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1. Introduction 

Gliomas are the most common primary neoplasm of the brain, and their treatment presents a 
number of challenging diagnostic and therapeutic problems for neuro-oncologists. The 
outcomes for patients with glioma can be quite variable, and there is no consensus regarding 
the best treatment. To this point, the most widely accepted treatment has been surgical 
excision, followed by radiotherapy and chemotherapy. Gliomas, however, tend to be diffuse, 
with ill-defined borders, particularly in grade II and a part of grade III tumors, making them 
difficult to distinguish from normal or edematous brain tissue during the excision. The 
percentage of gliomas that are completely removed through surgical intervention is 
disappointingly now, and this generally leads to a poor prognosis. However, cases where the 
glioma has been completely removed show a significant improvement in long-term prognosis 
compared to cases where the glioma was only partially removed. Although complete excision 
might be an unrealistic goal at this time, these findings suggest that even just increasing the 
amount of tumor excised has potential prolonging patient survival.  
In glioma surgery, precise histological diagnosis during the initial operation is crucial since 
treatment strategies and prognosis can differ greatly depending on the histological grade. 
Gliomas diffusely infiltrate neighboring brain structures and are characterized by regional 
variations of histological malignancy [1]. Therefore, detection of the highly malignant region 
and delineation of the extent of the tumor are critical during preoperative evaluation.  
Recently, positron emission tomography (PET) has been used for evaluation of glioma 
metabolism. The representative radiolabeled tracers are 18F-fluorodeoxyglucose (FDG) and 
11C-methionine (MET). Methionine is an endogenous, essential amino acid and enters 
tumor cells via the L-amino acid transporter to meet the demands of accelerated protein and 
RNA synthesis. MET is widely used because less of the amino acid tracer is taken up by 
healthy brain tissue, which results in greater contrast between tumor and normal brain 
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tissue than what can be seen with FDG PET [2]. MET PET has been reported to delineate 
both benign and malignant gliomas more accurately than computed tomography (CT) or 
magnetic resonance imaging (MRI) [3, 4], and has been used in the diagnosis and follow-up 
of glioma patients [5-6]. On the other hand, malignant tumors are well known to have 
higher rates of glucose utilization and glycolysis, which would argue for the use of FDG 
PET. Several reports have demonstrated that FDG uptake in gliomas is highly correlated 
with the degree of malignancy [7-12]. FDG PET is ill-suited for the detection of gliomas, 
however, because the rate of glucose utilization of normal brain cortex is relatively high [13-
15], so that when a hypermetabolic lesion is near the cortical or subcortical gray matter, it is 
often difficult to differentiate between tumor and normal tissue [16]. In addition, FDG 
uptake is known to be non-specific: high FDG accumulation has been observed in 
inflammatory cells and granulation tissue as well as in viable cancer cells [17-18].  
Neuronavigation can precisely locate intracranial lesions and track these targets 
dynamically, facilitating a more complete removal of the tumor. A comprehensive survey 
showed neuronavigation-guided surgery of 52 primary glioblastomas achieved complete 
tumor resection in 31% of cases, versus 19% in a series of conventional operations [19]. 
These data demonstrate that neuronavigation can increase resection of glioblastoma without 
prolonging operating time, and increase survival time. However, computed tomography 
(CT) and magnetic resonance (MR) imaging cannot show the border of glioma accurately 
because of the tumor biological characteristics. PET shows the metabolic characteristics of 
tissue, which has a unique advantage in the operation of glioma using neuronavigation.  

2. Method and clinical data  

2.1 Patients 
From May 2004 to May 2010, a total of 71 patients with gliomas received PET/CT with FDG 
and MET. There were 44 males and 27 females, all between the ages of 6 to 72 years old 
(mean 41.7±17.2). The most common presenting symptoms included headache, nausea, 

vomiting, seizures, hemiparesis/aphasis, and cognitive dysfunction, etc. All patients were 
treated surgically, and diagnosis was confirmed  by pathology. 

2.2 MRI and CT 
All patients underwent brain CT, plain MRI, and enhanced MRI scans. 
MRI studies were performed using a 1.5-tesla MRI system (1.5T Signa Twin-speed, infinity 
with Excite I; GE Medical Systems, Milwaukee, Wisconsin, U.S.A.), or a 3.0-tesla MRI system 
(Signa Excite HD 3.0T; GE Medical Systems) within 1 month before PET/CT imaging. The 
conventional imaging protocol consisted of fluid-attenuated inversion recovery sequence 
T1-weighted imaging (repetition time [TR] 2025 msec, echo time [TE] 8.4 msec, inversion 
time 750 msec, slice thickness 6.0 mm, slice gap 1.5 mm, field of view 24x18 cm, matrix 
320x224, number of excitations [NEX] 2), fast-recovery fast spin-echo sequence T2-weighted 
imaging (TR 4000 msec, TE 110 msec, slice thickness 3.0 mm, no slice gap, field of view 
24x24 cm, matrix 512x512, NEX 2), spin-echo echo-planar imaging sequence diffusion-
weighted imaging (TR 10,000 msec, TE 80.1 msec, slice thickness 3.0 mm, no slice gap 1.5 
mm, field of view 24x24 cm, matrix 128x128, NEX 1), and spin-echo sequence T1-weighted 
imaging (TR 500 msec, TE 8.4 msec, flip angle 75, slice thickness 3.0 mm, no slice gap, field 
of view 24x24 cm, matrix 256x150, NEX 1) 2 minutes after injection of gadolinium-
diethylenetriaminepenta-acetic acid (0.1 mmol/kg). We used non-contrast-enhanced 
transaxial T1-weighted images (T1WI) and T2-weighted images (T2WI) for image fusion. 
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2.3 PET/CT  
18F-fluorodeoxyglucose (FDG) and 11C-methionine (MET) were produced in a MINItrace 

cyclotron, with TRACERlab MXFDG and TRACERlab FXc synthesizer (GE Medical Systems, 

Milwaukee, Wisconsin, U.S.A.). PET/CT was performed using a Discovery LS PET/CT unit 

(GE Medical Systems, Milwaukee, Wisconsin, U.S.A.). Patients fasted for at least 6 hours 

prior to the PET/CT examination. A dose of 222-370 MBq (6-10 mCi) FDG and/or 555-740 

MBq (15-20 mCi) MET was injected intravenously within 1 minute. Static emission scanning 

was performed at least 40 minutes after FDG injection or at least 20 minutes after MET 

injection. PET was performed in three-dimensional (3D) mode (field of view 15 cm, slice 

thickness 5.0 mm, slice gap 4.25 mm, matrix 128x128). The lamellar CT protocol was slice 

thickness 2.5 mm, slice gap 0, and matrix 512x512. Six reference markers were fixed to the 

scalp around the tumor before the PET/CT investigation. 

2.4 PET\CT diagnosis 
Visual analysis: PET/CT scans of the glimoa were referenced to MRI images of the 

lesion, and the uptake of imaging reagents was classified. Uptake lower than or close to 

white matter uptake was defined as low metabolism; uptake higher than white matter 

uptake but significantly lower than gray matter uptake was defined as moderate 

metabolism; and uptake near, equal to or higher than gray matter uptake was defined as 

high metabolism. In addition to reagent concentration within the lesion, the analysis also 

included reagent distribution, lesion shape, uniform or not and whether the boundary 

clearly.  

Semi-quantitative analysis: the center region with highest reagent concentration was 

marked, avoiding necrotic cystic areas, to outline regions of interest (ROI). Tumor standard 

uptake values (SUV) were derived, and the ratios of the tumor-to-contralateral white matter 

(T/WM) and tumor-to-contralateral gray cortex (T/GM) were calculated. 

2.5 PET-assisted neuronavigation glioma surgery 
Intraoperative neuronavigation was performed using a VectorVision®2 system (Brain LAB 

AG, Heimstetten, Germany). PET, CT, and MRI data were input into the project graphic 

workstation, the markers were identified, and the 3D images were rebuilt. The 3D PET 

image was then coregistered automatically with the 3D MRI or CT image using the 

registration program of the project system, and the fused image adjusted manually.  

Patients were anesthetized, and their heads were fixed in a Mayfield head frame. The 

operative project data were input into the neuronavigation workstation, and the markers 

were registered with an error of ±1.5 mm. The tumor resection was then carried out, 

directed by the neuronavigation system. The extent of the operative target was confirmed 

using the neuronavigation system. 

3. Pathologic examination 

3.1 HE staining 
Sections taken from each operation specimen were fixed with formalin, embedded in 

paraffin, and stained with hematoxylin and eosin. The histological diagnosis was 

determined by an experienced neuropathologist according to the WHO classification of 

tumors of the central nervous system. 
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3.2 Ki-67 LI 
Proliferative activity was measured by obtaining the Ki-67 proliferation index by 
histochemical staining of pathological specimens. Paraffin-embedded tumor specimens 
were recut into 3–4 μm serial sections. Immunohistochemical staining was carried out on 

sections using monoclonal murine antibody MIB-1, an antibody to Ki-67 (1/100 dilution; 
DAKO Corp.). MIB-1 recognizes the Ki-67 antigen, a 345- and 395-kDa nuclear protein 
common to proliferating human cells (21). Sections were then incubated in secondary 
antibody for 30 min at 25°C, incubated with streptavidin peroxidase, and then washed in 
phosphate-buffered saline. 3,3-Diaminobenzidine tetrahydrochloride was used as a 
substitute substrate-chromogen solution, and sections were counterstained with Meyer’s 
haematoxylin. For negative controls, tissue sections were incubated with mouse IgG instead 
of anti-Ki-67 nuclear antigen antibody. After cell staining, fields were selected randomly for 
cell counting. Serial sections were reviewed by an experienced neuropathologist. A 
minimum of 1,000 cells were counted per tissue section. All cells with nuclei staining of any 
intensity were defined as positive. The Ki-67 score (%) (Ki-67 LI) was defined as the 
percentage of cells that stained positively for Ki-67 nuclear antigen. The proliferative activity 
score, quantified as the percentage of MIB-1 stained nuclei per total nuclei in the sample, 
was estimated from a representative slide selected by the neuropathologist. 

4. Results 

4.1 Patient and tumor characteristics 
12 cases had resections guided by PET-neuronavigation, including 2 cases of fibrous 
astrocytoma, 2 cases of mixed oligodendro –astrocytoma, 3 cases of anaplastic astrocytoma, 
1 case of anaplastic oligodendroglioma, 1 case of anaplastic oligodendro –astrocytoma and  
3 cases of glioblastoma. For heterogeneous areas of MET and FDG metabolism, specimens 
from the hot spots of MET and FDG uptake were resected separately with navigation, and 
sent to pathology.  

4.2 PET visual analysis 

FDG PET examination: 38 of the patients in the study had high-grade gliomas (grade D, or E). 
Visual analysis revealed high metabolic lesions with clear boundary in 36 of the 38 cases. FDG 
distribution within the lesion area was uneven; cystic and necrotic areas were defect for reagent, 
and the edematous area around the tumor showed reduced metabolism. In the remaining 3 
high-grade cases (1 medulloblastoma and 2 anaplastic astrocytomas) visual analysis revealed 
moderate metabolism. 33 of the patients in the study had low-grade gliomas (grade I, or II). In 
31 of the 33 cases, visual analysis revealed either moderate or low metabolic lesions, and FDG 
distribution was relatively homogeneous. However, when the tumor was located within the 
gray/white matter junction, the high metabolism of surrounding normal gray matter often 
made it difficult to distinguish the lesion boundaries. The remaining 2 low-grade cases (both 
oligodendrogliomas) displayed high metabolism. FDG PET visualization results were 
concordant with pathological grading in 66 of the 71 cases (coincidence rate= 93%).  
MET PET examination: Visual analysis revealed high metabolism in 66 of the 71 cases. Visual 
analysis of the remaining 5 cases (all grade II fibrous astrocytomas) revealed low metabolism. 
However, compared with FDG, MET uptake in normal brain tissue has very low background, 
which can provide a better contrast to scope the tumor border, and helpful to detect the low-
grade glioma. In some cases, FDG and MET were inconsistent at the concentrated area. 
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Characteristic No. of cases 

Age (yrs)  

6-72 (average 41.7±17.2) 71 

Sex  

Female 44 

Male 27 

WHO classification  

Grade I 8 

pilocytic astrocytoma 3 

dysembryoplastic neuroepithelial tumor 3 

subependymal giant cellular astrocytoma 1 

ganglion cellular glioma 1 

Grade  II 25 

Astrocytoma 12 

Oligodendroglioma 5 

Oligodendro - astrocytoma 8 

Grade III 21 

Anaplastic astrocytoma 14 

Anaplastic oligodendroglioma 3 

Anaplastic oligoastrocytoma 4 

Grade IV 17 

Glioblastoma 14 

medulloblastoma 2 

PNET 1 

Table 1. Patients and tumor characteristics 

4.3 PET semi-quantitative analysis and Ki-67 LI  
PET semi-quantitative analysis: the centre region with highest reagent concentration was 

marked, avoiding necrotic cystic area, to outline regions of interest (ROI), derived tumor 

standard uptake value (SUV); then calculate the ratios of the tumor / contralateral white 
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matter (T / WM) and tumor / contralateral gray cortex (T / GM). PET semi-quantitative 

indicators and Ki-67 LI results were shown in Table 2. Analysis of variance (One-Way 

ANOVA) for FDG: the results showed statistically significant differences between groups 

(FSUV = 9.371, FT/WM = 9.907, FT/GM = 17.867, both P <0.01), between low-grade (grade I 

and II) gliomas and high-grade (grade III and IV) (P <0.01), between III and IV grade 

(T/GM FDG, P = II 0.029). However, various indicators did not show manifest difference 

between grade I and (P> 0.05). MET results displayed only T/GM MET in statistically 

significant difference between groups (FT/GM = 3.026, P = 0.048), and between II and IV 

grade (P = 0.011). The remaining indicators were no significant differences (P> 0.05).  

Correlation analysis showed that: FDG and MET PET in three semi-quantitative indexes 

were positively correlated, SUV, T/WM and T/GM of the correlation coefficient r values 

were 0.608, 0.708, and 0.716 (all P <0.001) . T/GM FDG and T/GM MET was positively 

correlated with Ki-67 LI, r were 0.610, 0.729 (all P <0.001). 

 

Tumor 

Grade 
n SUVFDG T/WMFDG T/GMFDG SUVMET T/WMMET T/GMMET Ki-67 LI 

WHO I 8 4.38±4.36 1.43±0.54 0.45±0.14 3.94±1.57 4.18±1.6 1.98±0.93 2.95±0.75 

WHO II 25 5.02±2.68 1.57±0.62 0.58±0.21 3.58±3.29 4.13±2.28 1.91±1.07 5.35±3.98 

WHO 

III 
21 11.69±7.77 2.84±0.81 1.11±0.47 5.11±2.42 5.29±3.12 2.84±1.24 10.41±7.70 

WHO 

IV 
17 13.59±4.80 3.86±1.76 1.54±0.47 5.39±2.11 6.29±1.5 3.51±1.2 25.35±1.82 

Table 2. PET semi-quantitative index and Ki-67 LI. 

4.4 PET and CT, MRI  
For the typical grade IV glioblastoma, MRI showed the mass as hypointense on the T1-
weighted images, and hyperintense on the T2-weighted images, with irregular ring 
enhancement accompanied by necrosis or cystic tissue. But in three of the glioblastoma 
cases, CT and MRI scans revealed the tumor located in the corticomedullary junction area, 
invading the cortex, with some slightly enhanced spots in the lesion, and peripheral edema 
surrounding the tumor with no clear boundary. FDG and MET PET showed irregular areas 
of high concentration with clear borders (especially MET). The most concentrated area of 
distribution inconsistent between FDG and MET in some cases, but the tumor boundary was 
roughly same. Under the guidance of neuronavigation, tumor samples were taken at the 
most concentrated FDG and MET areas respectively (Fig. 1). Pathological findings revealed: 
tumor cells densely located at the MET concentrated area with obvious atypical nuclei and 
highly proliferative vascular endothelial cell, as the typical glioblastoma grade IV character. 
Patholodical findings for the FDG area revealed less tightly packed cells, with no obvious 
vascular endothelial cell proliferation, which was the junction between tumor and normal 
brain tissue (Fig. 2-4).  

www.intechopen.com



Preoperative Estimation and Resection of Gliomas Using  
Positron Emission Tomography/Computed Tomography Neuronavigation 

 

185 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

Fig. 1. A 55-year-old man with a diffuse lesion in the right frontal lobe. A-C: T1-weighted 

(A) and T2-weighted (B) magnetic resonance (MR) images, and T1-weighted MR image with 

contrast medium (C), showing a mass in the right frontal lobe with unclear margin as 

slightly hypointense on the T1- weighted and hyperintense on the T2-weighted images, with 

some slightly enhanced spots in the lesion. D: Computed tomography scan, showing the 

lesion as equal or slightly increased density, with an unclear border, in and below the right 

frontal lobe cortex. E: 11C-methionine positron emission tomography (PET) scan, showing 

an irregular area of high uptake with a clear border in the right frontal lobe. The area of 

highest MET uptake was in the posterior part of the lesion. F: 18F-fluorodeoxyglucose PET 

scan, showing an irregular area of high uptake which was relatively well defined in the 

frontal lobe. The highest FDG uptake area was in front of the MET hot area. 
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Fig. 2. Positron emission tomography (PET) neuronavigation system monitoring images 
captured during the operation.  A: 18F-fluorodeoxyglucose PET scan; B, C: CT scans; D: 11C-
methionine PET scan. CT provided the anatomic background. PET provided more distinct 
information of the tumor. 
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Fig. 3. Photomicrograph of the specimen resected from the hot spot demonstrated by 11C-

methionine positron emission tomography showing glioblastoma, World Health 

Organization grade 4. Nucleus deformation, and cell and vessel proliferation were 

prominent. Hematoxylin and eosin stain, x100. 

 

 
 

Fig. 4. Photomicrograph of the specimen resected from the hot spot demonstrated by 

[18F]fluorodeoxyglucose positron emission tomography showing the margin of the tumor. 

Nucleus deformation, and cell and vessel proliferation were similar to that of astrocytoma 

grade II. Hematoxylin and eosin stain, x100. 
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For gliomas grade II and III, MRI showed the tumor as an irregular hypointensity or an 
irregular hyperintensity surrounded by edema with ill-defined boundaries on the T1-
weighted and T2-weighted images respectively. The lesion displayed mild enhancement or 
no enhancement. PET imaging, especially, MET distribution was more helpful in illustrating 
the tumor boundaries. Oligodendrogliomas and Oligodendroastrocytoma in particular 
showed the high MET concentrations (Figure 5). 
 

 

Fig. 5. A 65-year-old man with a diffuse lesion in the right frontal lobe. A-C: T1-weighted 

magnetic resonance images (A, B), and with contrast medium (C), showing a mass with 

unclear margins in the right frontal lobe, appearing as slightly hypointense on the T1- 

weighted and hyperintense on the T2-weighted images without obvious enhancement. D, E: 

Computed tomography scan (D) and with contrast medium (E) , showing the irregular 

lesion as uniform density with an unclear border and slight enhancement deep within the 

right frontal lobe cortex. F: 11C-methionine positron emission tomography scan, showing an 

irregular high uptake area in and below the right frontal lobe cortex with a clear margin. 

4.5 PET neuronavigation surgery  
In 4 cases of grade II gliomas, visual inspection of the surface of the brain was normal except 
for some localized slight gyral broadening, such that tumor location could not be 
determined by gross visualization. Tumor boundaries could not be clearly determined with 
CT and MRI scans. PET scans (especially MET), however, allowed for satisfactory 
delineation of the tumor boundaries. Because of this, the resections were performed using 
MET PET/CT neuronavigation. During the resection, the tumor tissue appeared 
approximately normal in color, with a slightly tenacious texture, and moderate bleeding. 
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After complete resection, the cross section and periphery of the tumor were checked. The 
cut surface appeared much like normal brain, with no necrosis or capsule (Figure 6).  
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 

Fig. 6. Positron emission tomography (PET) neuronavigation system monitoring images 

captured during the operation.  A 56-year-old woman with a diffuse lesion in the right 

frontoparital lobe. The pathological diagnosis of the tumor is Oligodendroglioma. 

www.intechopen.com



 
Management of CNS Tumors 

 

190 

Grade III and IV gliomas were characterized by abnormal color, texture and blood supply, 
and were all resected under the guidance of PET-assisted navigation. The specimens taken 
from different tracer concentrated areas were sent to pathology. Postoperative imaging 
demonstrated complete resection of the suspected tumor area (Figure 4).  

5. Discussion 

5.1 The value of PET assessment for preoperative glioma 
In 1982, Di Chiro confirmed by FDG PET that a tumor’s malignancy level is closely 
related to the tissue’s glucose utilization [20]. FDG PET is widely utilized to detect 
malignant tumors. Increased glucose uptake is usually associated with higher 
malignancy and aggressiveness. In glimoas, due to high uptake in cortex and basal 
ganglia, and low uptake in white matter, FDG uptake showed a close relationship with 
histological grade or prognosis [7-12]. Patronas et al. reported that FDG uptake is a more 
accurate reflection of tumor grade than contrast enhancement [21], and Goldman et al. 
[10] proved that FDG uptake in gliomas correlated regionally with presence of anaplasia 
by means of FDG PET-guided stereotactic biopsy. Although FDG PET is the gold-
standard detection tool for regional malignancy in gliomas, it is not perfect. In terms of 
delineating tumor boundaries precisely, FDG PET is obviously inferior to MET PET [2]. 
MET increased uptake in tumor mainly reflects the increase in amino acid trafficking 
activity, and indirectly represents the increase in protein synthesis. MET, however, 
proved better than FDG in distinguishing tumor boundaries, as the lower uptake in 
normal brain tissue allows for better contrast between normal and tumor tissue. In 
addition, fusion of MET with MRI or CT images allowed for better detection of low-
grade tumors close to the cortex, smaller tumors, and tumor boundaries. Therefore, 
combined use of FDG and MET is reasonable in detecting regional malignancy and in 
delineating the extent of viable tumor tissue for preoperative evaluation of glioma 
surgery [22-24]. This study also found that the most concentrated area for each tracer 
was sometimes inconsistent in the high-grade gliomas. Comparison with pathology 
reports showed that MET uptake in tumor cells was more specific. [25] 
Metabolic characteristics of different types of gliomas were diverse. Our and other studies 
found that oligodendrogliomas and oligodendroastrocytoma displayed high uptake of both 
MET and FDG. Oligodendrogliomas showed particularly high uptake, with MET uptake 
close to the level seen in anaplastic astrocytomas, and pathologically the tumor cells were 
highly condensed. Previous studies have demonstrated that pilocytic astrocytomas may 
have higher FDG and MET uptake [26]. In our study, 2 cases of pilocytic astrocytoma 
showed high metabolism of MET, even higher than that seen in grade II astrocytomas, but 
low FDG metabolism, histopathology revealed extensive capillaries. One case of 
subependymal giant cell astrocytoma with tuberous sclerosis showed moderate FDG 
uptake, and significantly elevated MET uptake, close to levels seen in glioblastomas. 
Pathology on this case revealed large tumor cells surrounded by a large number of 
expanded blood vessels. Therefore, the MET uptake of gliomas (especially low-grade 
gliomas) may be dependent not only on proliferative activities but also on other factors such 
as cerebral blood volume [27], amount of microvessels [18, 28], and cell density [29]. 
SUV is the most common semi-quantitative indicator, but it may be affected by many 

factors, such as age, blood glucose level, and medication. As such, it may not be well suited 

as a means for comparison across repeated examinations, and amongst different individuals. 
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Using the uptake ratios between the lesion and normal tissue can overcome the 

shortcomings. Our results show that the T/GM is of the best indicator for grading gliomas, 

and that FDG is better than MET in estimating a tumor’s pathological character. 

Recent studies have confirmed that MET uptake is closely related to the proliferation of 

brain tumors. During the early exponential growth phase, tumor cells can show a high 

degree of MET concentration. Whereas at the plateau phase MET uptake is much lower. So 

the level of MET uptake could be regarded as a sign of tumor cell proliferation, but it is 

controversial whether FDG uptake is related to cell proliferation. Our study demonstrated 

that uptake levels of FDG and MET in gliomas were associated with Ki-67 LI. Ki-67 LI which 

revealed the tumor proliferation was a prognostic indicator for cancer patients, and PET 

which revealed the tumor metabolic activity can also help evaluate the tumor proliferation 

and prognosis [30-32] . 

5.2 PET comparing with MRI and CT 
MRI and CT can display the brain organization structure clearly, and as such these are the 

main non-surgical methods used to initially diagnose gliomas. Currently MRI is the first 

choice for diagnosing tumor pathological grade and for determining the location and extent 

of the tumor. The malignant part of tumor is most often located in or near the area of blood-

brain barrier breakdown, in which case it would appear as an area of enhancement on an 

MRI with medium contrast. However, T1- and T2-weighted MRI are often insufficient to 

definitively determine the relationship between tumor and normal or edematous tissue. This 

is the case with many grade II gliomas, and sometimes is seen even in grade III and IV 

gliomas. Furthermore, if the tumor is not located near the blood-brain barrier breakdown or 

the barrier has not broken down, it is near impossible to distinguish between healthy and 

tumor tissue, nor can the regional heterogeneity of the tumor be shown. Clinical studies 

have shown that gliomas often extend beyond the contrast-enhanced margin and that 

approximately 80% of tumor relapses occur within a 2-cm margin around the original 

enhanced lesion [33]. Therefore, neuronavigation using only MR imaging cannot be relied 

upon to outline the target completely. 

In addition to CT and MR imaging, metabolic imaging with PET has been considered. PET 

can be used to estimate the grade and malignancy of the glioma before operation, evaluate 

the prognosis and the outcome of radiotherapy and chemotherapy, and show the tumor 

extent and heterogeneity [30, 34]. Clinical studies using radiolabeled amino acid PET, such 

as MET, have demonstrated superior delineation of the glioma mass compared with MRI. 

The use of PET over MRI allowed for differentiation between tumor and edematous tissue, 

and recognition of different areas of proliferation in different parts of the tumor. 

Confirmation of the target of stereotactic biopsy and radiotherapy by PET provides high 

sensitivity and specificity [35-38]. 

5.3 PET optimizing neuronavigation surgery  
Invasive growth of gliomas showed no obvious boundaries, especially in gradeII and III. 

Visualization of the border between tumor tissue and normal brain tissue is extremely 

difficult, and complete resections are very rare when using conventional surgical method. 

The use of neuronavigation imaging data to demarcate the glioma boundaries, however, 

facilitates the implementation of total tumor resection.  
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Because of excellent tissue resolution, MRI (especially enhanced MRI) is often used as the 

input for neuronavigation during glioma resections. However, for grade C glioma, some 

grade D, and a few glioblastoma grade E, MRI scans were not able to determine lesion 

boundaries or distinguishand it from the surrounding edema. In the absence of apparent 

BBB damage, enhanced MRI was not able to show full the tumor extent, or the proliferation 

of heterogeneity within the tumor. In addition, the enhanced MRI may not show the real 

extent of the tumor invasion, so in some cases, MRI alone could not determine the surgical 

target. Our study revealed 9 cases in which high-grade gliomas showed mild or no 

enhancement on MRI, but high uptakes of FDG and MET on PET images.PET imaging, in 
particular, MET PET can clearly display the boundaries of glioma, the distinction between 
the tumor and surrounding edema, and the proliferation of different tumor areas [32, 34]. 
The data to determine the target for the application of PET stereotactic biopsy and 
stereotactic radiation therapy, confirm its high sensitivity and specificity [36-38]. The new 
PET/CT technique has significantly improved the precision of PET and combines the 
advantages of structural and functional imaging [39]. Combined with a neuronavigation 
system, PET could provide more comprehensive and precise imaging data to help more 
completely remove the tumor [40]. The project graphic workstation of our VectorVision®2 
neuronavigation system could fuse the PET and MR or CT images.  
We used the PET neuronavigation system to guide the surgery in twelve patients with 
glioma which had been difficult to confirm by routine CT and MR imaging. In particular, 
the actual tumor margin was undefined, and tumor and edema were not distinguished. In 
contrast, PET clearly identified the extent and invasiveness of the tumors, and provided the 
reliable data needed for neuronavigation-guided excision. In our study, grade II gliomas 
could not be distinguished from the normal brain tissue by visual inspection, and the 
boundary was not visible in the resected specimen. These operations were then continued 
using PET neuronavigation guidance. The degree of proliferation in different parts of some 
high grade gliomas could not be distinguished using MRI. In contrast, PET demonstrated 
distinctly both the tumor extent and the degree of proliferation in the various areas by the 
different uptakes of FDG and MET. Histological examination of the specimens showed that 
PET neuronavigation provided reliable distinction between normal brain tissue and glioma, 
the uptake of PET tracers can indicate the degree of proliferation. MET was more effective 
for this purpose than FDG [41]. 

6. Conclusion 

PET imaging can fully reflect the tumor metabolic status, useful to preoperative assessment 
of brain glioma, and provide a new assistant for navigation of glioma surgery, especially 
when conventional imaging is difficult to determine the degree of malignancy and the 
extent of glioma. In addition, under the navigation, samples taken from different metabolic 
region, are profound to study on the biological characteristics of glioma. 
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