobilization 

from bone marrow and recruitment to inflammatory sites. J Clin Invest, 117, 4, pp. 

902-909, ISSN 0021-9738. 

Vazquez, A., Sanchez-Seco, M.P., Ruiz, S., Molero, F., Hernandez, L., Moreno, J., Magallanes, 

A., Tejedor, C.G. & Tenorio, A. (2010) Putative new lineage of West Nile virus, 

Spain. Emerg Infect Dis, 16, 3, pp. 549-552, ISSN 1080-6059. 

Venter, M., Human, S., Zaayman, D., Gerdes, G.H., Williams, J., Steyl, J., Leman, P.A., 

Paweska, J.T., Setzkorn, H., Rous, G., Murray, S., Parker, R., Donnellan, C. & 

Swanepoel, R. (2009) Lineage 2 west nile virus as cause of fatal neurologic disease 

in horses, South Africa. Emerg Infect Dis, 15, 6, pp. 877-884, ISSN 1080-6059. 

Verma, S., Kumar, M., Gurjav, U., Lum, S. & Nerurkar, V.R. (2010) Reversal of West Nile 

virus-induced blood-brain barrier disruption and tight junction proteins 

degradation by matrix metalloproteinases inhibitor. Virology, 397, 1, pp. 130-138, 

ISSN 1096-0341. 

Verma, S., Lo, Y., Chapagain, M., Lum, S., Kumar, M., Gurjav, U., Luo, H., Nakatsuka, A. & 

Nerurkar, V.R. (2009) West Nile virus infection modulates human brain 

microvascular endothelial cells tight junction proteins and cell adhesion molecules: 

Transmigration across the in vitro blood-brain barrier. Virology, 385, 2, pp. 425-433, 

ISSN 1096-0341. 

Vogt, M.R., Moesker, B., Goudsmit, J., Jongeneelen, M., Austin, S.K., Oliphant, T., Nelson, S., 

Pierson, T.C., Wilschut, J., Throsby, M. & Diamond, M.S. (2009) Human monoclonal 

antibodies against West Nile virus induced by natural infection neutralize at a 

postattachment step. J Virol, 83, 13, pp. 6494-6507, ISSN 1098-5514. 

Wacher, C., Muller, M., Hofer, M.J., Getts, D.R., Zabaras, R., Ousman, S.S., Terenzi, F., Sen, 

G.C., King, N.J.C. & Campbell, I.L. (2007) Coordinated regulation and widespread 

cellular expression of interferon-stimulated genes (ISG) ISG-49, ISG-54, and ISG-56 

in the central nervous system after infection with distinct viruses. J Virol, 81, 2, pp. 

860-871, ISSN 0022-538X. 

Wang, T., Town, T., Alexopoulou, L., Anderson, J.F., Fikrig, E. & Flavell, R.A. (2004) Toll-like 

receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. 

Nat Med, 10, 12, pp. 1366-1373, ISSN 1078-8956. 

Wang, Y., Lobigs, M., Lee, E., Koskinen, A. & Mullbacher, A. (2006) CD8(+) T cell-mediated 

immune responses in West Nile virus (Sarafend strain) encephalitis are 

independent of gamma interferon. J Gen Virol, 87, Pt 12, pp. 3599-3609, ISSN 0022-

1317. 

Wang, Y., Lobigs, M., Lee, E. & Mullbacher, A. (2003) CD8+ T cells mediate recovery and 

immunopathology in West Nile virus encephalitis. J Virol, 77, 24, pp. 13323-13334, 

ISSN 0022-538X. 

Weiss, D., Carr, D., Kellachan, J., Tan, C., Phillips, M., Bresnitz, E. & Layton, M. (2001) 

Clinical findings of West Nile virus infection in hospitalized patients, New York 

and New Jersey, 2000. Emerg Infect Dis, 7, 4, pp. 654-658, ISSN 1080-6059. 

www.intechopen.com



  
Flavivirus Encephalitis 

 

52

Xiao, S.Y., Guzman, H., Zhang, H., Travassos Da Rosa, A.P. & Tesh, R.B. (2001) West Nile 

virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile 

encephalitis. Emerg Infect Dis, 7, 4, pp. 714-721, ISSN 1080-6059. 

Yen, Y.T., Chen, H.C., Lin, Y.D., Shieh, C.C. & Wu-Hsieh, B.A. (2008) Enhancement by 

tumor necrosis factor alpha of dengue virus-induced endothelial cell production of 

reactive nitrogen and oxygen species is key to hemorrhage development. J Virol, 82, 

24, pp. 12312-12324, ISSN 1098-5514. 

Zhang, B., Chan, Y.K., Lu, B., Diamond, M.S. & Klein, R.S. (2008) CXCR3 mediates region-

specific antiviral T cell trafficking within the central nervous system during West 

Nile virus encephalitis. J Immunol, 180, 4, pp. 2641-2649, ISSN 0022-1767. 

Zhang, M., Daniel, S., Huang, Y., Chancey, C., Huang, Q., Lei, Y.F., Grinev, A., 

Mostowski, H., Rios, M. & Dayton, A. (2010) Anti-West Nile virus activity of in 

vitro expanded human primary natural killer cells. BMC Immunol, 11, pp. 3, ISSN 

1471-2172. 

Zhang, S., Vogt, M.R., Oliphant, T., Engle, M., Bovshik, E.I., Diamond, M.S. & Beasley, D.W. 

(2009) Development of resistance to passive therapy with a potently neutralizing 

humanized monoclonal antibody against West Nile virus. J Infect Dis, 200, 2, pp. 

202-205, ISSN 0022-1899. 

www.intechopen.com



Flavivirus Encephalitis

Edited by Dr. Daniel Ruzek

ISBN 978-953-307-669-0

Hard cover, 478 pages

Publisher InTech

Published online 30, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri 

Slavka Krautzeka 83/A 

51000 Rijeka, Croatia 

Phone: +385 (51) 770 447 

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai 

No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 

Fax: +86-21-62489821

Encephalitis is an inflammation of the brain tissue associated with clinical evidence of brain dysfunction. The

disease is of high public health importance worldwide due to its high morbidity and mortality. Flaviviruses, such

as tick-borne encephalitis virus, Japanese encephalitis virus, Murray Valley encephalitis virus, or St. Louis

encephalitis virus, represent important causative agents of encephalitis in humans in various parts of the

world. The book Flavivirus Encephalitis provides the most recent information about selected aspects

associated with encephalitic flaviviruses. The book contains chapters that cover a wide spectrum of subjects

including flavivirus biology, virus-host interactions, role of vectors in disease epidemiology, neurological

dengue, and West Nile encephalitis. Special attention is paid to tick-borne encephalitis and Japanese

encephalitis viruses. The book uniquely combines up-to-date reviews with cutting-edge original research data,

and provides a condensed source of information for clinicians, virologists, pathologists, immunologists, as well

as for students of medicine or life sciences.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

King NJC, van Vreden C, Terry RL, Getts DR, Yeung AWS, Teague-Getts M, Davison AM, Deffrasnes C. and

Munoz-Erazo L. (2011). The Immunopathogenesis of Neurotropic Flavivirus Infection, Flavivirus Encephalitis,

Dr. Daniel Ruzek (Ed.), ISBN: 978-953-307-669-0, InTech, Available from:

http://www.intechopen.com/books/flavivirus-encephalitis/the-immunopathogenesis-of-neurotropic-flavivirus-

infection



© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.


