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1. Introduction 

Twenty percent of all neoplasms in children arise in the central nervous system (CNS) and 
the incidence of these tumors has increased in the last years. The World Health Organization 
(WHO) classification of CNS tumors is shown in Tab. 1 (1).  

2. Etiology 

Although most brain tumors are sporadic, a number of pediatric brain tumor presentations 
are associated with recognized genetic syndromes. About 15–20% of children with 
neurofibromatosis (NF1) present with CNS neoplasms, usually gliomas of the optic 
pathways or low-grade tumors of the diencephalon, cerebral hemispheres, or posterior fossa 
(2). Low-grade gliomas associated with NF1 may be less aggressive than similar gliomas in 
the general population. The indolent subependymal giant cell astrocytoma occurs in 
children with tuberous sclerosis. Childhood brain tumors are frequently noted in families 
with the Li–Fraumeni syndrome and children with the syndrome are also at high risk for 
secondary, treatment related tumors (5). Radiation-induced meningiomas have long been 
recognized. 

3. Supratentorial brain tumors 

3.1 Clinical presentation 
Supratentorial tumors generally present with localizing neurologic symptoms; symptoms 
and signs may develop over extended time intervals and are often protean. Seizures are 
the most common symptom in cerebral hemispheric lesions, especially with tumors 
arising in the temporal lobe. Lateralizing neurologic signs occur in thalamic region 
tumors, often associated with symptoms of increased intracranial pressure. Also 
suprasellar tumors may occlude the foramen of Monro, raising elevated intracranial 
pressure. Visual field deficits and or decreased acuity and endocrine abnormalities like 
diminished growth hormone, cortisol or thyroid production, diabetes insipidus, delayed 
or precocious puberty, are often apparent with midline suprasellar lesions. Children with 
suprasellar tumors may show the diencephalic syndrome with hyperactivity and asthenia 
despite normal or high food intake (4). Pineal region tumors produce hydrocephalus by 
compressing the aqueduct of Sylvius; specific ocular signs like the Parinaud syndrome 
(decreased upward gaze, near-light dissociation of the papillary response and 
convergence nystagmus) are classically noted. 
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TUMORS OF NEUROEPITHELIAL TISSUE 
Astrocytic tumors 

astrocytoma 

anaplastic astrocytoma 

glioblastoma 

pilocytic astrocytoma 

pleomorphic xanthoastrocytoma 

subependymal giant cell astrocytoma 

Oligodendroglial tumors  

oligodendroglioma 

anaplastic oligodendroglioma 

Ependymal tumors  

ependymoma 

anaplastic ependymoma 

myxopapillary ependymoma 

Mixed gliomas 

oligodendroglioma 

others 

Choroids plexus tumors 
Neuronal tumors  

gangliocytoma  

gaglioglioma 

desmoplastic infantile neuroepithelioma  

dysembryoplastic neuroepithelial tumor 

central neurocytoma 

PINEAL PARENCHYMAL TUMORS  

pineocytoma 

pineoblastoma 

EMBRYONAL TUMORS  
Medulloepithelioma 
Neuroblastoma 

Ependymoblastoma 
Primitive neuroectodermal tumors  

Medulloblastoma  
Cerebral (supratentorial), spinal PNET 

TUMORS OF MENINGOTHELIAL CELLS  
Meningioma 
Malignant meningiomas 

TUMORS OF THE UNCERTAIN HISTOGENESIS   
Hemangioblastoma 

GCTs 
 Germinoma 

Embryonal carcinoma 
Endodermal sinus tumor 
Choriocarcinoma 

Teratoma 
Mixed GCTs 

TUMORS OF THE SELLAR REGION  
Pituitary adenoma 

Craniopharyngioma 

Table 1. Histopathologic Classification of CNS Tumors—WHO Classification 2007 
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3.2 Low-grade supratentorial astrocytomas 
Low-grade astrocytomas (LGA) represent the most common category of pediatric brain 
tumors. The most frequent site of origin is the cerebellum, followed by the midline 
diencephalon and the cerebral hemispheres. In about 3% of cases LGA, mostly if located in 
the diencephalon, present with subarachnoid dissemination; an uncommon subgroup of 
diffuse LGA encroaches more than one lobe often with no clear mass: this diffuse pattern of 
growth is classified as gliomatosis cerebri (5). 
Imaging commonly shows a isointense lesion on computed tomograpy and T1 MRI 
sequences and hyperintense on T2, with variable enhancement with gadolinium. Small or 
large cysts and calcifications may be present. LGA histological findings are low cellularity, 
little nuclear atypia, and few or no mytosis. Although the term “low grade” applies to all 
pediatric gliomas that are not anaplastic, the various histiotypes differ in the degree of 
infiltration, relative aggressiveness, and prognosis. Juvenile pilocytic astrocytomas (JPAs) 
and diffuse fibrillary astrocytomas (DFA) comprise the majority of pediatric low-grade 
gliomas. Less common LGAs include gemistocytic astrocytomas, pleomorphic 
xanthoastrocytomas, desmoplastic infantile astrocytomas, protoplasmic astrocytomas, and 
subependymal giant cell astrocytomas. Management depends on tumor location, patient 
age, presence of a genetic mutation, the goal of treatment is long term disease control or cure 
with function preservation. Outcome is largely favorable. 

3.2.1 Therapy 

3.2.1.1 Surgery 

For resectable LGA surgery (S) is the first and sole intervention providing excellent control 

of disease. Low recurrence rates are reported after total resection: with a 5-year progression-

free survival (PFS) ranging from 95 to 100% for JPAs and gangliogliomas to 80% for grade II 

DFA (6). Resection of tumors involving the dominant medial temporal lobe, motor strip 

region, or the Broca speech cortex may not be possible without inducing severe neurologic 

deficits. Partial resection may provide initial intervention for decompression and 

histopathologic diagnosis. LGA of the diencephalon are technically challenging because of 

the deep location and eloquent area.  

3.2.1.2 Radiation Therapy 

Radiation Therapy (RT) is an established, effective treatment for pediatric LGA, achieving 
tumor response and durable control in a significant proportion of cases (7). An analysis from 
Pollack et al. showed improved disease control at 10 years after irradiation following 
incomplete resection of cerebral hemispheric astrocytomas: 82% PFS with RT versus 42% 
after S alone. The same study showed no significant benefit in overall survival (OS)(8). A 
recent phase II prospective study published by Merchant et al. showed excellent event-free 
survival (EFS) (87% and 74% at 5 and 10 years, respectively) and OS over 90% at 10 years for 
children treated with three-dimensional (3D) conformal irradiation to the MRI-defined 
tumor volume (9). These results have been associated with excellent functional outcomes 
(10).  The decreased volume of normal brain exposed to moderate or high radiation doses 
using conformal techniques with small margins may significantly decrease some of the 
serious radiation-induced side effects (11). There are no contemporary data suggesting a 
benefit of postoperative irradiation for completely resected LGA. For incompletely resected 
LGA, early administration of irradiation may not benefit the patient. Current indications for 
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RT after a near total resection (with imaging evidence of disease residual) include symptoms 
or signs that might improve with RT or post surgical progression in a location not amenable 
to safe, definitive second resection. Other factors considered are histological subtype or 
biology.  

3.2.1.3 Chemotherapy 

Chemotherapy (CT) has been used with increasing frequency for LGA as a strategy to delay 
or avoid RT; less data regarding CT response for progressive disease following irradiation 
are available. CT can provide disease control for months to years, more often achieving 
stable disease or partial response than complete remission; most tumors progress within 3–4 
years, requiring RT at that time. The age below which CT is more appropriate is 
controversial and dependent on factors such as tumor size and location, presence of NF 
mutation, or developmental or neurocognitive delays. Packer et al. reported age to be the 
only significant prognostic factor, with 3-year PFS rate of 74% for children 5 year old versus 
39% for older children (12). In COG, the age of 10 years has been chosen for trial eligibility in 
studies evaluating CT as initial treatment (13). Individual centers have used thresholds of 3 
or 5 years of age. Favorable control rates and relative absence of serious toxicity have 
established carboplatin and vincristine as the “standard” first line CT in younger children 
(14). Temozolomide, an alkylating agent with modest responsiveness in recurrent LGA, is 
currently in trial with carboplatin-vincristine to try to prolong drug tolerance (15). The five-
drug University of California at San Francisco (UCSF) regimen (6-thioguanine, 
procarbazine, dibromodulcitol, lomustine, and vincristine) has been reported to be similarly 
efficacious; a randomized trial comparing carboplatin-vincristine to this regimen has been 
completed in COG, suggesting equal or greater efficacy with the five-drug regimen (13). 
Bevacizumab in combination with irinotecan has been investigated for recurrent LGA with 
promising response rates for heavily pretreated patients (16). The decision to proceed with 
CT or RT relates to patient age and clinical presentation; factors beyond age alone include 
symptoms and signs, potential for additional neurocognitive deficits, the likelihood of 
durable benefit from respective chemotherapeutic regimens, and the radiation volume 
required in weighing relative potential toxicities. Although not proven to be problematic, 
there is no confirmation that the response rate and durability of disease control following 
RT are independent on prior failure on CT. 

3.3 Optic pathway tumors 
Optic pathway tumors (OPTs) represent 5% of childhood brain tumors and may involve one 
or more  anatomic sections of the optic system: optic nerves, optic chiasm, optic tracts, optic 
radiations. They can be small and localized or extensive and infiltrative. Tumors involving 
the chiasm are difficult to distinguish from tumors originating in the hypothalamus, 
therefore they are commonly grouped with hypothalamic gliomas as one entity. OPTs occur 
predominantly in young children: 25% present before 18 months of age and 50% present 
before 5 years. Up to 25% of childhood OPTs occur in children with NF1 and 10–20% of 
children with NF1 are found to have OPTs on MRI. Clinical presentation is most often with 
diminished vision. In young children, increased intracranial pressure endocrinopathies and 
diencephalic syndrome may predominate. Histologically, more than 90% of OPTs are LGA, 
most often JPAs, with infrequent gangliogliomas or hamartomas; malignant gliomas are 
uncommon (17). While acknowledging the sometimes indolent nature of OPTs, serial 
observations in major pediatric neuro-oncology clinics indicate progression in 75–85% of 
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children, typically within 2 years of initial presentation. Tumors confined to the optic nerves 
may behave in a more hamartomatous fashion. Children with NF1 have a more indolent 
course with lower rates of progression and longer latency intervals (17). Other signs of the 
neoplastic behavior of OPTs include extension to or invasion of the adjacent hypothalamus 
and posterior extension to the optic tracts and optic radiations. Infrequently, optic 
chiasmatic and hypothalamic tumors demonstrate diffuse leptomeningeal disease (18). 
Mortality within 10 years of diagnosis is uncommon, although ultimate disease-related 
mortality has been documented in up to 40% of cases (19). The rare but documented 
occurrence of spontaneous regression of OPTs (20) is also to be noted. Several series identify 
chiasmatic OPTs as optic pathway-hypothalamic gliomas, acknowledging the difficulty in 
identifying the origin of tumors that intimately involve both the chiasm and the 
hypothalamus (14). Although lesions extending to or originating in the hypothalamus may 
be somewhat more aggressive than lesions confined to the visual pathways, up to 50% of 
selected, asymptomatic children have been free of progression for 5 years or longer without 
therapeutic intervention. Preliminary data suggest adequate retrieval with secondary 
therapy at the time of progression during observation (17). 

3.3.1 Therapy 

3.3.1.1 Surgery 

S has been the preferred treatment for unilateral tumors of the optic nerve (21,22), but  care 

should be taken to avoid visual compromise or other surgical complications as alternative 

therapies are quite successful. Observation may be selected, especially if there is residual 

vision associated with a lesion confined to the intraorbital optic nerve. Alvord and Lofton 

(21) reported progression in 70% of children with untreated lesions within 6 years of 

diagnosis, although it was rarely associated with tumor-related mortality. Most series 

indicate more indolent behavior in children with neurofibromatosis (22). For lesions 

involving the optic chiasm, there are limited data suggesting a role for surgical resection. 

Decompression or limited resection may be successful in restoring vision. Typical chiasmatic 

lesions that involve components of the visual pathways beyond the optic chiasm and 

hypothalamic region may be managed without biopsy confirmation. Most of these tumors 

are LGA and often can be managed according to the clinical and imaging diagnosis. 

Globular tumors that involve the chiasm and hypothalamus are best biopsied if this can be 

performed safely; a small percentage of these lesions may be more aggressive malignant 

gliomas (23). 

3.3.1.2 Radiation Therapy 

Irradiation is indicated for significant visual or neurologic deficits at presentation or 
documented progression by clinical evaluation or neuroimaging after observation, S or CT 
(12,21,24). RT is highly effective for OPTs: 10-year PFS rates exceed 80% (25,31). Although 
OS at 10 years is unaffected by the initial therapeutic approach, PFS rates at 5 and 10 years 
are substantially higher after RT (26). Serial imaging studies document significant tumor 
response in more than 50% of children after irradiation (25). Transient post irradiation 
tumor enlargement, often in the setting of central cystic degeneration, has been well 
documented (19). Close observation and medical management rather than aggressive 
intervention for presumed tumor progression is advised, particularly for lesions that may 
appear to progress within 6–12 months after RT. Visual improvement has been reported in 
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25–35% of children after irradiation (19,27). Visual deterioration is reported in 10–20% of 
children after RT, largely related to cystic degeneration and consequent increased mass 
effect at the chiasm or unrecognized elevated intracranial pressure (19,26). Vision should be 
monitored closely during RT and in the months following completion. OPTs are associated 
with unique late radiation-related sequelae. The young age at diagnosis, central location, 
and often extensive anatomic involvement challenge the ability to deliver adequate RT 
while preserving neurocognitive function; the problem is further accentuated in children 
with NF1, itself associated with cognitive delays (25,28). There is also concern about late 
vascular events: the incidence of occlusive vasculopathy at the circle of Willis in children 
with brain tumors is highest among those with OPTs, especially in younger children (29). 
There is also a heightened concern regarding the risk of second malignancy in patients with 
NF1 (30). The Toronto group has uniquely reported a 10% incidence of second malignant 
neoplasms after irradiation for OPTs; of interest, a series from Children’s Hospital of Los 
Angeles showed the same rate of anaplastic degeneration in JPA after surgery alone (31, 32). 

3.3.1.3 Chemotherapy 

Because of the radiation associated morbidities in young children with OPT, Packer et al. 
explored primary CT in children younger than 5 years. Initial experience with actinomycin 
D and vincristine resulted in stabilization in a majority of children and objective tumor 
reduction in approximately 25%. Although more than 60% of children needed RT by 5 years 
after diagnosis, the approach resulted in a substantial delay in RT, with a median time to 
progression of 3 years (33). Subsequent experience with an 18 month regimen of carboplatin 
and vincristine for LGA including those of the hypothalamic region and OPTs has shown a 
significant rate of objective tumor reduction, early progression in only 10%, and 3 year PFS 
that ranges from 75% for children younger than 5 years to 39% for those older than 5 years 
(12). Similar results have been reported with the UCSF five drug regimen (34). Early 
experience suggests favorable outcome with secondary RT after progression during or after 
CT; recent observations related to the timing of initiating RT suggest that long term disease 
control and function are not diminished with prolonged preirradiation intervals (12,24). 
Toxicity with carboplatin and vincristine has been limited, and early data suggest continued 
intellectual development during CT (35). There is a balance between duration of disease 
control, clearly superior with RT and less durable control with CT apparently without the 
serious morbidities associated with RT in the younger age group (17,26). In current practice, 
most children below 5–10 years receive CT as initial intervention, with some centers 
extending this to all prepubertal children. It is important not to avoid RT even in younger 
children when despite CT,  progressive visual loss is apparent. 

3.4 Oligodendroglioma 
Oligodendrogliomas represent 1–2% of supratentorial tumors in children. The generally 
circumscribed tumors occur most often in the cerebral hemispheres. Treatment 
recommendations are based largely on adult experience with S and RT (36). Adults show 
excellent response to procarbazine, lomustine, and vincristine (PCV) or to temozolomide CT, 
particularly in anaplastic oligodendrogliomas with isochromosome 1p or p53 mutations (37). 
Given differences in biology, it is unclear whether chemosensitivity can be extrapolated to 
children. Gross total resection (GTR) is the treatment of choice for accessible lesions. GTR has 
been documented in 20–25% of all cases, apparently more often in children and adolescents 
(30). The OS rate at 10 years after total excision is reported to be about 60% (38). For 
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incompletely resected oligodendrogliomas, a short-term benefit for RT has been documented 
reported 5 year OS rate of 25% after subtotal resection, compared with 62% with the addition 
of irradiation to doses greater than 50 Gy; by 10 years, the OS rates were 31% with RT and 25% 
without RT (39). Adjuvant RT is typically withheld for differentiated oligodendrogliomas in 
children, even with incomplete resection. Histologic grade has been cited as a prognostic 
indicator in oligodendrogliomas. Anaplastic oligodendrogliomas are managed similarly to 
other malignant supratentorial gliomas, although the outcome tends to be superior to those 
with anaplastic astrocytoma and glioblastoma. Limited CT has been associated with sufficient 
tumor reduction to permit delayed S in tumors initially unresectable (40).  

3.5 Ganglioglioma 
Gangliogliomas are uncommon neoplasms comprised of neuronal and glial elements, 
occurring primarily in children and young adults. Gangliogliomas present most often in the 
mesial aspect of the temporal lobes, with seizures as the dominant symptom (41,42). 
Pediatric tumors uncommonly present in the posterior fossa. The lesions are typically well 
circumscribed and resectable (41,43). Gangliogliomas are classically coded as WHO grade I, 
well differentiated histologically with no atypia or anaplasia (42). S alone is the standard 
initial intervention; 10 year DFS has been reported in 97% of pediatric cases after S (42). 
Malignant transformation at progression or recurrence is rare; almost 10% of cases show 
nuclear atypia or anaplastic components (grade II or III, respectively) (43). Malignant 
degeneration to glioblastoma (grade IV) is decidedly uncommon in children and adolescents 
(44). Prolonged PFS survival has been noted in small series with RT following incomplete 
resection or recurrence; the efficacy following malignant degeneration is less apparent (44). 

3.6 Rare low-grade neoplasms 
Neurocytomas are clinically indolent tumors that present as intraventricular lesions, usually 
in the lateral ventricles with attachment to the midline septum pellucidum; most are 
diagnosed in adolescents and young adults. Neurocytomas are composed of small neuronal 
cells thought to represent a benign neoplasm derived from cells midway in the maturation 
process of neuronal differentiation (41). These tumors are genetically distinct from the 
oligodendrogliomas and dysembryoplastic neuroepithelial tumors (DNETs), with which 
they can be confused both clinically and histologically (42). The lesion is generally 
resectable;  prognosis has been related to the rate of proliferation (43). These tumors respond 
to RT; small series have suggested improved outcome in cases with less than total resection 
when followed by RT. DNETs are biologically indolent, often large cerebral cortical tumors 
typically presenting with a long standing seizure history (45). Symptoms typically arise in 
children younger than 12 years; the mean age at diagnosis is 14. The tumors may be 
considered hamartomatous, classically are well demarcated, and show no contrast on MRI; 
uncommonly, DNETs present as complex solid and cystic lesions with enhancement, 
calcification, and intralesional hemorrhage (46). These tumors may be followed, but S is 
needed for seizure control; although they appear to be responsive to RT, there is no 
documented role for postoperative therapy (45). 

3.7 Malignant gliomas 
Supratentorial malignant gliomas represent approximately 6% of brain tumors in children. 
Histologic grading divides high grade gliomas (HGG) into anaplastic astrocytoma, WHO 
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Grade III and glioblastoma, WHO Grade IV (1). Children have a higher proportion of 
anaplastic astrocytomas among the malignant gliomas and have longer survival intervals 
(47). Adult primary malignant gliomas appear to arise denovo and are associated with 
amplification of the epidermal growth factor receptor (EGFR) gene and PTEN; less common 
secondary malignant gliomas evolve from low grade tumors and typically have TP53 
mutations (48). Supratentorial malignant gliomas arise primarily as cerebral hemispheric 
tumors; 20–30% present centrally in the thalamus or basal ganglia. Imaging characteristics 
are similar to those in adults, with often poorly marginated, peripherally enhancing lesions 
on MRI or computed tomography associated with surrounding white matter changes due to 
edema; the enhancing components correlate with the cellular, vascularized periphery of the 
tumor complex. The infiltrative characteristics of HGG necessitate some caution in 
aggressive S and high-dose local RT; interest in functional imaging for both stereotactic 
surgical planning and RT reflects the acknowledged heterogeneity of the tumors and 
invasiveness beyond areas identified by anatomic imaging (49). Even with acknowledged 
infiltration at a distance from the overt tumor, clinical data show both a direct relationship 
between the degree of resection and duration of tumor control as well as a pattern of failure 
that is overwhelmingly at the primary target volume even after high dose focal RT (50,51). 
Leptomeningeal dissemination had been reported in up to 15% of children at diagnosis; 
however, a large prospective CCG trial showed disease beyond the primary site only 
anecdotally (52). The diagnosis of HGG in children has often been challenging to the 
neuropathologist. Central review of pathology in the CCG-945 trial showed that 36% of 
cases entered, based on an institutional diagnosis of anaplastic astrocytomas or 
glioblastoma, were felt to have a discordant diagnosis, primarily LGA, based on the 
reviewers’ interpretation (53).  

3.7.1 Therapy 

3.7.1.1 Surgery 

Surgical resection often has been limited in extent by the poorly circumscribed nature of the 
tumor and the attendant lack of aggressive neurosurgical intent. The large CCG series 
indicated that more than GTR and near total resection was achieved in only 37% of cases: 
49% of lesions arising in the superficial cerebral hemispheres, 45% of lesions arising in the 
cerebellum, and 8% of those arising in the central structures (50). There is a significant 
relationship between degree of resection and outcome. Five year PFS in the initially reported 
CCG-945 experience was 44% and 26% for anaplastic astrocytomas and glioblastoma, after 
more than 90% removal, compared with 22% and 4%,  respectively, after less aggressive 
resection (50). 

3.7.1.2 Radiation Therapy 

RT is a primary component of initial management of pediatric malignant gliomas. Adult 
studies have documented the impact of adequate RT on OS, although survival beyond 2 
years occurs almost entirely among those with anaplastic astrocytoma rather than 
glioblastoma. Treatment has evolved to local RT, with margins reflecting the known pattern 
of microscopic extension and functional imaging to guide evolving therapeutic approaches. 
A series of dose escalating trials have yet to demonstrate a convincing impact on disease 
control (51,56). Current trials use 3D conformal RT or IMRT to dosage levels, similar to those 
used in adults (51,57). 
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3.8 Embryonal CNS tumors: Primitive neuroectodermal tumors and pineoblastoma 
Primitive neuroectodermal tumors (PNETs) are aggressive cerebral tumors occurring 
predominantly in young children comprising 2–3% of pediatric CNS neoplasms. The tumor 
consists of undifferentiated neuroepithelial cells with areas of divergent differentiation 
toward glial, neuronal, and mesenchymal lines (1). Embryonal tumors typically present as 
solid or partially cystic lesions. Although PNETs and cerebral neuroblastoma may present 
as well demarcated lesions, most embryonal tumors are generally invasive (58). 
Leptomeningeal dissemination is apparent at the time of diagnosis or at the time of initial 
tumor recurrence or progression in approximately one third of children; there is some 
controversy regarding the frequency of CSF failure in initially localized cerebral 
neuroblastoma, but most reports indicate CNS dissemination at a rate similar to that of the 
other embryonal tumor types (59). Medulloepithelioma is the most primitive embryonal 
tumor, histologically showing features of primitive medullary epithelium and primitive 
tubular structures; focal differentiation toward glial, neuronal, or mesenchymal lines is often 
present. Primitive polar spongioblastoma is a rare cerebral tumor thought to be derived 
from migrating glial precursor cells and characterized by immature unipolar glial cells. 
Ependymoblastoma is a poorly differentiated embryonal tumor with ependymal 
differentiation marked by multilayered rosettes similar to those seen in retinoblastoma (1). 
The tumor is felt to be a specific embryonal neoplasm, different from the differentiated and 
anaplastic ependymomas that occur both in the posterior fossa and supratentorially. 
Cerebral neuroblastoma ranges histologically from an undifferentiated tumor similar to the 
extra-CNS childhood neuroblastoma, often including unilayered Homer–Wright rosettes, to 
lesions demonstrating ganglionic differentiation (60). The tumor most often confused with 
medulloblastoma histologically and by contiguous anatomic location is the pineoblastoma. 
The tumor is believed to arise from pineal parenchymal cells, histologically signified by 
undifferentiated small round cells, usually including scattered Homer–Wright rosettes. (61). 

3.8.1 Therapy 
The basic principle of S is often limited by disease site and extent. The PNETs may be 

resectable in up to 50% of cases, especially when cystic (58,59). Pineoblastomas are generally 

approached for stereotactic biopsy or limited resection (61,62). Postoperative RT is indicated 

for the embryonal CNS tumors. Classic studies indicate disease control in fewer than 25% of 

cases with sPNET and pineoblastoma (58,63). A review of the SIOP/UKCCSG experience 

showed high rates of disease control with cranio spinal irradiation (CSI) for pineoblastomas 

with or without CT. The use of immediate postoperative RT and subsequent CT in CCG 

resulted in a 60% survival rate in children over 1.5–3 years with pineoblastomas (61). 

Overall results in other more recent series highlight interest in high-dose CT (e.g., high-dose 

methotrexate in the HIT regimens from the German studies or high-dose therapy with 

peripheral stem cell rescue) following irradiation (64). 

3.9 Intracranial germ cell tumors 
Intracranial GCTs are rare in North America and Europe, representing less than 2–4% of 
pediatric CNS neoplasms; in Japan and Taiwan they are reported to represent up to 11% of 
childhood brain tumors. The full range of germ cell histiotypes presents as primary CNS 
tumors: pure germinomas (60–70% of intracranial GCTs), “malignant” germ cell types 
(embryonal carcinomas, endodermal sinus tumors, and choriocarcinomas, collectively 15–

www.intechopen.com



  
Management of CNS Tumors 

 

146 

20% of CNS GCTs), and teratomas (benign, immature, and malignant types, 15–20%) (1). 
Malignant teratomas are admixtures of benign teratomatous lesions with one or more 
malignant germ cell lines such as embryonal carcinoma, endodermal sinus tumor, or 
choriocarcinoma or with malignant elements of rhabdomyosarcoma, neuroblastoma, or 
epithelial carcinoma (65,66,67). GCTs are conventionally categorized into two highly 
prognostic histological subgroups: pure germinomas and non germinomatous (or 
“malignant”) germ cell tumors (NGGCTs). NGGCTs include GCTs with any malignant 
germ cell component and or any tumor that secretes AFP or high levels of β-HCG. Some 
international trials have classified these tumors simply as “secreting” and “non secreting” 
based on the high likelihood of secretion from malignant germ cell components and lack 
germinomas (68). Pure germinomas carry a much more favorable prognosis, and therefore 
are generally treated less aggressively than NGGCTs. CNS GCTs usually occur as midline 
third ventricular lesions. These tumors most often arise in the pineal region (50–60%) or 
from the infundibulum-pituitary stalk in the suprasellar region (30-35%). Less common 
locations for primary intracranial GCTs include the basal ganglia or thalamic nuclei (67,68). 
Involvement of multiple tumor sites around the third ventricle is common, most often the 
pineal and suprasellar regions concurrently; such tumors are referred to as “multiple 
midline germinomas” and appear to represent multicentric tumor development or 
subependymal infiltration around the ventricle rather than subarachnoid or CSF pathway 
metastasis. Up to 20% of intracranial germinomas present as multiple midline tumors, 
especially noted in adolescent males; this phenomenon is much more frequently 
encountered with pure germinomas, but has been reported with NGGCTs (69). 
Leptomeningeal spread through the cerebrospinal axis may be seen, but is much less 
common. Pineal germinomas occur with a higher prevalence in adolescent males. 
Suprasellar germinomas occur throughout the first two decades; there is no gender 
predilection for this location. Teratomas tend to occur in younger children, and other 
malignant histiotypes (e.g., embryonal carcinoma, endodermal sinus tumor) generally 
present in older children, adolescents, and young adults. A unique spectrum of neoplasms 
presents a broad differential diagnosis for tumors arising in the posterior third ventricular 
region. Approximately 80% of the pineal region tumors in children and adolescents are 
GCTs (60–70%) or pineal parenchymal tumors (10–20%). In very young children, the most 
common tumor type is the pineoblastoma. Less common histiotypes include glial tumors 
(astrocytomas, ependymomas) and arachnoid cysts. Pinealoblastomas are embryonal CNS 
tumors described earlier. Pineocytomas are “mature” parenchymal cell neoplasms, which 
are rare in children, clinically benign in adolescents but potentially malignant in younger 
children (70). The differential diagnosis for suprasellar tumors is also rather broad, 
including astrocytomas and craniopharyngiomas (together, more than 80% of lesions in this 
location) as well as GCTs. Pineal GCTs present most often with increased intracranial 
pressure caused by compression of the adjacent Sylvian aqueduct. Ocular signs are 
classically noted as the Parinaud syndrome: a triad of decreased upward gaze, abnormal 
pupillary responses described as near-light dissociation (limited constriction to light but 
retained pupillary response to accommodation; otherwise known as the Argyll–Robertson 
pupil), and convergence nystagmus (71). Findings occur as a result of pressure from the 
pineal tumor on the superior colliculus of the tectum. In suprasellar GCTs, the classic triad 
of presenting symptoms is diabetes insipidus, precocious or delayed puberty and visual 
deficits. Diabetes insipidus or other symptoms of suprasellar disease in conjunction with an 
apparently isolated pineal tumor are virtually diagnostic of a multiple midline germinoma 
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and should be treated as such. Conversely, care should be taken in evaluating the pineal 
region with suprasellar tumors (72). Evaluation for GCT should include MRI of the brain 
with and without gadolinium with thin cuts through the suprasellar and pineal regions. A 
screening MRI of the spine should be obtained with axial images through any regions 
suspicious for disease. Lumbar puncture with CSF cytology and CSF AFP and β-HCG 
should be obtained with caution, especially in children with large pineal tumors or 
potentially persistent increased intracranial pressure. Serum AFP and β-HCG should also be 
measured. AFP is usually present in serum and CSF in embryonal carcinoma, endodermal 
sinus tumor, or malignant teratoma. β-HCG is elevated in a subset of germinomas (10–20% 
of pure germinomas show levels above 10 IU, up to 70–100 IU; levels above 100–200 IU are 
found in germinomas with syncytiotrophoblastic giant cells); significant elevation (typically 
more than 1000IU) is diagnostic of choriocarcinoma (67,73). If there is any detectable 
elevation of AFP above institutional norm (generally, serum 5–10 ng/dL; CSF 2–5 ng/dL), 
this is diagnostic of malignant germ cell histiotypes; the tumor is classified as an NGGCT. β-
HCG elevation may be seen in pure germinomas; the appropriate cut-off for categorization 
as a NGGCT is controversial. The COG ultimately recognized values 75 to 100 IU/L; this 
may be a conservative number (74). Additional baseline studies should include a full 
evaluation of hypothalamic and pituitary function, ophthalmological examination, and 
baseline neuropsychological testing. 

3.9.1 Therapy 
Treatment of CNS GCTs is controversial, from the decision to establish histology to the role of 
S, radiation parameters, and CT. Although excellent disease control has been reported in series 
based on clinical  and imaging diagnosis without histological confirmation, specific RT, CT, 
and S are best guided by a histologic diagnosis. At present, clinicians routinely recommend 
confirmation of pathology for all GCTs, regardless of location. When there is a significant 
elevation of tumor markers in serum or CSF, clinicians may consider the diagnosis of an 
NGGCT without a biopsy. Similarly, a classical imaging presentation with β-HCG above 
normal is sometimes considered pathognomonic of germinomas. Others advocate for 
histological verification in all settings, as some studies indicate important prognostic 
implications based on histological subtypes (67,75). Historically, the non operative approach 
for pineal region tumors had been to assume the relative dominance of germinoma, especially 
among adolescent males with pineal region tumors, and initiate local irradiation as a 
“histologic test.” Prompt tumor reduction after 20–25 Gy was interpreted to be diagnostic of 
germinoma, and subsequent therapy used modified radiation parameters based on 
institutional use of local, cranial, or CSI fields (76). If a tumor showed limited early response to 
the “test” dosage, then S was entertained, or subsequent therapy  was based on the 
presumption of a benign or malignant  tumor. Major improvements in neurosurgical 
techniques have markedly decreased rates of morbidity and mortality and in modern practice, 
the “radiation dose test” is not a recommended approach. RT has long been the standard sole 
treatment or an essential element of treatment for pure germinomas; it is an important 
component of multimodality therapy for NGGCTs. Intracranial pure germinomas are quite 
chemoresponsive; the use of combined CT and limited-volume and or limited-dose irradiation 
has been an alternative approach in treating these tumors (77). The use of CT alone has been 
associated with unacceptable recurrence and mortality rates for GCTs (83). For NGGCTs,  RT 
alone has achieved disease control in only 20–45% of tumors, and combined modality therapy, 
also including CT and potential surgical resection, is standard (75,76,78). 
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3.9.2 Surgery 
The goal of surgical resection or biopsy is to provide accurate diagnosis, and in some cases, 
improve disease control. For patients with suspected GCT without elevation of tumor 
markers, biopsy is considered mandatory to confirm diagnosis of germinoma and to attempt 
to rule out malignant germ cell components. Contemporary surgical techniques permit 
stereotactic or open biopsy for both suprasellar and pineal region tumors with low rates of 
morbidity and mortality (79). Although it is clear that limited tissue sampling may lead to 
misdiagnosis for some patients, particularly in the setting of a mixed histology tumor, 
aggressive up front resection is not advocated by the majority of institutions in Europe and 
North America as higher rates of morbidity and mortality have been encountered; delayed S 
for persistent disease after CT is preferred (80). There is no known advantage to achieving a 
GTR for pure germinomas. However, a benefit of surgical resection for NGGCT has been 
suggested even if it is somewhat controversial (78,81,82). Some series have shown a trend 
toward improved control with more aggressive resection for malignant histiotypes. As 
stated above, others advocate initial CT with consideration of second-look S for tumors or 
components of tumors that do not respond. Often, teratoma components of these tumors do 
not respond to CT and may even grow, for these cases, surgical resection is therapeutic and 
provides local control. For patients with pineal region tumors that present with 
hydrocephalus, decompression of the ventricles is required, often urgently. The placement 
of a ventriculoperitoneal shunt or external ventricular drain can provide relief of 
hydrocephalus. Endoscopic third ventriculostomy is a particularly attractive, alternative 
method of treating hydrocephalus by diverting CSF flow and obtaining a biopsy under 
direct visualization. This procedure is more sensitive than MRI for detection of metastatic 
deposits 

3.9.3 Radiation Therapy 
For pure germinomas, RT has been the major curative modality. Long-term disease control 
rates range from 80% to more than 90–95% with the use of irradiation alone (76,83,84). There 
is ongoing controversy regarding the appropriate RT volume (local tumor with or without 
wider volumes that have included third ventricular, full ventricular, full cranial  or CSI) and 
dose (40–50 Gy for primary RT). Whether primary RT is the best course of treatment, is often 
a complex decision based on tumor site and extent, the child’s age, and the child’s functional 
status at presentation, presenting a choice between RT alone or a combination of CT and 
reduced-dose, limited-volume irradiation (85). The recently closed COG trial, ACNS 0232, 
attempted to determine the better treatment; RT alone or CT and response based reduced 
volume and dose irradiation. Unfortunately, this trial closed due to poor accrual leaving this 
important question unanswered. For NGGCTs, combined CT and RT is the standard, again 
with some uncertainty regarding the appropriate radiation volume: local, whole ventricle, 
whole brain, or CSI (78,79). The use of stereotactic radiosurgery to boost local disease visible 
on imaging after and persistent after CT and fractionated RT is rational, but investigational 
for children with persistent NGGCT that cannot be safely removed by S (88). 

3.9.4 Chemotherapy 
Intracranial GCTs are chemosensitive, with excellent objective response rates documented 
for cyclophosphamide; carboplatin; cisplatin and etoposide; ifosfamide, carboplatin, and 
etoposide; cisplatin, etoposide, and bleomycin (73,81,86). Objective response rates approach 
100% for germinomas (89,90). Several series using pre irradiation CT and limited-volume, 
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“response-adjusted” attenuation of radiation doses has shown excellent disease control 
rates. Initially explored in the United States by Allen with the use of cyclophosphamide and, 
later, platinating agents, this treatment has resulted in a large proportion of complete or 
substantial responses, with long-term disease control after local irradiation to reduced dose 
levels of 24–36 Gy (78,86,89). Carboplatin, most often in combination with etoposide, has 
replaced cisplatin for germinomas because the drug is associated  with fewer long-term 
sequelae (90). The major short-term morbidity has been difficulties handling fluid and 
electrolyte balance in children with suprasellar tumors, often associated with diabetes 
insipidus and/or salt-wasting syndromes. This has been associated with early mortality 
during CT. The aim of combined CT and RT has not been to improve disease control, but to 
potentially improve long-term functional outcomes by decreasing radiation doses and/or 
volumes (85,91). The recently abandoned Phase III COG study had randomized patients 
with local disease to whole ventricular RT followed by a boost to the primary tumor bed or 
pre irradiation CT (two cycles of carboplatin and etoposide) followed by involved field, 
reduced dose RT if complete response was documented; if not, two cycles of cisplatin and 
cyclophosphamide were administered. Radiation dose depended upon response at the 
completion of the additional CT. For patients with disseminated disease, CSI was required, 
doses depend upon response to CT. The use of CT alone for intracranial germinomas has 
been tested in the international protocols coordinated by Balmaceda and colleagues (74). 
This trial included pure germinomas and NGGCTs. The first drug regimen tested 
(carboplatin, etoposide, bleomycin, cyclophosphamide) achieved high initial response rates, 
but disease progression or recurrence occurred in 50% of patients (both pure germinomas 
and NGGCTs); unacceptable CT-related mortality approximated 10% (83). Failures occurred 
primarily in the primary site at the ventricular system, with 5% in the spine. Although 
Merchant et al. (94) reported systematic salvage following CT-alone failure with high-dose 
cyclophosphamide and craniospinal irradiation, the more aggressive combined therapy 
regimen is excessive in a significant cohort of children who would enjoy favorable outcome 
with less intensive initial RT. For NGGCTs, prognosis with irradiation alone is inadequate; 
overall long-term survival rates approximate 20–40%. The addition of platinum-based CT 
has markedly improved outcome, with short-term OS rates in excess of 70%. CT has become 
a standard component of therapy for these tumors prior to RT. CT on both the French 
Society of Pediatric Oncology (SFOP) and recently completed COG study used alternating 
cycles of carboplatin-etoposide and ifosphamide-etoposide (93). The regimen has been both 
efficacious and well tolerated. High-dose CT with stem cell rescue has shown promise for 
relapsed GCTs (94). For the subgroup of patients who do not experience a CR to all other 
modalities of treatment, this approach has been considered and was recommended for 
patients who did not undergo CR to CT and could not safely undergo a second look S. 

3.10 Posterior fossa brain tumors 
Nearly one half of all childhood brain tumors arise in the posterior fossa. The most common 
types are medulloblastoma, LGA of the cerebellum, brainstem gliomas, and ependymomas. 

3.11 Medulloblastoma 
Medulloblastoma (MB) is a primitive cerebellar tumor of neuroectodermal origin. The tumor 
is the most common malignant brain tumor in children and adolescents, accounting for 20% 
of pediatric brain tumors. The classic description defined MB an embryonal tumor of the 
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cerebellum, derived from undifferentiated progenitor medulloblasts located in the cerebellar 
external granular layer. The WHO classification of CNS neoplasms identifies embryonal 
tumors as a subset of the neuroepithelial neoplasms that are particularly prominent among 
pediatric brain tumors (1). Histologically, MB is a densely cellular neoplasm composed 
predominantly of undifferentiated small, round, blue cells. Differentiation may be toward 
neuronal or glial lines in the more common “classic variant”(1,95). Differentiation along 
mesenchymal lines defines a variant called medullomyoblastoma. Approximately, 10% to 
20% of MBs can be categorized as desmoplastic type, marked by relatively hypocellular 
areas of prominent nodularity in reticulin-free zones, occurring most often in the cerebellar 
hemispheres. Desmoplastic MB is associated with mutations within the sonic hedgehog 
(SHH)–patched (PTCH) pathway and overexpression of IGF-2 (96,97). There is considerable 
excitement about the SHH pathway as a target for newly developing molecular-targeted 
therapies (98). Anaplastic tumors are marked by nuclear pleomorphism and high mitotic 
rate; these tumors overlap with large cell MB and are marked by chromosomal loss 17p, 
MYC amplification, and poor prognosis (97). Over expression of ERBB2 may also be related 
to anaplastic large cell tumors and is a similarly negative prognosticator. The histologic 
grade of MB has only recently been linked to prognosis. Extensive nodularity has been 
correlated with favorable outcome; desmoplastic variant is similarly a marker of more 
favorable diseases (99). The degree of anaplasia has been associated with inferior survival 
rates (100). Tumors with extra neural metastasis, either at diagnosis or as a pattern of failure, 
are more often associated with markedly anaplastic histology. From the clinical genetics 
standpoint, MB is the CNS tumor most often associated with germ line mutations and 
familial diseases. The most frequent association is between Gorlin syndrome (nevoid basal 
cell carcinoma syndrome) and desmoplastic MB, both related to the tumor suppressor gene 
PTCH and the SHH receptor. In addition, mutations of the SHH–PTCH pathway are found 
in 10% to 20% of “sporadic” MB. TP53 mutations mark the Li–Fraumeni syndrome, 
associated with a small percentage of MB. Mutations of the APC gene define Turcot 
syndrome of colonic polyposis, also seen in conjunction with MB. Mutations of the WNT 
pathway, developmentally linked to proliferation of stem cells in the sub ventricular zone, 
were first noted in children with Turcot syndrome. The pathway is activated in 5% to 10% of 
sporadic MB with classic histopathology, manifest by accumulation of intranuclear β-
catenin and associated with quite favorable prognosis; Wnt/Wg-active tumors are 
associated with iso -chromosome 16 (98,100). Notch 2 over expression has also been noted in 
MB, interesting as hypoxia appears to promote neural stem cell proliferation through Notch. 
Other molecular correlations important in understanding the current directions in MB 
include TrkC expression, directly proportional to survival and ErbB2 expression.  The latter 
factor is biologically related to cerebellar granular cell proliferation, migration, and invasion; 
elevated levels of ErbB2 are associated with poor outcome. The median age at diagnosis is 5 
to 6 years. Approximately 20% of MB present in infants younger than 2 years and 10% occur 
in young adults. Boys are affected more often than girls. Presenting symptoms are those 
classically associated with posterior fossa lesions in children: symptoms related to elevated 
intracranial pressure and ataxia. Elevated intracranial pressure results from the tumor 
obstructing CSF flow through the sylvian aqueduct and the fourth ventricle. Approximately 
75% of MB present in the midline cerebellar vermis. The tumor characteristically grows into 
and fills the fourth ventricle. Infiltration around the fourth ventricle is common, often 
involving the brachium pontis and extending onto the ventricular floor. Nearly one in four 
tumors arises within the cerebellar hemispheres, more commonly with desmoplastic 
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histology. On MRI, MB is well-defined, solid lesions with uniform or, less often, no 
homogeneous contrast enhancement. Correlation between MR spectroscopic findings and 
metastasis at diagnosis has been reported (101). By computed tomography, the tumor often 
is hyperdense, reflecting high cellularity. MB is the classic CNS tumor associated with CSF 
seeding or metastasis. The standard of care requires postoperative staging, based on 
imaging of the brain to assess degree of resection and potential subarachnoid metastasis, 
spinal MRI and lumbar CSF cytology. Subarachnoid dissemination has been reported at 
diagnosis in 20% to 35% of children (102). Neuraxis disease typically involves the spinal 
subarachnoid space; intracranial metastasis is less common. The Chang (103) clinical staging 
system was developed in the pre-CT era and is based on the size and invasiveness of the 
primary tumor at surgery (“T stage”) and evidence of spread outside the posterior fossa (“M 
stage”). Progressive tumor size and invasion of the brainstem defined increasing local tumor 
burden and aggressive behavior, classified as T 1–4. With the advent of computed 
tomography  and MRI, it became apparent that imaging identification of brainstem invasion 
is not as reliable as surgical observation. There  are no modern data to substantiate a role for 
T stage as an independent parameter predicting outcome or defining therapy (104,105). 
Comparisons in otherwise early MB (defined as M0 with complete or near total resection) 
and in series addressing advanced MB have shown equivalent outcome among those with 
brainstem invasion (T3b) and those without such (T1–3a). M stage is based on subarachnoid 
metastasis, coding abnormal CSF cytology (M1) or imaging evidence of non contiguous 
tumor in the cranium (M2) or spine (M3). Extraneural disease is present in fewer than 2% of 
cases at presentation, coded as M4. M stage remains a highly significant prognostic factor; 
intensity of therapy in current protocols and outcome are strongly related to the presence or 
absence of metastatic disease (106). Current clinical trials and standard management in 
North America define clinical risk categories for MB as average risk (children older than 3 
years with no metastatic disease after near total or total resection, with less than 1.5 cm2 
residual on early postoperative imaging) or high risk (overt metastatic disease based on CSF 
cytology or neuroimaging, or the presence of more than 1.5 cm2 residual on early 
postoperative imaging; more recently, all children younger than 3 years of age typically 
have been classified as high risk. With appropriately aggressive surgical intent in most 
centers in the United States and Europe, more than 65% to 75% of children above 3 years of 
age are staged as average risk. Of the 25% to 35% staged as high risk, more than 85% present 
with metastatic disease at diagnosis: primarily M3 (60%), but also M1 (30%), and M2 (10%); 
significant residual tumor at the primary site is present in ≥15% of cases (101). 

3.11.1 Therapy 

3.11.1.1 Surgery 

In 1930 Harvey Cushing demonstrated the inability of S alone to cure MB; only 1 of 61 
patients survived 3 years after S with or without limited RT (107). Maximal judicious 
surgical resection underlies most contemporary series. GTR (no evidence of residual 
tumor seen at S and negative post-operative imaging) and near total resection (more than 
90% resection estimated by the surgeon and less than 1.5 cm2 residual on postoperative 
imaging) have resulted in superior outcome in comparison to subtotal or partial 
resection and biopsy only. Data from the Children’s Cancer Group (CCG) indicate gross 
total or near total resection in approximately 90% of children (104). In an earlier CCG 
trial, 5-year EFS  was 78% for children with M0 disease and less than 1.5 cm2 residual, 
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compared with 54% for those with larger residual volumes. For tumors adherent to or 
invading the brainstem, a report from St. Jude Children’s Research Hospital showed no 
advantage to pursuing GTR compared with near total removal, with none of the cases 
exhibiting more than 1.5 cm2 residual; morbidity appeared to be greater with the more 
aggressive surgical approach. With maximal safe resection a principle of therapy, the 
impact of minimal residual is difficult to discern; key is the distinct advantage of 
treatment on an average-risk regimen whenever possible, assuming such is a M0 disease 
(106). Operative mortality has been reduced to 2% or less in pediatric neurosurgical 
centers. However, aggressive S may be associated with significant morbidity (107,108). 
The posterior fossa syndrome has been described in 15% to 25% of children after 
posterior fossa craniotomy (109). The syndrome is signified by difficulty swallowing, 
truncal ataxia, mutism, and, less often, respiratory failure; recent imaging data suggest 
the etiology may be a cerebello cerebral diaschisis (110). The routine use of ventriculo-
peritoneal shunts to reduce intracranial pressure before posterior fossa craniotomy 
resulted in significant improvement in morbidity and mortality, when introduced 40 
years ago. Children with ventriculoperitoneal shunts typically become shunt dependent. 
Shunt failure or infection may complicate long-term survival, necessitating revision or 
replacement in nearly 25% of children measured 5 years after insertion. In many 
academic pediatric neurosurgical centers, it is a standard procedure to place a 
ventricular drain, as needed, at the time of S. The surgeon often can document 
reestablishment of CSF flow after fourth ventricular tumor resection. Later shunt 
insertion may be needed in 20% to 25% of children (111,112). A delayed shunt insertion 
approach provides physiologic CSF dynamics for the majority of children, avoiding 
potential late events related to a ventriculoperitoneal shunt. 

3.11.1.2 Radiation Therapy 

The efficacy of RT in MB was reported within a decade of Cushing’s initial description of 
the tumor. Cutler et al. (113) reported the radiation responsiveness of MB and the value of 
preventive RT of the entire neuraxis based on Cushing’s clinical series. The seminal report 
documenting cure of MB with CSI was published by Bloom et al. in 1969: they reported 
32% survival at 5 years and 25%  DFS at 10 years (114). Numerous reports have 
subsequently confirmed increasing rates of disease control with modern radiation 
techniques; at standard CSI dose levels, RT alone achieves durable disease control in 65% 
to 75% of patients with average-risk disease (115). Modifications of radiation volume, 
dosage, and fractionation have been explored. The outcome following postoperative 
irradiation alone in average-risk MB using conventional radiation parameters (POG-CCG 
trial, one arm of which used CSI to 36 Gy, posterior fossa boost to 54 Gy resulting in 65% 7 
year EFS) has been used as a basis for non randomized comparisons in establishing 
current standards for combined modality therapy in North America. The result is 
systematic reduction in CSI dosage to 23.4 Gy; with well documented efficacy now in 
average-risk disease when combined with contemporary cisplatin based CT (116,117). 
Agreement on combined chemo radiation is based on disease control rates that appear to 
be superior to those achieved with irradiation alone for both average-risk and high-risk 
presentations, a randomized European trial demonstrating improved outcome with 
chemo radiation compared to contemporary RT alone and several studies suggesting 
improvement in the risk: benefit ratio based on dose–volume modeling and evolving 
clinical data (118,119,120,121). 
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3.11.1.3 Chemotherapy 

Phase II trials have documented the chemo responsiveness of MB to alkylating agents: 
platinum compounds, etoposide, antimetabolites, and camptothecins (122,123). The trial 
documenting the efficacy of adjuvant CT was reported by CCG, combining the attenuated 
CSI dose in average risk patients that had shown only 55% EFS at 5 years in the POG-CCG 
trial referenced in the prior section with concurrent vincristine and post irradiation 
cisplatin, vincristine, and CCNU; the 79% PFS at 5 years confirmed earlier institutional 
experience to show among the best disease control rates then documented in this (124). 
The International Society for Pediatric Oncology (SIOP)-United Kingdom Children’s 
Cancer Study Group (UKCCSG) PNET-3 trial showed improved EFS with limited pre 
irradiation CT and full-dose irradiation versus equivalent irradiation alone: 78% EFS at 5 
years with pre irradiation  vincristine, etoposide, carboplatin and cyclophosphamide 
compared to 65% with irradiation alone (118). A large randomized trial assessing 
reduced-dose CSI followed by cisplatin and vincristine with “standard” CCNU versus 
cyclophosphamide confirmed overall EFS more than 80% with no difference in disease 
control on either CT arm; early analysis suggests that a larger number of secondary 
neoplasm may be apparent in the cyclophosphamide arm (117). St. Jude reported a 
prospective trial using post irradiation cyclophosphamide, vincristine and cisplatin; 83% 
EFS was obtained without sometimes toxic vincristine during RT and with a marked 
reduction in oto toxicity attending post irradiation cisplatin when the latter was given 
with amifostine (125). The standard of care for children with average risk MB throughout 
North America has been accepted as reduced dose CSI (23.4 Gy) followed by CT including 
an alkylating agent, vincristine and cisplatin. For patients with high risk disease, studies 
through the 1990s typically showed 5-year EFS at the 40% to 50% level following full dose 
irradiation and CT (126,127). St. Jude’s SJMB 96 study has shown 70% 5-year EFS 
following the same CT, preceded by full-dose CSI. Randomized trials have shown 
somewhat conflicting results regarding the sequence of postoperative therapy: POG 
showed 60% 5 year EFS in high-risk  MB regardless of postoperative preirradiation CT 
(cyclophosphamide, vincristine, cisplatin) or the opposite sequence, both using full-dose 
CSI. The German HIT’91 trial showed superior results with post operative RT followed by 
CCNU, vincristine and cisplatin compared to postoperative ifosfamide, etoposide, high-
dose methotrexate, cisplatin and cytosine arabinoside followed by irradiation: 83% 5-year 
EFS compared to 53%, respectively for M0 patients; no difference was noted in the M2–3 
cohort, both at 40% EFS (127). CCG 9931 documented a 17% PD rate during a prolonged, 5 
month preirradiation regimen, again showing only 43% EFS in high-risk disease (121). 
Similar trials have noted that outcome in average-risk patients receiving preirradiation CT 
correlates with response to CT; in the Milan trial, those with CR-PR to preirradiation CT 
enjoyed 94% PFS compared to 61% if only SD or PD attended CT (128). Several studies 
note that the time to initiating irradiation is related to disease control. For disease 
recurrent after RT with or without CT, numerous studies demonstrate chemo 
responsiveness to single agents, multiagent combinations, and high-dose therapy with 
hematologic stem cell rescue. Except in the infant setting, durable secondary disease 
control following initial CSI has only rarely been achieved despite aggressive, high-dose 
CT and further irradiation (129,130,131). Local irradiation can provide further control at 
the primary site (132). Trials of intrathecal CT in this setting are of interest, but to date 
with only limited phases I and II data (133). 
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3.12 Embryonal and malignant glial tumors in infants and young children 
Children younger than 3 years account for 15% to 25% of pediatric CNS neoplasms 

(134,135). Symptoms in this age group usually include enlarged head, lethargy, and 

vomiting. Tumors are predominantly supratentorial; in comparison to older children, infant 

tumors are more often malignant and may be more frequently metastatic at diagnosis. The 

most common types include astroglial tumors primarily low grade; among infants less than 

1 year old, up to 25% are high-grade malignant gliomas, embryonal neoplasms and 

ependymomas. Atypical teratoid rhabdoid tumors (ATRTs) occur predominantly in this age 

group (1,136,137). A significant proportion of intracranial teratomas and choroid plexus 

tumors present in young children below 12 to 18 months of age. Infantile desmoplastic 

neuroepithelial tumors  also arise predominantly in the very young. These lesions often are 

quite large, are peripherally located, and appear aggressive histologically, but typically 

display rather “benign,” low-grade behavior, rarely recurring after primary resection (1). OS 

rates for the embryonal brain tumors presenting in children younger than 3 to 4 years are 

lower than for older children (138,139). Tumor type, pattern of growth, and the therapeutic 

ratio for both S and RT are unfavorable when compared to older children. Operative 

morbidity and mortality rates are higher in infants; after RT, cognitive dysfunction, somatic 

alterations, endocrine deficits, and neurotoxicity are more pronounced than in older 

children 140). For malignant gliomas, there is actually suggestion that outcome exceeds that 

of older children and adults, based on apparent differences in biology and disease response 

to CT (141). 

3.12.1 Therapy 
For embryonal tumors with long-established chemosensitivity, a number of trials between 
1985 and 2000 explored the use of prolonged primary postoperative CT using delayed, 
diminished, or no irradiation. Several large series documented a high rate of 
chemoresponsiveness to a “standard” four-drug regimen (including cyclophosphamide, 
cisplatin, vincristine, etoposide) or to systemic methotrexate; durable disease control 
without RT was limited to 25-35% of cases in most trials, typically in those with localized 
disease amenable to complete resection at diagnosis (135,140,142,143). Successive trials from 
the German POG tested progressively more intense systemic and intrathecal methotrexate 
with an alternating drug program incorporating the agents noted above. While overall PFS 
in the HIT SKK 87 trial (1987 to 1993) was 53% in the favorable resected, M0 cohort, the 
study showed youngsters with desmoplastic MB enjoyed nearly 90% PFS. The SKK 92 study 
(1992 to 1997) intensified methotrexate and noted overall 5 year PFS of 58%; among the 
resected M0 group, 5 year PFS was 82%, with 14 of 17 survivors treated with S and CT only, 
absent RT which was used only for residual progressive disease. Once again, the results 
with desmoplastic histology were exceptional: 85% PFS compared to 34% PFS in those with 
classic MB (144). The second direction was suggested by Khalifa and the French group, 
where primary CT showed only 29% PFS at 5 years even among the most favorable, resected 
M0 cohort. Notable was the OS rate of 73%, reflecting excellent “salvage” therapy with high-
dose CT, busulfan–thiotepa, and local RT; among 39 patients treated, 5-year postsecondary 
treatment survival was 77% for those with M0 disease initially and at failure (143,145). 
Although the St. Jude group had also documented excellent salvage with CSI alone, the 
functional consequences of more limited RT in this age group seem self evident (140,142). 
Both POG and the Pediatric Brain Tumor Consortium (PBTC) initiated trials in the late 1990s 
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testing CT with planned, localized irradiation after the initial 4 months of CT. Results are yet 
in analysis, recognizing that among the M0 group that proceeded to consolidative local RT 
on PBTC 001, 5-year PFS is 85% and OS, 95%. All infant trials to date have shown poor 
outcome for the 20% of patients presenting with neuraxis dissemination, OS rates rarely 
exceeding 10% to 25% (143,145). Although CSI is curative in a significant proportion of 
children, the consequences of CSI at  effective dose levels are not considered acceptable 
(141).  Alternative use of aggressive, high-dose CT alone has been fraught with otherwise 
unseen toxicity, including toxic deaths and EFS for favorable presentations approximating 
50%; outcome in the M+ cohort has been essentially zero. Separate from MB is the 
immature, highly aggressive ATRT (1,146). ATRTs occur predominantly in young children, 
presenting in the posterior fossa; those occurring in children older than 3 years are more 
often supra-tentorial lesions. The lesions are histologically distinctive, and diagnosis by light 
microscopy and immuno-histochemistry is often definitive. The tumor is associated with 
monosomy of chromosome 22, a finding in common with extraneural primary rhabdoid 
tumors. Genetically, the tumor is associated with loss of the tumor suppressor gene 
hSNF5/INI1 in more than 75% of cases; absence of INI1 by FISH is diagnostic (139,146,147). 
Up to 15% to 25% of cases show  leptomeningeal dissemination at diagnosis (148). Although 
ATRTs often respond to CT (especially carboplatin-containing regimens), the disease course 
has been marked by rapid recurrence and neuraxis dissemination. There is an increasing 
evidence that the outcome is related to post operative RT; recent trials incorporate early 
local RT for children as young as 12 to 18 months old, ideally limiting postoperative CT to 4 
to 6 weeks (137,139,146,148). For children older than 3 years of age, use of post -operative 
CSI followed by CT has  resulted in 78% 2-year EFS compared to 11% for younger children 
in whom irradiation was delayed or avoided (148). 

3.12.2 Surgery 
As in older children, complete resection is often the primary predictor of disease control; for 

infant MB, the differences in outcome strongly favor attempted GTR in every major series 

regardless of the type and intensity of postoperative management. In the initial Baby POG 

study, OS for MB was 40%, compared with 60% for the one third of children who had 

undergone GTR and 69% for those with GTR and localized disease (135). In the latest 

published GHOP trial, PFS among all M0 cases falls from 82% to 50% based on the absence 

or presence of residual tumor post S, respectively (144). Delayed definitive S has been 

utilized for sizable MB or supratentorial PNETs in this age group. After initial CT, tumors 

may be reduced in size and vascularity, resulting in more successful tumor  resection. 

Choroid plexus tumors are often malignant carcinomas in this age group. The tumors 

typically arise in the  lateral ventricles; histology can be uncertain in predicting benign or 

malignant behavior, with carcinomas marked largely by brain invasiveness and atypia. 

Complete resection alone appears to be adequate, with few recurrent tumors following 

imaging confirmed removal even without added CT or RT (149). 

3.12.3 Radiation Therapy 
Evolving combinations of systematic or selected consolidative RT, RT for disease 
progression, or multimodality salvage regimens incorporating low or high-dose RT have 
resulted in RT as a component of therapy for nearly half of all surviving children in this age 
group. Important in the context of current strategies is identification of those cases most 
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likely to benefit from local irradiation, with consensus developing toward noting those with 
classic histology and localized MB or those with incompletely resected M0 desmoplastic MB. 
Using planned RT, typically within the first 4 months of postoperative CT, is key to 
avoiding the scenario of requiring more aggressive irradiation and CT for those who 
progress during or after more prolonged CT. Although salvage CSI has been successful in 
controlling more than 40% of recurrent MB, the ultimate 40% to 60% disease control was 
balanced by a median IQ of only 62 at 7 years (149). The latter finding has dampened 
enthusiasm for salvage CSI, at least at dosage levels greater than 24 Gy, in this age group. 

3.12.4 Chemotherapy 
The initial van Eys study of primary mechlorethamine vincristine, procarbazine, and 

prednisone (MOPP) CT at M.D. Anderson Cancer Center showed long term survival in 8 of 

11 infants with MB; 6 had not received RT (150). In the first POG trial with initial 

postoperative CT, the regimen included cycles of cyclophosphamide with vincristine and 

cisplatin with etoposide; response rates varied between MB, 48% partial and complete 

response rate among those with imaging residual, and malignant gliomas, 60% (110). PFS 

and OS rates at 5 years were 32% and 40% for MB, 43% and 50% for malignant gliomas, and 

0% and 0% for pineoblastomas; overall  5 year survival was 27% for supratentorial PNETs 

(107). As in subsequent infant trials, failures beyond 2 years have been uncommon except 

with ependymomas (140, 142,145,146). Most of the subsequent infant studies have used 

variations of the four drug regimens noted in the first POG trial; more intensive regimens 

have shown benefit in specific subsets of infant malignant tumors (143). The Head Start 

series of intensive CT have evolved to similar four drug induction with second  S for 

residual local tumor, followed by myeloablative doses of thiotepa, etoposide, and 

carboplatin. In the selected M0 resected medulloblastoma cohort, EFS at 5 years was 52%; 

OS of 70% those requiring irradiation for disease progression; toxicity has remained a 

problem with this approach.  

3.13 Ependymomas  
Intracranial ependymomas represent 5% to 8% of intracranial neoplasms in children. More 
than 90% of pediatric ependymomas occur as intracranial tumors; primary spinal cord 
tumors are relatively uncommon in children, where ependymomas represent 25% of 
primary spinal tumors. Two-thirds ependymomas in children present as posterior fossa 
lesions, arising along the inner surface of the fourth ventricle or at the cerebellopontine 
angle (CPA). It is quite common for such tumors to grow into the foramina of Luschka, on 
either side of the brainstem, toward and to the CPA (151,152). Presentation in the CPA is 
noted less commonly, occurring particularly in very young children. Fourth ventricular 
tumors also extend caudally beyond foramen magnum and into the upper cervical spine; 
extension is either  from caudal growth from foramen of Luschka or, more commonly, 
through the foramen of Magendie and then posteriorly from the cervicomedullary junction 
caudally (153). Growth below the foramen magnum marks nearly 50% of fourth ventricular 
lesions. Supratentorial ependymomas account for one third of childhood presentations, 
occurring predominantly as extra ventricular cerebral hemispheric tumors; growth is 
commonly adjacent to the third or lateral ventricular regions (153). Ependymomas consist 
histologically of polygonal cells with large vesicular nuclei and cytoplasmic granules. 
Characteristic are ependymal rosettes, formed by tumor cells oriented radially around a 
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central lumen; cells also have a tendency to orient themselves around blood vessels, forming 
perivascular pseudorosettes (1,154). Molecular genetic analyses highlight the origin of 
ependymomas from populations of neural progenitor cells that are genetically distinct in the 
supratentorial, posterior fossa, and spinal regions anatomically related patterns of gene 
expression and regions of chromosomal loss or gain mark the three sites independently 
(154). 
The WHO classification defines ependymomas as grade 1 (subependymomas or 
myxopapillary spinal ependymomas), grade 2 (classical ependymomas, including cellular, 
papillary, clear cell, and tancytic types), and grade 3 (anaplastic) (1,154). Subependymomas 
are benign neoplasms most often arising under the fourth ventricle, but also similarly 
adjacent to the lateral ventricles. Myxopapillary tumors are indolent lesions occurring 
primarily in young adults, specifically in the region of the cauda equina. Cellular tumors 
occur in extraventricular regions with a relatively low mitotic rate. Papillary ependymomas 
present along the ventricular surfaces. Clear cell tumors mimic oligodendrogliomas 
histologically, occurring primarily as supratentorial lesions; there is a suggestion that this  
variant is somewhat aggressive. Tancytic tumors grow as fascicles, usually within the spinal 
cord. Anaplastic ependymomas are marked by high mitotic rate, microvascular  
proliferation, and pseudopalisading necrosis. Ependymoblastoma are extremely rare, highly 
malignant primitive embryonal tumors occurring in infants as supratentorial lesions with 
features of an ependymal neoplasm; they are not considered in the classification of 
ependymomas, but rather as embryonal tumors. There have been conflicting reports 
regarding the correlation between tumor grade and survival. Some prominent 
neuropathologists in the 1980s reported no correlation between anaplasia or grade and 
clinical behavior (155). More recent series identify histology as one of the dominant features 
related to disease control after aggressive S and RT (156). Merchant et al. (157) reviewed the 
St. Jude historical experience, noting 3 year PFS of 84% among the 70% of children with 
differentiated ependymomas and 28% for the 30% of cases with anaplastic features. Late 
follow-up of Merchant’s expanded series confirms the impact of tumor grade on outcome. 
Multi-institutional reviews reflecting independent experience at 11 major US centers and 
that within the former POG document histopathology as a significant factor, with higher 
rates of 5-year EFS associated with differentiated histology but no statistical difference in OS 
for those with anaplastic tumors; the latter report includes a review of 1444 cases in the 
English literature between 1900 and 2005 substantiating such findings (158). Earlier data 
suggested a correlation between anaplasia and the frequency of neuraxis dissemination, 
particularly among fourth ventricular lesions. Merchant’s recent report detailing the largest 
prospective trial similarly documents a significant correlation between anaplastic histology 
and a higher rate of distant failure (159). Chromosomal abnormalities are present in 
approximately 50% of tumors, most commonly loss of the long arm of chromosome 22 or 6 
orgain in chromosome 1q. Alterations in the Wnt/β-catenin signaling pathway have been 
related to tumorigenesis in anaplastic ependymomas (160). The p53 pathway appears to be 
intact in ependymomas, although p53 induced G1 growth arrest is apparent in 
ependymomas, potentially implicated in radiation resistance (161). The tumors show 
expression of the ErbB receptors. Ependymomas are somewhat more common in boys, 
although young children show equal sex distribution or even a slight female predominance. 
The median age at diagnosis is 4 to 5 years; one third occur in children younger than 3 years, 
with typically inferior likelihood of disease control (151, 152,157,162). Ependymomas 
represent a somewhat higher proportion of CNS tumors in infants and young children. 
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Symptoms usually are non specific and related to fourth ventricular obstruction with 
headaches, vomiting and ataxia. Children with disease involving the CPA often show 
torticollis or cranial nerve signs. MRI often shows a non homogeneously enhancing lesion, 
diagnostic when there is characteristic involvement through the foramen of Luschka. 
Computed tomography often shows stippled calcification. 

3.13.1 Therapy 

3.13.1.1 Surgery 

Extent of resection is the dominant factor influencing outcome. Fourth ventricular lesions 
usually are adherent along the brainstem,  especially at the level of the obex, where surgical 
damage can result in significant cardiorespiratory compromise. Total or near total resection 
has classically been realized in 50% to 75% of cases (151,156,162,163,164). Current image 
guided neurosurgical techniques and recognition of the  importance of GTR have allowed 
major referral centers to achieve GTR in 80% to 90% of instances, sometimes requiring a 
second procedure to complete S before adjuvant RT (157). Even in very young children, 
complete or near complete resection is often feasible prior to initiating further therapy. The 
relationship between extent of resection and disease control has been apparent for several 
decades, with EFS averaging 50% to 75% after GTR compared with 30% to 45% with 
incomplete removal (165,166). With optimal postoperative RT in the prospective St. Jude 
trial, degree of resection is the single most significant correlate with outcome: 7-year EFS 
falls from 77% after GTR to 34% with near total or subtotal resection. Even in cases with 
metastatic disease at diagnosis, the impact of GTR on both 5-year EFS and OS is impressive, 
with 35% and 59% reported in a retrospective multinstitutional review. Total resection is 
associated with a low rate of operative mortality, 2.5% or less, and morbidity, 10% to 25% 
incidence of new neurologic deficits (167,168). Postoperative cranial nerve deficits are 
common, including components of the posterior fossa syndrome (164). The proximity of 
vital centers makes  GTR in the fourth ventricle rather challenging, particularly for those 
arising in or extending to the CPA (164,166). Total resection of supratentorial ependymomas 
is more readily achieved (184). The St. Jude experience with GTR in 96% of tumors 
originating in the CPA is marked by a 30% major complication rate, including need for 
tracheostomy, gastrostomy feeding tube, or major cranial nerve palsies. The rationale, 
continued improvement in neurologic function over time, and overall functional status of 
often young children has encouraged the neurosurgical team to continue aggressive 
resection for primary presentations, second S before irradiation, or for local recurrence (175). 
In young children with moderate disease residual, the option of initial CT with delayed S 
prior to RT has been noted for some time and is still under exploration (167,168). 

3.13.1.2 Radiation Therapy 

RT has been a routine component of therapy for ependymomas since the 1950s. The 
favorable results summarized above, following GTR, are based on  the addition of 
postoperative RT in almost all  instances (151,163,164). Earlier, two classic retrospective 
series confirmed the contribution of RT: Pollack et al. (162) recorded overall 5-year survival 
of 45% with surgery and irradiation, compared with 13% with Surgery alone, while 
Rousseau et al. (163) noted 63% survival at 5 years after RT and 23% without. Although 
there are limited data from Epstein’s New York University experience suggesting disease 
control for differentiated supratentorial ependymomas following S alone, there are very 
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little data documenting favorable disease control rates absent irradiation for posterior fossa 
presentations, patients with anaplastic histology, or those with any degree of residual 
disease (166). The prospective Italian Association for Pediatric Hematology and Oncology 
protocol reports inferior outcome when RT is deferred following S alone, with both inferior 
disease control and greater morbidity attendant to requisite second S. The excellent results 
with complete resection and postoperative RT, even in children as young as 12 to 18 months 
of age, are best demonstrated by Merchant’s series from St. Jude, where assiduously 
contoured target volumes for 3D CRT to relatively high-dose levels resulted in 74% EFS at 5 
years, with 87% local tumor control and 85% OS; the rate of local failure is 16% at 7 years 
(157). The series shows little decrement in outcome at 7 years, recognizing that longer term 
data reporting results from Children’s Hospital of Philadelphia (CHOP), University of 
Pennsylvania, and Washington University, St. Louis, both show a 10% or greater decline in 
EFS and OS between 5 and 10 years postirradiation (169). The coordination of aggressive 
surgical resection and prompt postoperative RT, even in the younger age cohort, resulted in 
an excellent rate of tumor control and OS with noted but relatively low rates of acute and 
subacute morbidities from S and RT; prospective data suggest relatively limited functional 
morbidities to date (170). Disease control rates and local tumor control are equivalent in 
cohorts younger or older than 3 years in the St. Jude data, based largely on S and RT (157). 
The recently completed COG trial ACNS0121 studied children more than 12 months of age 
with postoperative RT for those with complete or near total resection except supratentorial 
differentiated ependymomas, the latter to be observed after confirmed GTR; children with 
significant local residual had the option of initial CT followed by second look S prior to RT. 
There is a modest literature regarding retreatment for ependymomas recurrent following 
prior S and RT, with or without CT. Resection and full dose local reirradiation to 50 to 54 Gy 
resulted in secondary disease control for 10 of 13 children following local recurrence; among 
12 children with metastatic recurrence retreated with CSI, the 4 year secondary EFS was 53% 
(170). Tolerance has been surprisingly good, as reported in more eclectic series with 
stereotactic radiosurgery used for reirradiation in children and adults (171). 

3.13.1.3 Chemotherapy 

Ependymomas are only modestly chemosensitive tumors, with objective responses most 
apparent after exposure to cisplatin and oral etoposide (152,157,172). The only prospective, 
randomized trial that tested adjuvant CT (CCNU, vincristine, prednisone) after S and 
irradiation was completed by CCG in the early 1980’s (173). The trial was small, but there 
was no suggestion of improved disease control with CT; a subsequent randomized trial of 
adjuvant CCNU-vincristine-prednisone versus the “8-in-1” regimen showed no 
improvement in either arm of the trial; the group concluded that local tumor control was the 
dominant issue, inadequately addressed systemically. Needle reported a limited institution 
pilot study in children 3 to 14 year old where moderately aggressive carboplatin-vincristine 
alternating with ifosfamide-etoposide resulted in a 74% 5 year PFS rate, noting half the 
cohort had incomplete resection; the data reflect a combination intentionally derived from 
infant protocols, and it is in the latter setting that further assessment of dose intensive CT is 
ongoing. Gilbertson’s documentation of ERBB2 and ERBB4 coexpression in more then 75% 
of ependymomas specimens has prompted studies in the PBTC testing lapatinib, a 
molecular targeting agent active in preclinical models against ERBB expressing xenografts 
(174). Preliminary reports have not been encouraging with this approach, but trials of 
molecular agents are ongoing. Infant studies may be interpreted positively in documenting 
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that approximately 20% to 25% of children with ependymomas can be controlled with S and 
CT, absent RT; the more recent UKCCSG/SIOP study alone shows radiation free EFS at 5 
years of 42% (157,158,175). The CCG 9921 experience resulted in  5 year EFS of 32% with OS 
of 59% (142). The multidrug regimens have included the traditional four drug combination 
(cisplatin, etoposide, vincristine, and cyclophosphamide) or, more recently, the 
UKCCSG/SIOP dose intensive regime including sequential carboplatin and vincristine, 
high-dose methotrexate and vincristine, cyclophosphamide, and cisplatin (157,158). The St. 
Jude experience with a carboplatin based regimen showed 33% 5 year PFS and 62% OS in a 
series utilizing post CT irradiation with any imaging evidence of residual (141). The impact 
of RT on disease control in young children had been suggested in the first POG infant brain 
tumor study: children less than 3 year old received RT after 1 year of CT and those younger 
than 2 years were scheduled to receive irradiation after 2 years of CT. Long-term disease 
control was significantly higher in the older cohort, interpreted as likely to be related to 
earlier RT (157). Part of the rationale for continuing  primary CT in this age group is the 
potential ability for post CT S and RT to achieve ultimate disease control: the 5 year OS in 
the SFOP series was 59% despite the 22% rate of PFS. Timmermann et al. concluded that the 
27% EFS at 3 years following HIT SKK 87 and 92 CT (high-dose methotrexate based, both 
systemic and intrathecal) is inadequate, resulting in local failures in 75% of cases prior to 
irradiation and a 3 year OS rate of 56% (176). 

3.14 Brainstem glioma 
The brainstem is the connecting structure that joins the long tracts from the cerebral 

hemispheres and midline diencephalic nuclei with the cerebellar tracts. Brainstem tumors 

are a heterogeneous group of tumors that share common astrocytic histologies but evidence 

divergent neoplastic behavior and degrees of differentiation, related to the anatomic region 

of involvement. Brainstem tumors are classified by the anatomic area involved and the 

macroscopic appearance or pattern of growth: focal lesions are tumors that are  discrete or 

distinctly marginated on imaging, without apparent infiltration beyond the primary lesion, 

relatively limited in volume, and histology which is low grade, usually JPA, less often 

fibrillary astrocytoma (177,178). Focal tumors occur most often in the tectal plate and 

adjacent to pontine nuclei, sharing low grade histology with the largely exophytic tumors 

arising dorsally exophytic at the ponto medullary junction or in other locations of the 

brainstem (179). The more common diffusely infiltrating brainstem gliomas (DIBSG) arise in 

the pons, diffusely expanding the pons and extending rostrally to the cerebral peduncles of 

the midbrain and sometimes through the internal capsule of the thalamic region, or growing 

caudally to the medulla or upper spinal cord, less often through the peduncles into the 

cerebellum. DIBSG account for 75% to 85% of brainstem neoplasms in children and 

adolescents; focal and exophytic tumors represent 15% to 25% of cases (177,178,180,181). The 

duration of symptoms correlates with the type of brainstem glioma. Children with DIBSG 

report a brief history of neurologic symptoms, typically measured in weeks and certainly 

less than 6 months. Neurologic signs associated with the pontine DIBSGs  include cranial 

nerve deficits, long tract signs, and ataxia; dyspraxia and dysphagia are also rather common 

(180,181). Elevated intracranial pressure secondary to obstructive hydrocephalus is often 

present in midbrain tumors or in the expansile dorsally exophytic tumors that fill the fourth 

ventricle, but noted in fewer than 15% of children with pontine DIBSGs. The focal brainstem  
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tumors are often associated with prolonged, more limited symptoms, findings confined to 

deficits in one or two cranial nerves alone, ataxia, or dyspraxia, typically with minor long tract 

signs and a history measured in months or years (177,179,181,182). MRI is the definitive test for 

diagnosis and delineation of tumor extent and type. The typical diffusely infiltrating pontine 

glioma is homogeneous and  hypointense on T1 imaging but readily appreciated on T2 

sequence. DIBSGs expand the pons, often showing exophytic growth in the ventral, dorsal, 

and/or lateral directions as infiltrating lesions with indistinct margins; gadolinium 

enhancement is usually absent or minimal. Diffusion tensor imaging and tractography often 

show sparing of the dorsal columns of the pons with infiltration splaying the  longitudinal 

tracts. Focal brainstem tumors by definition show distinct margins, typically enhancing 

briskly. 18FDG PET is hypermetabolic in DIBSG; imaging histologic correlations show 

hyperactivity only among grade 4 or glioblastoma cases; anaplastic astrocytomas were 

isometabolic with normal brain or hypometabolic, while low-grade fibrillary gliomas were 

isometabolic (183). As a group, brainstem tumors constitute approximately 10% of intracranial 

tumors in children. The peak incidence occurs between the ages of 5 and 9 years; boys are 

affected more commonly than girls. The most common presenting symptomsfor DIBSGs 

include diplopia, lateralizing motor weakness, and difficulty with speech, swallowing, and 

walking. Neurologic signs include ataxia,  cranial nerve palsies and long tract signs. Tumors of 

the midbrain and medulla may be diffuse or focal; even diffuse tumors typically show much 

less infiltration and expansion of the brainstem than seen with the pontine gliomas. Focal 

intrinsic tumors do occur in the pons, often as localized tumors of a cranial nerve nucleus or 

along the cerebellopontine peduncle. Biopsy of the classic, diffusely infiltrating pontine glioma 

is generally unnecessary (178,181,182,184). Following trials in the 1980s of systematic open 

biopsy that yielded some of the basic knowledge correlating  imaging and histopathology, 

biopsy related neurologic compromise has led most US and European centers to biopsy only 

the 15% to 20% of atypical brainstem tumors, often demonstrating JPA or fibrillary 

astrocytoma (183). Stereotactic guidance has resulted in a rather safe approach to the 

brainstem tumors, with series from Paris, Germany, and Brussels showing current 

histopathology and clinic imaging correlations while reporting only minor, typically transient 

new neurologic deficits inapproximately 10% of instances (183,185). The more recent biopsy 

series shows rather divergent histopathology, clearly dependent on the selection  criteria for 

biopsy: 22 of 24 children showed anaplastic astrocytoma or glioblastoma, with 1 PNET and 1 

JPA reported from Hospital Necker-Enfants, compared to 10 of 20 in a more  selected series 

from Brussels, the remainder showing   fibrillary astrocytoma, JPA, PNET, or germ cell tumor 

(185). There is no consistent correlation between histology and outcome; all diffusely 

infiltrating pontine tumors show extremely poor duration of response to RT and median 

survival of less than 1 year (182, 186). Brainstem tumors have recently been shown to express 

ERBB1, with the degree of overexpression or less common amplification proportional to 

increasing histologic grade (187). The finding suggests that ErbB orEGFR inhibitors may be 

worth studying in these tumors, allowing selected therapeutic interventions.  A protocol 

considered by the PBTC would select patients for temozolomide based on MGMT expression 

and erlotinib if EGFR is positive. A small subset of DIBSG may show CNS dissemination. 

Gururangan et al. described neuraxis metastasis in 17% of 96 patients at a median of 15 months 

after diagnosis, presenting as parenchymal dissemination, leptomeningeal metastasis, or 

subependymal spread (188). The dorsally exophytic “benign” brainstem tumor 
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characteristically fills the fourth ventricle, presenting with symptoms and signs of elevated 

intracranial pressure. In most cases, the tumor enhances briskly with gadolinium. The origin 

from the floor of the fourth ventricle may be suggested by MRI but is usually apparent only at 

the time of S. These tumors are almost always JPA; the prognosis has been quite favorable 

(184,189). Focal tumors of the pons are uncommon. One specific presentation includes isolated 

facial nerve palsy or similar, limited neurologic dysfunction associated with a small, enhancing 

intrapontine lesion. Such tumors are JPAs and enjoy a favorable prognosis (190). Tumors of the 

midbrain may involve the tegmentum or the tectal plate. Tegmental tumors usually are 

fibrillary astrocytomas. The tumors may involve the tegmentum focally or may infiltrate 

through much of the midbrain. Lesions may show uniform enhancement or little contrast 

enhancement. Presenting signs include extra ocular muscle palsy or long track involvement. 

Biopsy is preferred, especially for lesions contiguous with the pineal region. Tectal plate 

tumors usually are quite small and well demarcated, confined to the tectal plate. MRI shows 

the focal nature of tectal lesions, most often signified by brisk enhancement; biopsy generally 

confirms JPA. These tumors are typically indolent; observation alone is usually the treatment 

of choice (179,180). If the tumor is anatomically confined to the tectum and stable over an 

initial 3 to 6 month period of observation, biopsy may be deferred unless there is evidence of 

tumor progression necessitating therapy (180,190). When lesions are atypical, larger than 10 cc 

in volume, or when there is some question whether the lesion originated in the adjacent pineal 

region, biopsy may be needed at diagnosis. If it is confirmed as a LGA, observation is 

appropriate. 

3.15 Therapy 
3.15.1 Surgery 
The role of S in classic pontine gliomas is limited. Interest in biopsy in the current era is largely 
to define the biology of the more common DIBSG and to document diagnosis for the atypical 
brainstem tumors, both intrinsic and exophytic (191,192). For dorsally exophytic tumors, 
judicious incomplete resection will establish the diagnosis and reduce the obstructing mass in 
the fourth ventricular region.  Although there is no documented advantage to aggressive S, it 
may be advantageous to remove the bulk of the lesion posteriorly, establishing CSF flow and 
reducing the bulk of tumor when it can be reasonably separated from the underlying margin 
of normal, functioning brainstem. Aggressive S as a primary intervention is often associated 
with unnecessary morbidity. Partial resection alone is associated with 50% to 70% EFS at 5 to 
10 years (189). Small focal lesions intrinsic to the pons may be biopsied if safely approachable; 
one cannot insist on biopsy if the differential diagnosis is limited and the biopsy-associated 
morbidity is high. Lesions in the tegmentum should be biopsied, although the potential 
morbidity of stereotactic biopsy is recognized because of the proximity of the central veins. 
Occasional resection has been reported for midbrain tumors (192). Tumors of the lower 
medulla or cervicomedullary region are similar to low grade astrocytomas of the spinal cord. 
Biopsy and attempted GTR have been reported; results after S alone have been impressive but 
limited to a small number of neurosurgical centers. Histology usually is LGA; malignant 
gliomas have been reported (191). 

3.15.2 Radiation Therapy 

Children with diffusely infiltrating pontine gliomas often respond impressively to RT. Up to 
70% show improvement in neurologic symptoms and signs over the course of irradiation; 
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objective reduction in tumor on MRI is apparent within 8 to 12 weeks of initiating RT. 
Unfortunately, signs of progressive disease are apparent systematically within 6 to 12 
months (193). Clinical response has also been noted in tegmental midbrain lesions and 
tumors of the medulla, where RT is more likely to achieve long term disease control. For 
tectal plate or dorsally exophytic pontomedullary astrocytomas, RT is typically deferred 
until signs of disease progression are apparent on imaging (189). Once progression has been 
documented on serial imaging, there has been almost uniform disease control measured out 
to more than 5 years after local irradiation. Intrinsic focal pontine lesions often require RT at 
diagnosis to control attendant neurologic signs. With the availability of precision volume 
techniques, the risk benefit ratio may favor earlier RT in localized, low grade brainstem  
lesions (194). 

3.15.3 Chemotherapy 
Despite documented transient response, there is little evidence of efficacy for CT in 

brainstem tumors.  An earlier prospective, randomized trial of CCNU, vincristine, and 

prednisone showed no benefit in these  tumors despite purported efficacy in supratentorial 

high grade gliomas (195). Adjuvant studies with concurrent or sequential CT or, more 

recently, trials incorporating molecular targeting agents  have failed to alter the PFS or OS 

data in this disease (196,197). Despite  efficacy in adults with hemispheric malignant 

gliomas, temozolomide has shown no advantage in DIBSG in children (198). Preirradiation 

CT regimens have shown some responsiveness, but early disease progression during CT 

and a lack of objective benefit in postRT intervals to progression have largely dampened 

enthusiasm for this approach, although a limited recent French trial testing preRT BCNU, 

cisplatin, and high-dose methotrexate continues to generate interest (199). Cross-study 

analyses of serial POG brainstem glioma trials actually suggested a detrimental effect when 

cisplatinum was added to high dose hyperfractionated  RT (200). Trials of non cytotoxic 

radiosensitizers have also been conducted in phases I and II settings for DIBSG; more recent 

experience with motexafin gadolinium has revealed little benefit (201). Demonstration that 

large molecules can be perfused directly through the brainstem using an intraaxial catheter 

for convection enhanced delivery raises the possibility of direct infusion of biologic agents 

for brainstem gliomas, a concept now being addressed in a phase I trial at the U.S. National 

Institutes of Health (202). For focal, LGA, the use of CT before RT is an extrapolation from 

diencephalic low grade tumors, which may be rational in selected settings (203).  For the 

majority of children, even those younger than 4 years, symptomatic or progressive dorsally 

exophytic or focal pontine lesions can be treated effectively with focal radiation techniques. 

It is difficult to anticipate any significant advantage in delaying definitive therapy with 

intervening CT. 

3.16 Cerebellar astrocytomas 
Cerebellar astrocytomas (CA) make up 10% to 15% of childhood brain tumors and 25% of 
posterior fossa neoplasms. These tumors are typically low grade, well circumscribed, and 
slowly growing with prominent cyst formation (204,205). The classic cystic CA presents as a 
unilocular cyst with a single prominent mural nodule. The cerebellum is one of the most 
common sites of origin for LGA in children, JPAs  comprise 80% to 95% of cases and DFA 
account for 5% to 15% (206). DFAs tend to be less circumscribed, more  infiltrative and 
expansile, with a less favorable prognosis relative to JPA; the diffuse tumors arise specified, 
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or as oligoastrocytomas. Malignant gliomas are quite uncommon in the childhood 
cerebellum. The median age at diagnosis is 5 to 6 years, with 20% of cases younger than 3 
years; astrocytomas of this  location are rarely found in infants (206,207). Presenting 
symptoms often are confined to those associated with elevated intracranial pressure, with 
less frequent altered cerebellar function; cranial nerve deficits are uncommon. The majority 
of tumors arise in the cerebellar hemispheres; approximately one third are primary vermis 
lesions. Most tumors are confined to the cerebellum; a minority extend to the 
cerebellopontine peduncle or the posterior aspect of the brainstem. The most characteristic 
appearance on computed tomography or MRI is a large, well circumscribed tumor with 
prominent cysts. The nodular or solid portion of the tumor characteristically enhances 
briskly; the cyst wall may or may not demonstrate contrast enhancement. The nodular and 
cystic components are considered part of the tumor; both components should be addressed 
at the time of S (206,207). Cerebellar JPAs have  uncommonly been associated with 
multifocal CNS involvement, representing either neuraxis dissemination or concurrent 
multifocal presentation (208). 

3.16.1 Therapy 

3.16.1.1 Surgery 

S is the treatment of choice for CA and the amount of resection has been found to be the 

most important prognostic factor for outcome. For classic cystic CA, GTR has been reported 

in 70% to 90% of cases (209). PFS for these children is in excess of 90%. Even in the setting of 

documented should residual, many tumors remain indolent. After imaging confirmed GTR, 

recurrence is uncommon, noted at 5% to 10% in major series (206,207,208). After incomplete 

resection, disease progression has been reported in 30% to 60% of cases at 5 years or more, 

long term survival remains above 65% (205,206,209). Infiltrative tumors and DFA are less 

likely to be amenable to GTR and are associated with a higher rate of disease progression or 

recurrence. Despite the indolent nature of these tumors, the median time to recurrence is 

about 2 years (205,206). Children who experience tumor recurrence amenable to resection 

may benefit from a second S.  

3.16.1.2 Radiation Therapy 

There is no established role for RT in the primary management of CA amenable to GTR and 

prognostic factors that may predict relapse after initial S alone be considered. Most series 

indicate greater risk of later disease progression in recurrent tumors, infiltrative tumors, 

astrocytomas that cannot be completely resected, and tumors with diffuse fibrillary 

histology or more aggressive histologic subtypes (206,207,208,209). Indications for RT 

include progression of incompletely resected tumors not amenable to second S and 

incomplete resection following recurrence. This is an uncommon situation for JPA, but is 

seen more frequently in tumors with diffuse fibrillary histology. Given recent data showing 

the efficacy of CT in delaying disease progression, CT may be the preferred  initial adjuvant 

treatment for these more aggressive presentations in very young children (210). There are no 

data substantiating improvement in disease control with postoperative RT following a 

complete resection (207,209,211). Lesions with an infiltrative pattern involving the peduncle 

or brainstem may require early RT when symptomatic or progressive. The treatment of 

high-grade CA generally includes multiple modalities and postoperative RT is recognized 
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as the standard of care. CSF dissemination is a recognized pattern of failure; CSI is typically 

considered only when overt CNS metastasis is documented (206,208,211). 

3.16.1.3 Chemotherapy  

Because most LGA located in the cerebellum are amenable to S and do not require adjuvant 
therapy, it is relatively rare to use CT for this specific tumor site. Multiple chemotherapeutic 
agents have been shown to delay progression (210,212). The most commonly administered 
regimen is the combination of carboplatin and vincristine.  
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