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1. Introduction  

Worldwide pesticide usage has increased dramatically during the past two decades, 
coinciding with changes in farming practices and increasingly intensive agriculture. 
Environmental pollution caused by pesticides, especially in aquatic ecosystems, has become 
a serious problem. Contamination of water by pesticides, either directly or indirectly, can 
lead to fish kills, reduced fish productivity, or elevated concentrations of undesirable 
chemicals in edible fish tissue which can affect the health of humans consuming these fish. 
Residual amounts of pesticides and their metabolites have been found in drinking water 
and foods, increasing concern for the possible threats to human health posed by exposure to 
these chemicals. Contamination of surface waters has been well documented worldwide and 
constitutes a major issue at local, regional, national, and global levels (Cerejeira et al., 2003; 
Spalding et al., 2003). 
Synthetic analogues of the pyrethrins, extracts from the ornamental Chrysanthemum 
cinerariaefolium, have been developed to circumvent the rapid photodegradation problem 
encountered with the natural insecticidal pyrethrins. The widespread use of these 
insecticides leads to the exposure of manufacturing workers, field applicators, the 
ecosystem, and the public to their possible toxic effects (Solomon et al., 2001). During 
investigations to modify the chemical structure of natural pyrethrins, a number of synthetic 
pyrethroids were produced with improved physical (involatility, lipophilicity) properties 
and greater insecticidal activity (knockdown). Several of the earlier synthetic pyrethroids 
have been successfully adapted for commercial use, mainly for the control of household 
insects. Other more recently developed pyrethroids have been introduced as agricultural 
insecticides because of their effectiveness against a wide range of insect pests and their non-
persistence in the environment. Synthetic pyrethroids are fairly rapidly degraded in soil and 
in plants. Ester hydrolysis and oxidation at various sites on the molecule are the major 
degradation processes. Pyrethroids are strongly adsorbed on soil and sediments, and 
minimally eluted with water. There is little tendency for bioaccumulation in organisms 
(Haya, 1989). More than 1,000 pyrethroids have been synthesized since 1973. Their toxicity 
for non-target organisms is in the parts per billion (Bradbury & Coast, 1989).  
Synthetic pyrethroids are non-systemic insecticides. Type I pyrethroids (e.g. bifenthrin, 
permethrin) block sodium channels in nerve filaments and cause the ‘T-syndrome’ in 
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mammals. Type II pyrethroids (e.g. cypermethrin, deltamethrin) act by blocking sodium 
channels and affecting the function of GABA-receptors in nerve filaments. In mammals, 
type II pyrethroids trigger clinical symptoms known as the ‘CS-syndrome’ (Roberts & 
Hudson, 1999).  
Deltamethrin [(S)-a-cyano-3-phenoxybenzyl(1R,3R)-3-(2,2-dibromvinyl)-2,2-dimethylcyclo 
propan-carboxylate], a widely used pesticide, is among the most effective pyrethroid 
preparations (Bradbury & Coast, 1989). Deltamethrin was synthesised in 1974 and first 
marketed in 1977. It works by paralysing the insect nervous system, giving a quick 
knockdown effect following surface contact or ingestion. It is commonly used to control 
caterpillars on apples, pears, and hops, and for the control of aphids, mealy bugs, scale 
insects, and whiteflies on greenhouse cucumbers, tomatoes, potted plants, and ornamentals. 
Deltamethrin is the active ingredient in Butoflin, Butoss, Butox, Cislin, Crackdown, Cresus, 
Decis, Decis-Prime, K-Othrin, and K-Otek. It is the first potent and photostable insecticide 
belonging to the type II pyrethroid group. In the summers of 1991 and 1995, the pesticide 
caused massive eel (Anguilla anguilla) kills in Lake Balaton, Hungary following application 
for mosquito control. In 1995, the presence of deltamethrin was demonstrated in several 
other fish species and in sediment samples taken from the lake (Balint et al., 1995). The 
mechanism of its toxicity in fish is the same as that of other pyrethroids containing -cyano-3-
phenoxybenzyl groups. They block the sodium channels of nerve filaments, lengthening the 
depolarisation phase. They also affect the GABA receptors in the nerve filaments (Eshleman 
& Murray, 1991).  
Cypermethrin [(RS)-α-cyano-3-phenoxybenzyl(1RS)-cis,trans-3-(2,2-dichlorovinyl)-2,2-
dimethylcyclopropane-carboxylate], another widely used pyrethroid pesticide, is among 
the most effective pyrethroid preparations (Bradbury & Coats, 1989). Cypermethrin is the 
active ingredient in Ammo, Arrivo, Barricade, Basathrin, Cymbush, Cymperator, Cynoff, 
Cypercopal, Cyperguard, Cyperhard, Cyperkill, Cypermar, Demon, Flectron, Fligene, 
Kafil, Polytrin, Siperin, and Super. The mechanism of its toxicity in fish is the same as that 
of other type II pyrethroids (Hayes, 1994). Cypermethrin is a synthetic pyrethroid used for 
the control of ectoparasites infesting cattle, sheep, poultry, and some companion animals. 
Recently, the compound has been used for the control of ectoparasite infestations 
(Lepeophtheirus salmonis and Caligus elongatus) in marine cage culture of Atlantic salmon, 
Salmo salar (Treasurer & Wadsworth, 2004). 
Bifenthrin [2-methylbiphenyl-3-ylmethyl (Z)-(1RS, 3RS)-3-(2-chloro-3,3,3-trifluoroprop-1-
enyl)-2,2-dimethylcyclopropane-carboxylate], a newer member of the synthetic pyrethroid 
family, is a contact insecticide and acaricide used on a variety of crops, on stored grain, and 
as a preconstruction termite barrier. Bifenthrin is the active ingredient in Talstar, 
Bifenthrine, Brigade, Capture, Torant, and Zipak. It is a type I pyrethroid (Shan et al., 1997), 
and has some structural similarities to cypermethrin, tetramethrin, and permethrin but is 
characterised by greater photostability and insecticidal activity than earlier pyrethroids 
(Yadav et al., 2003). It is effective as a gut or contact insecticide that affects the nervous 
system of vertebrates and invertebrates. Bifenthrin acts on sodium channels at the nerve cell 
endings to depolarize the presynaptic terminals. It also affects cellular ATPase production 
(Roberts and Hutson, 1999).  
Triazines (a six-membered ring containing three carbon and three nitrogen atoms) are some 
of the oldest herbicides, with research initiated on weed control properties during the early 
1950s. Triazine herbicides are categorized into two groups, the asymmetrical triazines, such 
as metribuzin, and the symmetrical triazines. The major commercially used symmetrical 
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triazines are simazine, atrazine, propazine, cyanazine, ametryn, prometryn, prometon, and 
terbutryn. As a chemical family, the triazines are a group of pesticides with a wide range of 
uses. Most are used in selective weed control programs, others, such as prometon, have no 
selective properties, which makes them suitable for use on industrial sites (Fan et al., 2007). A 
unique member of this family is cyromazine, which is an insect growth regulator useful in 
livestock, vegetable, and ornamental plant applications through interference with insect 
moulting and pupation. As herbicides, the triazines may be used alone or in combination with 
other herbicide active ingredients to increase the weed control spectrum (Solomon et al., 1996). 
Triazine’s herbicidal activity is mediated through the inhibition of photosynthesis (Das et al., 
2000) by blocking electron transport during the Hill reaction of photosystem-II (DeLorenzo et 
al., 2001). It binds to a plastoquinine-binding niche on D1, a 32-kD protein encoded by the 
psbA gene of the photosystem-II reaction complex (Das et al., 2000). In plants it is metabolised 
by oxidation to 2-hydroxy derivates and by side-chain de-alkylation (Roberts et al., 1998).  
Terbutryn [(N2-tert-butyl-N4-ethyl-6-methylthio-1,3,5-triazine-2,4-diamine] is used as a 
selective pre- and early post- emergence control agent of most grasses and many annual 
broadleaf weeds on a variety of crops, such as cereals, legumes, and tree fruits. It is also 
used as an herbicide for control of submerged and free-floating weeds and algae in water 
courses, reservoirs, and fish ponds (Tomlin, 2003). Terbutryn is the active ingredient in 
Prebane, Igran, Shortstop, Clarosan, GS 14260, Plantonit, Gesaprim Combi (with Atrazine 
1:1), Senate (with trietazine), and Igrater 50WP (with metobromuron 1:1). Terbutryn is 
moderately toxic to fish (Meister, 1992). Kidd & James (1991) reported the mean lethal 
toxicity of terbutryn (96 h LC50) 4 mg/L for common carp and 3 mg/L for rainbow trout. 
Large quantities of terbutryn have been used since the mid-1980s (Larsen et al., 2000). 
Terbutryn degrades slowly, with a half-life of 240 and 180 days in pond and river sediments, 
respectively (Muir et al., 1980). Its tendency to move from treated soils into water 
compartments through runoff and leaching has been demonstrated, and residual amounts 
of terbutryn and its metabolites have been found in drinking water and industrial food 
products long after application (Konstantinov et al., 2006). The application of terbutryn has 
been banned in many countries because it has the potential to bioaccumulate in organisms, 
but is still present in waters (Rioboo et al., 2007). Preparations containing terbutryn have not 
been registered in the Czech Republic since 2005, but its presence can be still detected in the 
environment. The highest concentration reported in surface water in the Czech Republic is 
0.02 µg/L (Velisek et al., 2010). In Europe terbutryn levels can reach values up to 5.6 µg/L 
(Quednow & Puttmann, 2007).  
Simazine (6-chloro-N,N'-diethyl-1,3,5-triazine-2,4-diamine) was introduced by the Swiss 
company J. R. Geigy (Cremlyn, 1990) in 1956 and is also a member of the triazine family of 
compounds. It is a selective herbicide used for control of annual broadleaf and grass weeds 
in raspberries, loganberries, highbush blueberries, apples, asparagus, and ornamentals. 
Non-crop uses include total weed control in industrial areas, at airports, along shelterbelts 
and rights-of-way, and for aquatic weed control in ditches, farm ponds, fish hatcheries, 
aquaria, and fountains (Arufe et al., 2004). Simazine is the active ingredient in Princep 
Caliber 90, Princep Liquid, Caliber, Cekusan, Cekusima, Framed, Gesatop, Simadex, 
Simanex, Simtrol, Tanzine, Totazine, and other trade name herbicides as well as in the 
algicide Aquazine. Simazine is slightly toxic to fish. Hashimoto & Nishiuchi (1981) give a 
value of 40 mg/L for 48hLC50 for common carp (Cyprinus carpio L.) and goldfish (Carassius 
auratus). Simazine degrades slowly, with an aerobic soil half-life of 91 days and an anaerobic 
aquatic half-life of 664 days. It is expected to be persistent in the environment, resulting in 
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the potential for this chemical to reach the aquatic environment through run-off. Simazine 
may also be expected to leach into groundwater systems due to high mobility in soil. It has 
been found to photo-degrade in soil, but to be resistant to aqueous abiotic reactions. Based 
on a low vapour pressure, volatilization is not expected to be an important process for 
simazine (Wackett et al., 2002). Simazine does not biomagnify in the food web, and its 
bioaccumulation potential is low, with bioconcentration factors (BCF) < 100. The depuration 
half-life in fish is < 7 days if the organism is transferred to uncontaminated water following 
exposure, indicating that simazine is rapidly excreted or metabolized (Niimi, 1987). 
Simazine is the second most commonly detected pesticide in surface and ground waters in 
the U.S., Europe, and Australia, presumably due to relatively high persistence (Inoue et al., 
2006). Its degradation products are detected less frequently than atrazine and other triazine 
pesticides in the aquatic environment. The highest concentration reported in surface water 
in the Czech Republic is 0.06 µg/L (Velisek et al., 2009a). In Europe simazine levels reach 
values up to 5 µg/L (Belmonte et al., 2005). Simazine was the most frequently detected 
pesticide in 20 counties in California, USA with concentrations ranging from 0.02 to 49.2 
µg/L (US Environmental Protection Agency [US EPA], 1994).  
The following is an overview of the ecotoxicological risks presented by pesticides to 
ecosystems, based on data of the toxicity and effects of pesticide preparations to non-target 
organisms, especially fish. The objective is to describe whether and how pyrethroids and 
triazines might affect fish physiology. These two groups of pesticides were chosen because 
1) the major negative impact of pyrethroids is their high toxicity to fish (e.g. fish mortality in 
Balaton in 1991 and 1995) combined with their use for control of some parasitic diseases in 
fish, e.g. Lepeophtherius salmonis in salmon farming; and 2) Triazine residues accumulate in 
fish tissue and s-triazines have been identified as relevant in a study on the prioritizing of 
substances dangerous to the aquatic environment in the member states of the European 
Community and are included in the EU Priority Pollutants List and the US EPA priority 
pollutants list.  

2. Experimentation 

2.1 Pyrethroids 

The toxic effect was assessed by the results of acute toxicity tests and results of 
haematological, biochemical, and histological examination of rainbow trout and common 
carp after exposure to selected pyrethroid pesticides. We selected three active pyrethroid-
based substances: deltamethrin (ingredient of Decis EW 50 - 50 g/L deltamethrin), 
cypermethrin (ingredient of Alimetrin 10 EM - 100 g/L cypermethrin), and bifenthrin 
(ingredient of Talstar EC 10 - 100 g/L bifrenthrin). 

2.1.1 Acute toxicity test 

The acute toxicity test on rainbow trout and common carp with selected pyrethroid 
pesticides followed the OECD Directive No. 203 ‘Fish, acute toxicity test.’ Seven 
concentrations and a control were used in the basic test. Ten fish were used for each 
concentration and for the control group. The test was conducted semi-statically for 96 h. Fish 
mortalities were recorded at 24, 48, 72, and 96 h. Fish status and behaviour, along with 
water temperature, pH, and oxygen saturation were monitored throughout the test. The 
bath was changed every 12 h. The LC50, LC0, and LC100 values for the respective time 
intervals were determined by probit analysis (EKO-TOX 5.1 software). 
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2.1.2 Biochemical, haematological profile, and histopathological examination 
following pyrethroid exposure  

Examinations were performed the 96 h exposure period with deltamethrin, cypermethrin, 
and bifenthrin at an exposure level of 96hLC50. Rainbow trout or carp, respectively in the 
control group were monitored concurrently. The test was performed in sixteen 300 l tanks. 
Each tank contained 20 rainbow trout or common carp, i.e. six tanks with 96hLC50 of 
deltamethrin, cypermethrin, or bifenthrin, and one control tank with rainbow trout and one 
control tank with carp. Tanks for all treated fish and controls were replicated, Presence of 
the tested substance (above 80% of the nominal concentration) was ensured through a 12 h 
exchange of the water bath. Determination of pyrethroid concentration in water was 
measured using gas chromatography (Mekebri et al., 2008). 
Forty-eight experimental (8 fish from each pesticide duplicated) carp or rainbow trout and 
sixteen control carp or rainbow trout were selected at random and used for haematological, 
biochemical, and histological examination at the end of the 96 h exposure. Blood was 

sampled from the vena caudalis, using an 18G  1 1/2 in syringe. Fish were not anaesthetized 
prior to blood sampling, as they were calm due to low water temperature and there was no 
danger of tissue trauma or handling stress. Heparin was used as an anticoagulant (Heparin 
inj., Leciva, Czech Republic) at a concentration of 40 I.U. heparin sodium salt in 1 ml blood. 
The indices used to evaluate the haematological profile included erythrocyte count (RBC), 
haemoglobin concentration (Hb), haematocrit (PCV), mean erythrocyte volume (MCV), 
mean colour concentration (MCHC), erythrocyte haemoglobin (MCH), leukocyte count 
(Leuko), and the differential leukocyte count (Leukogram). The procedures were based on 
unified methods for haematological examination of fish (Svobodova et al., 1991). 
Blood was sampled by v. caudalis as mentioned above. Plasma was obtained by centrifuging 

blood samples in a cooled centrifuge (4 °C, 837×g). Plasma samples were held at -80 C until 
analysis. Biochemical indices included glucose (GLU), total proteins (TP), albumins (ALB), 
total globulins (GLOB), ammonia (NH3), tricylglycerols (TAG), aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), gama-glutamyl-
transferase (GGT), creatine kinase (CK), lactate (LACT), alkaline phosphatase (ALP), calcium 
(Ca2+), magnesium (Mg), and inorganic phosphate (PHOS). For the biochemical analysis of 
blood plasma, the VETTEST 8008 analyzer (IDEXX Laboratories Inc., Maine, USA) was used.  
For histological studies, gill, skin, liver, cranial and caudal kidney, and spleen were fixed in 
a solution containing ethanol, formalin, and acetic acid (ALFAC) and stored in 70% ethanol. 
Tissues were embedded in paraffin, sectioned (5 µm), and the slides stained with 
haematoxylin and eosin (H&E). The sections were examined by light microscopy, using as 
reference Takashima & Hibiya (1995), and photographed using a digital camera.  

2.2 Triazines 

The effect of triazines was assessed by the results of biometric, haematological, biochemical, 
liver biomarker, and histological examination of common carp following long-term 
(chronic) exposure to selected triazine pesticides. From triazine we selected two active 
substances: terbutryn (Sigma Aldrich, Czech Republic, chemical purity 99.2%) and simazine 
(Sigma Aldrich, Czech Republic, chemical purity 99.5%).  
Fish were acclimatized for 10 days before the beginning of the experiment and fed 
commercial food. The experiment was a semi-static assay conducted over 90 days. One 
hundred sixty one-year-old common carp were allocated, in groups of 10, to one of three 
experimental regimes or to an untreated control group for each active substance. The 
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conditions were duplicated for a total of sixteen groups, each held in an aquarium 
containing 200 L water. Aquaria for all treated fish and controls were replicated, and fish 
were transferred daily to the replicate aquarium containing freshly diluted terbutryn or 
simazine at the appropriate concentration, or freshwater for the controls. Fish were fed 
commercial fish pellets at about 1% body weight per day in two feedings. Terbutryn and 
simazine concentrations were checked daily by high performance liquid chromatography 
HPLC (Katsumata et al., 2005; Richter & Nagel, 2007). 
The experimental fish were exposed to terbutryn at the following concentrations in water: 
Group 1, 0.02 µg/L (reported environmental concentration in Czech rivers); Group 2, 0.2 
µg/L; and Group 3, 2 µg/L. The terbutryn concentrations of 0.2 µg/L and 2 µg/L 
corresponded to the 0.0005% 96hLC50 and 0.005% 96hLC50 determined for carp. The 
experimental fish were exposed to simazine at the following concentrations in water: Group 
1, 0.06 µg/L (reported environmental concentration in Czech rivers); Group 2, 2 µg/L; and 
Group 3, 4 µg/L. The simazine concentrations of 2 µg/L and 4 µg/L corresponded to the 
0.5% 48hLC50 and 1% 48hLC50 for carp. 

2.2.1 Biochemical, haematological profile, liver biomarkers, and histopathological 
examination after triazine exposure 

After 90 days exposure, the fish were individually sampled and weighed. Eight fish from 
each replicate of each group were examined to determine biometric parameters, and 
haematological, biochemical, and histopathological profiles. 
Blood was drawn from the v. caudalis and samples stabilized with 50 IU sodium heparin 1 
mL blood. Erythrocyte count, haemoglobin concentration, haematocrit, mean erythrocyte 
volume, mean colour concentration, erythrocyte haemoglobin, leukocyte count, and the 
differential leukocyte count, were determined (Svobodova et al., 1991). 

Blood was separated by centrifugation at 12 000 x g for 10 min at 4 C. Plasma samples were 

held at -80 C until analysis. Biochemical indices evaluated included glucose, total protein, 
albumin, total globulins, ammonia, triacylglycerols, aspartate aminotransferase, alanine 
aminotransferase, gama-glutamyl-transferase, lactate dehydrogenase, creatine kinase, 
creatine (CREA), lactate, amylase (AMYL), lipase (LIPA), alkaline phosphatase, calcium, 
magnesium, and inorganic phosphate. For the biochemical analysis of plasma, the VETTEST 
8008 analyzer. Vitellogenin (VTG) and 11-ketotestosterone (KT) in plasma was measured 
using pre-coated ELISA kits (Biosense Laboratories Norway) according to the 
manufacturer’s instructions. The use of carp VTG ELISA for determination of vitellogenin in 
carp was validated by Flammarion et al. (2000). Absorbance was measured using an SLT 
Spectra (A5082) set at 492 nm for VTG and at 420 nm for KT detection.  
After blood sampling, body weight (BW) and standard length (SL) were recorded. 
Condition factor (CF) of each fish was calculated according to the formula CF = BW (g)/SL 
(cm)3 x 100. Liver weight (LW) and spleen weight (SW) were determined, and a 
hepatosomatic index (HSI) for each fish was calculated (HSI = LW/BW x 100). 
Samples of liver were taken for biomarker examinations. The tissue was quickly removed, 
immediately frozen, and stored at -80 ºC until analysis. Liver samples were homogenized in 
buffer (0.25 M saccharose, 0.01 M TRIS and 0.1 mM EDTA) and centrifuged at 10 000 x g for 
15 min at 4 °C. The supernatant was transferred to ultracentrifugation tubes and centrifuged 
again at 100 000 x g for 1 h at 4 °C. The supernatant was drained, and pellets were washed 
with buffer and resuspended in buffer. This suspension was put into individual Eppendorf 
tubes. Before the enzymes were assayed, microsomal protein concentrations were 
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determined by the Lowry method (Lowry et al., 1951). The hepatic ethoxyresorufin-O-
deethylase (EROD) activity was determined spectrofluorometrically. In the presence of 
NADPH, EROD activity converts the substrate ethoxyresorufin, which is a fluorescent 
product. Standard phosphate buffer, NADPH, and suspension adequate for 0.2 mg/mL 
protein were put into a cell. Ethoxyresorufin was added, and the increase in fluorescence 
was monitored for 5 min (excitation/emission wavelengths were 535/585 nm). The EROD 
activity was subsequently calculated based on comparison with fluorescence of the standard 
(resorufin) of known concentration. Total cytochrome P450 (Cyt P450) was determined by 
visible light spectrophotometry at 400-490 nm on the basis of the difference between 
absorbance readings at 450 and 490 nm, and the values were transformed to final 
concentrations. Measurements were made after cytochrome reduction by sodium dithionite 
and after the complex with carbon oxide was formed (Siroka et al., 2005). 
Thawed liver samples were extracted with phosphate buffer (pH 7.2) and homogenized. The 
homogenates were centrifuged (10 000 x g for 10 min, at 4 °C) and supernatants used for 
determination of GST, GSH, and protein concentration. Glutathione-S-transferase activity 
was measured spectrophotometrically using 25 mM 1-chloro-2,4-dinitrobenzene (CDNB) as 
a substrate and 10 mM GSH in phosphate buffer saline (pH 7.2) (Habig et al., 1974). Reduced 
glutathione was determined according to the method of Ellman (1959) using 1 mM 5,50-
dithiobis-2-nitrobenzoic acid (DTNB) as a substrate. Absorbance of GSH-DTNB conjugate 
was assessed at 412 nm, and GSH concentrations were calculated according to the standard 
calibration. Protein concentration was quantified with the Bicinchoninic Acid Protein Assay 
Kit (Sigma–Aldrich) using bovine serum albumin as standard. 
For histological studies, the liver, spleen, cranial and caudal kidney were fixed in a solution 
containing ethanol, formalin, and acetic acid, and stored in 70% ethanol. Tissues were 
embedded in paraffin, sectioned (5 µm), and the slides stained with H&E. The sections were 
examined by light microscopy, and photographed using a digital camera. 

2.3 Statistical analysis 

Statistical analysis was carried out using Statistica software 8.0 for Windows (StatSoft). Data 
were first tested for normality (Kolmogorov-Smirnov test) and homoskedasticity of variance 
(Bartlett’s test). If those conditions were satisfied, one-way analysis of variance (ANOVA) 
was employed to determine whether there were any significant differences in measured 
variables between control and experimental groups. When a difference was detected (P < 
0.05), Tukey’s multiple comparison test was applied to identify which treatments were 
significantly different. If the conditions for ANOVA were not satisfied, the non-parametric 
Kruskal-Wallis test was used. 

3. Results 

3.1 Pyrethroids 

For the acute test with deltamethrin, cypermethrin, and bifenthrin, juvenile rainbow trout 
(Kamloops), 4.10-26.50 g body weight and 65.10-154.00 mm body length and juvenile common 
carp (mirror carp M 72), 9.90-15.30 g body weight and 59.00-75.20 mm body length, were used.  
For examinations of pyrethroid effects on haematological, biochemical, and histological 
profiles, one-to-two-year old rainbow trout of 115.49-309.18 g weight and 241-307 mm body 
length, and one-to-two-year old common carp of 115.49-832.80 g body weight and 184-366 
mm average body length were used.  
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3.1.1 Acute toxicity of pyrethroids 

The LC0, LC50, and LC100 values of deltamethrin, cypermethrin, and bifenthrin for rainbow 
trout and common carp juveniles are given in Table 1.  
 

 rainbow trout common carp 

LC0 LC50 LC100 LC0 LC50 LC100 

deltamethrin 0.50 1.00 2.50 2.14 3.25 6.08 

cypermethrin 1.98 3.14 4.96 1.82 2.91 4.64 

bifenthrin 1.04 1.47 2.09 2.15 5.75 10.51 

Table 1. Acute toxicity of pyrethroids in rainbow trout and common carp juveniles 
(value μg/L) (Dobsikova et al., 2006; Velisek et al., 2006a,b, 2007, 2009b,c). 

In the course of acute exposure to pyrethroid pesticides, the following clinical symptoms 
were observed: increased respiration, loss of coordination, and fish lying on their flank and 
moving in this orientation. Subsequent short excitation stages with convulsions, jumping 
above the water surface, and moving in circles alternated with resting. Necropsy performed 
after the acute toxicity test revealed increased watery mucus on body surfaces. The body 
cavity contained excess fluid and showed congestion of visceral vessels. 

3.1.2 Biochemical examination after pyrethroid exposure  

Acute exposure to deltamethrin in rainbow trout was associated with a significantly (P < 
0.05) lower concentration of GLU, ALT, and significantly (P < 0.05) greater of TP, ALB, NH3, 
AST, and Ca2+ compared to controls. The common carp exposed to deltamthrin exhibited 
significantly higher (P < 0.05) value of NH3, AST, and ALT compared to controls.  
Acute exposure to cypermethrin resulted in a significantly (P < 0.01) lower concentration of 
ALP and significantly (P < 0.01) higher concentration of NH3, AST, LDH, CK, and LACT in 
rainbow trout compared to controls fish. In common carp cypermethrin resulted in a 
significant (P < 0.01) lower in TP, ALB, GLOB, NH3, LDH, and ALP, and a significant (P < 
0.01) higher in GLU, LACT, and CK levels compared to controls. 
Acute exposure to bifenthrin resulted in significantly (P < 0.01) lower NH3 and significantly 
(P < 0.01) higher concentrations of GLU, LDH, ALP, and CK in rainbow trout compared to 
control trout. Common carp exposed to bifenthrin showed significantly (P < 0.01) higher 
levels of GLU, NH3, AST and CK compared to controls.  

3.1.3 Haematological examination after pyrethroid exposure 

Acute exposure of rainbow trout to deltamethrin was associated with significantly higher (P 
< 0.05) erythrocyte count, haemoglobin content, and haematocrit than in the control group. 
On the other hand, deltamethrin exposure in common carp led to significantly lower values 
(P < 0.01) of RBC, Hb and PCV compared to controls. 
Rainbow trout acute exposed to cypermethrin exhibited significantly lower (P < 0.05) 
numbers of developmental forms of myeloid sequence and segmented neutrophilic 
granulocytes than did untreated fish. Moreover, cypermethrin exposure in common carp 
resulted in significantly (P < 0.01) higher values of RBC, MCV, MCH, and lymphocyte count 
(P < 0.01) compared to controls. 
Acute exposure of rainbow trout to bifenthrin caused significantly higher (P < 0.01) values 
of MCV, MCH, and neutrophil granulocyte count compared to controls. In common carp 
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bifenthrin was associated only with significantly higher (P < 0.01) of monocyte counts 
compared to control fish. 

3.1.4 Histopathological examination after pyrethroids exposure  
Acute exposure of deltamethrin did not cause histopathological changes in gills, skin, liver, 
spleen, cranial and caudal kidney of rainbow trout and common carp. 
Acute toxicity exposure (96 h) of cypermethrin caused severe teleagioectasia in the 
secondary lamellae of gills with the rupture of pillar cells (Fig. 1) and degeneration of 
hepatocytes, especially in the periportal zones in rainbow tout. Affected hepatocytes 
showed pycnotic nuclei and many small vacuoles or one large vacuole in the cytoplasm. The 
shape of vacuoles was typical for fatty degeneration of liver.  
 

 

Fig. 1. Gill of rainbow trout with teleangioectasia in the secondary lamellae after acute 
cypermethrin exposure; H&E, x100 (from Velisek et al., 2006a). 

In carp, acute exposure to cypermethrin resulted in hyperaemia and perivascular 
lymphocyte infiltration in skin, mild hyperplasia of respiratory epithelium chloride cell 
activation in the gills (Fig. 2), and vacuolisation of pancreas exocrine cells (Fig. 3).  
 

 

Fig. 2. Mild hyperplasia of respiratory epithelium and activation of chloride cells in carp 
gills after acute cypermethrin exposure (from Dobsikova et al., 2006). 

Acute exposure to bifenthrin in rainbow trout and common carp was associated with 
degeneration of hepatocytes (Fig. 4), especially in the periportal zones. Affected hepatocytes 
showed pycnotic nuclei and many small vacuoles or one large vacuole in the cytoplasm. 
Vacuole shape was typical of fatty degeneration of the liver. Moreover bifenthrin in 
common carp caused severe teleangioectasia in the secondary lamellae of gills, with the 
rupture of pillar cells. 
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Fig. 3. Vacuoles in pancreatic exocrine carp cells after acute cypermethrin exposure (from 
Dobsikova et al., 2006). 

 

 

Fig. 4. Liver of rainbow trout after acute exposure to bifenthrin (A) and control (B); H&E, x100. 
Note degenerated hepatic cells with pycnotic nuclei (arrows) (from Velisek et al., 2009b). 

3.2 Triazines 
For the long-term test with terbutryn, common carp, 297.38 ± 55.58 g mean body weight and 
222.3 ± 18.8 mm mean total body length, were used. For the long-term test with simazine, 
common carp, 353.24 ± 81.67 g mean body weight and 258.4 ± 19.6 mm mean total body 
length, were used. Common carp were obtained from a commercial hatchery (Vodnany, 
Czech Republic). 

3.2.1 Fish behaviour after long-term triazine exposure 
During the experiment with terbutryn and simazine both control and exposed common carp 
showed normal feeding behaviour. There were no signs of respiratory distress such as rapid 
ventilation, increased rate of gill opercular movements, or floating at the surface of water. 
There were no mortalities during the experiment. 

3.2.2 Biometric parameters after long-term triazine exposure 
Long-term exposure of terbutryn at concentrations of 0.02 µg/L, 0.2 µg/L, and 2 µg/L had 
no significant effects on biometric parameters (SL, BW, LW, SW, CF, and HSI) of 
experimental common carp.  
Biometric parameters of common carp exposed to simazine at the recorded environmental 
concentration of 0.06 µg/L showed no differences from untreated fish. Long-term exposure to 

www.intechopen.com



 
The Effects of Pyrethroid and Triazine Pesticides on Fish Physiology 

 

387 

simazine at concentrations of 2 µg/L and 4 µg/L caused significant increases (P < 0.01) in HSI 
relative to controls. No differences in the remaining parameters (SL, BW, LW, SW, and CF) 
investigated were found among any groups (Kruskal-Wallis test for all comparisons P > 0.05). 

3.2.3 Biochemical results of long-term triazine exposure 

Results of biochemical profiling after terbutryn exposure are given in Table 2. Biochemical 

profiles of common carp exposed to terbutryn at the recorded environmental concentration 

of 0.02 µg/L showed no differences from untreated fish. In fish exposed to terbutryn at 

concentrations of 0.2 and 2 µg/L, significant (P < 0.01) decreases in the level of CREA and 

Mg and a significant (P < 0.01) increase in GLU, AST, LDH, and LACT levels in plasma were 

observed compared with controls. The remaining indices: TP, ALB, GLOB, NH3, TAG, ALT, 

GGT, CK, AMYL, LIPA, ALP, Ca+2, PHOS, VTG, and KT were similar in all groups. 

 

Fish Group Control 1 2 3 

Terbutryn (g/L) - 0.02 0.2 2 

 Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

GLU (mmol/L)  4.35 ± 0.76 4.48 ± 0.43 9.62 ± 1.15* 8.54 ± 1.35* 

AST (kat/L) 1.12 ± 0.26 1.36 ± 0.19 3.11 ± 0.25* 3.36 ± 0.20* 

LDH (kat/L) 13.25 ± 1.28 14.11 ± 2.35 20.65 ± 3.62* 21.08 ± 3.01* 

CREA (mmol/L) 50.95 ± 5.67 48.63 ± 4.12 30.15 ± 2.54* 29.78 ± 3.14* 

LACT (mmol/L) 1.28 ± 0.28 1.02 ± 0.14 2.63 ± 0.58* 2.80 ± 0.36* 

Mg (mmol/L) 1.12 ± 0.11 1.18 ± 0.12 0.57 ± 0.10* 0.48 ± 0.13* 

Table 2. Derived biochemical parameters in common carp following long-term exposure to 
terbutryn (n = 16) (from Velisek et a., 2011a). *Experimental groups are significantly (P < 
0.01) different from the control. 

Biochemical profiles after simazine exposure are given in Table 3. Biochemical profiles of 

common carp exposed to simazine at the recorded environmental concentration of 0.06 

µg/L showed significantly (P < 0.01) higher of ALP activity compared to controls.  

 

Fish Group Control 1 2 3 

Simazin (g/L) - 0.06 2 4 

 Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

TP (g/L) 34.88 ± 5.58 33.75 ± 3.63 33.75 ± 2.44 24.50 ± 5.36* 

ALB (g/L) 5.38 ± 2.29 4.31 ± 1.62 5.50 ± 1.22 1.23 ± 1.65* 

ALT (kat/L) 0.26 ± 0.08 0.23 ± 0.09 0.05 ± 0.02* 0.05 ± 0.02* 

ALP (kat/L) 0.65 ± 0.04 0.21 ±  0.09** 0.23 ± 0.11** 0.17 ± 0.13** 

Table 3. Derived biochemical parameters in common carp following long-term exposure to 

simazine (n = 16). Experimental groups are significantly **P < 0.01 and *P < 0.05 different 

from controls (from Velisek et al., 2011b). 

Biochemical profiles of carp exposed to simazine at the concentration of 2 µg/L showed 

significantly higher activity of ALP (P < 0.01) and ALT (P < 0.05) than controls carp. In carp, 

simazine at a concentration of 4 µg/L caused a significant increase in TP (P < 0.05), ALB (P < 

0.05), ALP (P < 0.01) and ALT activity (P < 0.05) compared to controls.  
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The remaining indices, GLU, GLOB, NH3, TAG, AST, GGT, LDH, CK, CREA, LACT, AMYL, 
LIPA, Ca+2, Mg, PHOS, VTG, and KT were similar in all groups.  

3.2.4 Haematological results of long-term triazine exposure 

Haematological profiles following terbutryn exposure are given in Table 4. Haematological 
profiles of common carp exposed to terbutryn at the recorded environmental concentration 
of 0.02 µg/L showed no differences from untreated fish. In fish exposed of terbutryn at 
concentrations of 0.2 and 2 µg/L, RBC, lymphocyte counts, and mean corpuscular 
haemoglobin concentrations increased significantly (P < 0.01), and Leuko, neutrophil 
granulocyte bands, and MCV decreased significantly (P < 0.01) relative to controls. The 
values of Hb, PCV, and MCH were similar among all groups.  
 

Fish Group Control 1 2 3 

Terbutryn (g/L) - 0.02 0.2 2 

 Mean ± SD Mean ± SD Mean ± SD Mean ± SD 

RBC (T/L) 1.36 ± 0.27 1.25 ± 0.16 1.89 ± 0.11* 1.84 ± 0.10* 

MCV (fl) 187.38 ± 17.67 188.45 ± 23.84 126.63 ± 21.70* 132.30 ± 16.22* 

MCHC (g/L) 254.82 ± 13.24 261.49 ± 12.30 298.19 ± 17.83* 294.11 ± 10.37* 

Leuko (G/L) 97.00 ± 42.16 112.19 ± 57.88 31.06 ± 13.43* 28.32 ± 10.15* 

Lymphocytes 
(G/L) 

86.99 ± 6.86 104.06 ± 3.29 12.59 ± 4.16* 15.86 ± 3.26* 

Neutrophil 
granulocytes bands 
(G/L) 

6.12 ± 2.44 4.98 ± 2.62 16.50 ± 4.62* 10.97 ± 2.21* 

Table 4. Derived haematological parameters in common carp following long-term exposure 
to terbutryn (n = 16). *Experimental groups are significantly (P < 0.01) different from the 
control (from Velisek et al., 2011b). 

Simazine at concentrations of 0.06 µg/L, 2 µg/L, and 4 µg/L led to significant (P < 0.01) 
decrease in Leuko relative to controls after 90 days exposure. The values for Hb, PCV, MCH, 
MCV, MCHC, and the Leukogram were similar among all groups.  

3.2.5 Liver biomarkers after long-term triazine exposure 

Long-term exposure to terbutryn at concentrations of 0.02 µg/L (reported environmental 
concentration in Czech rivers), 0.2 µg/L, 2 µg/L, and simazine at concentrations of 0.06 
µg/L (reported environmental concentration in Czech rivers), 2 µg/L, and 4 µg/L had no 
significant effects on the activity of phase I detoxification enzymes (CYP 450, EROD) and 
phase II detoxification enzymes (GST, GSH) in liver.  

3.2.6 Histopathology following long-term triazine exposure 

No histopathological anomalies were demonstrated in liver, spleen, or cranial and caudal 

kidney of carp following long-term exposure to terbutryn at concentrations of 0.02, 0.2, and 

2 µg/L.  
Long-term exposure to simazine at concentrations of 0.06 µg/L, 2 µg/L, and 4 µg/L caused 
severe hyaline degeneration of the epithelial cells of renal tubules of the caudal kidney (Fig. 
5); while, in the control fish, the caudal kidney parenchyma was intact. The altered tubular 
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epithelium was atrophic in tubules, with and without casts. Some tubules appear expanded, 
but, if they did not contain casts, were small with a thickened basement membrane. No 
histopathological changes were demonstrated in liver, spleen, or cranial kidney following 
long-term exposure to simazine. 
 

 

Fig. 5. Caudal kidney of common carp following exposure to simazine in a 90 day trial. 
H&E, x200. C=control, G=group 4 (concentration 4 µg/L of simazine). The asterisks indicate 
areas of tubule destruction (from Velisek et al., 2011b). 

4. Discussion 

Laboratory studies of physiological responses in fish exposed to pesticides can provide 
information on, and help to elucidate the mechanisms of, the impact of pesticides on fish. 
The results reported here provide further data on acute exposure to pyrethroids and chronic 
exposure to triazine pesticides for consideration in risk assessment.  

4.1 Pyrethroids 

In recent years, awareness of residual pyrethroid pesticides in the aquatic environment is 

growing as investigations increase and analytical detection techniques improve. Fish 

exposed to insecticides exhibit a variety of physiological responses, including blood balance 

disturbances. Laboratory studies of biochemical responses in tissues of fish exposed to 

insecticides can help to elucidate the mechanism, and provide information on the impact of 

residual environmental insecticides on fish. 

In our study, the 96hLC50 of tested pyrethroid pesticides (deltamethrin, cypermethrin and 
bifenthrin) was found to be less than 6 μg/L. In view of this, deltamethrin, cypermethrin, 
and bifenthrin were included in the group of substances strongly toxic to fish. Bifenthrin is 
more toxic at cooler temperatures, and thus more toxic to cold water fish than to warm 
water species, but the toxicity of pyrethroids is little affected by pH or water hardness 
(Mauck et al., 1976). Pyrethroids are more toxic to smaller fish than larger ones (Baser et al., 
2003). The values found in the studies were in agreement with data reported by other 
authors who determined the toxicity of pyrethroid pesticides for various species of fish. Liu 
et al. (2005) report a 96hLC50 value of 2.08 μg/L and 0.80 μg/L for common carp and tilapia 
(Tilapia spp.), respectively. Bradbury & Coats (1989) report mean lethal toxicity of 
cypermethrin to various fish species in laboratory conditions to be below 10 µg/L. Shires 
(1985) reported the 96hLC50 value of cypermethrin for rainbow trout to be 2.57 µg/L. 
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Gangolli (1999) reports the values of 96hLC50 of deltamethrin in common carp and rainbow 
trout as ranging from 0.0005 to 0.0018 mg/L.  
Behaviour observation is considered a promising tool in ecotoxicology, and these studies are 
becoming prominent in toxicity assessments in many species, including fish. Since 
behaviour is not a random process, but rather a selective response that is constantly 
adapting through direct interaction with physical, chemical, social, and physiological 
aspects of the environment, behavioural endpoints serve as valuable tools to discern and 
evaluate effects of exposure to environmental stressors, and fish behavioural alterations can 
provide important indices for ecosystem assessment (Kane et al., 2005). Clinical symptoms 
(e.g. accelerated respiration, loss of movement and coordination, fish lying at the tank 
bottom and moving in one spot, subsequent short excitation periods with convulsions and 
movement in circles) observed during acute exposure of rainbow trout and common carp to 
pyrethroids (deltamethrin, cypermethrin and bifenthrin) correspond to observations by 
other authors reporting on the toxicity of pyrethroid pesticides (Dobsikova et al., 2006; 
Velisek et al., 2006a). Bradbury & Coats (1989) reported signs of fenvalerate poisoning in 
fish, that included loss of schooling behaviour, swimming near the water surface, 
hyperactivity, erratic swimming, seizures, loss of buoyancy, increased cough rate, increased 
gill mucus secretions, flaring of the gill arches, head shaking, and listlessness before death. 
The main acute haematological response of rainbow trout and common carp to the effects of 
pyrethroid was a significant change in the RBC, Hb, MCV, MCHC, lymphocyte, and 
segmented neutrophilic granulocyte counts. The reduction in RBC count and PCV value and 
the higher erythrocyte haemoglobin of fish can be attributed to haemodilution due to 
damage of organs and changes in the haematological parameters PCV, RBC, and Hb, which 
can be interpreted as a compensatory response to increase the O2 carrying capacity of the 
blood to maintain gas transfer, also indicating a change of the water-blood barrier for gas 
exchange in gill lamellae. Haematological results indicated decrease in nonspecific 
immunity. A decrease in PCV, Hb, Leuko and RBC has been reported in carp after 
poisoning with cypermethrin (Dorucu & Girgin, 2001), and a decrease in total leukocyte 
count and neutrophil granulocyte count was observed in carp following acute poisoning 
with permethrin (Sopinska & Guz, 1998). 
The change in blood GLU concentration after pyrethroid exposure demonstrated the 
response of exposed fish to metabolic stress. Cypermethrin caused an increase in plasma 
NH3 levels, presumably due to an increase in amino acid catabolism and a failure of 
ammonia excretion mechanisms. Increased NH3 concentration indicates organism inability 
to convert the toxic ammonia to less harmful substances. An enhanced energy demand 
caused by short-term pyrethroid stress stimulates the activity of glutamate dehydrogenase 
(GDH) which induces glutamate fission into ammonia and α-ketoglutaric acid utilized in the 
TCA cycle. The enzymes used for the purpose are LDH, CK, and transaminases AST and 
ALT. A significant increase in the activity of the above mentioned plasma enzymes indicates 
stress-related tissue impairment. Increased activity of transaminases indicated amplified 
transamination processes. An increase in transamination occurs with amino acid input into 
the TCA cycle to cope with the energy crisis during pyrethroid induced stress (Philip et al., 
1995). The changes in LDH level indicated metabolic changes, i.e. glycogen catabolism and 
glucose shift to the formation of lactate in stressed fish, primarily in the muscle tissue. Jee et 
al. (2005) found an increase in levels of serum glutamic-acid-oxylacetic-acid-transaminase, 
glutamic-acid-pyruvic-acid-transaminase, GLU, and ALP and a decrease in the 
concentration of plasma TP, ALB, cholesterol, and lysozyme in Korean rockfish (Sebastes 
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schlegeli) exposed to cypermethrin. Balint et al. (1995) observed an increase of GLU in 
common carp (Cyprinus carpio) after exposure to deltamethrin. Atamanalp et al. (2002) found 
changes in the concentration of Ca2+ and phosphorus in rainbow trout following 
cypermethrin exposure.  
We observed teleangioectasia of secondary lamellae of the gills and degeneration of 
hepatocytes in periportal zones in rainbow trout after cypermethrin exposure. 
Teleangioectasia indicate acute respiratory distress. Sarkar et al. (2005) found significant 
changes such as hyperplasia, disintegration of hepatic mass, and focal coagulative necrosis 
in Labeo rohita exposed to cypermethrin. Edwards et al. (1986) reported acute toxicity 
symptoms of cypermethrin in rainbow trout including gill flailing, hyperactivity, loss of 
buoyancy, and inability to remain upright. Cengiz (2006) observed histopathological effects 
of deltamethrin on the gill (desquamation, necrosis, aneurysm in secondary lamellae, lifting 
of the lamellar epithelium, oedema, epithelial hyperplasia, and fusion of the secondary 
lamellae) of common carp after acute exposure in concentration of 0.029 and 0.041 mg/L. 
Acute effects of pyrethroid pesticides in fish include damage of gills and behavioural 
changes. Because they are highly lipophilic, pyrethroids are likely to be strongly absorbed 
by the gills, even from water containing low levels of pyrethroids. Degeneration of 
hepatocytes in periportal zones can imply the influence of toxic compounds in the digestive 
tract. The biochemical changes in liver profile may also be related to hepatocyte damage. 
Significant changes such as hyperplasia, disintegration of hepatic mass, and focal 
coagulative necrosis were found in Labeo rohita exposed to cypermethrin (Jee et al., 2005). 

4.2 Triazines 

In order to make an accurate assessment of the hazards that a contaminant may pose to a 
natural system, behavioural indices selected for monitoring must reflect the organism’s 
behaviour in the field. Repeated opening and closing of the mouth and opercular 
movements are obvious indicators of a toxicant’s effect in fish. During the laboratory 
toxicity test, common carp exposed to terbutryn and simazine showed normal feeding 
habits and exhibited no abnormal behaviour. Velisek et al. (2009b) reported accelerated 
respiration and loss of movement coordination in rainbow trout and carp following acute 
poisoning with metribuzin. These characteristics have also been reported in Oreochromis 
niloticus and Chrysichthyes auratus (Hussein et al., 1996) and in Carassius auratus by Saglio & 
Trijasse (1998) following acute poisoning with atrazine. Movement imbalance in freshwater 
fish (Labeo rohita, Mystus vittatus, and Cirrhinus mrigala) exposed to simazine and cyanazine 
has been reported by Dad and Tripathi (1980). Oropesa et al. (2009) reported respiratory 
distress such as rapid ventilation, increased rate of gill cover movements, and floating at the 
surface of water in common carp after exposure to simazine. Our results differ from these, 
as, during the assay, both control and exposed carp behaved normally. However, different 
exposure regimes as well as different fish species were used in our study. 
Biometric parameters of common carp exposed to terbutryn or simazine at the recorded 
environmental concentration had no effects on biometric parameters. Only simazine in 
concentrations of 2 and 4 µg/L showed increases in HSI relative to controls. Biometric 
parameters are regarded as general indicators of fish health and the quality of the aquatic 
environment. The hepatosomatic index is a non-specific biomarker influenced by factors such 
sex, season, disease, and nutritional level. Dewey (1986) reported reduction in body weight 
and length and decrease of condition in brook trout (Salvelinus fontinalis) exposed 306 days to 
atrazine at a concentration of 120 µg/L. Davies et al. (1994) observed growth rate reduction in 
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the inanga (Galaxias maculatus) following exposure to low concentrations of atrazine. Atrazine, 
at doses of 100 and 1000 µg/L, showed no dose- or time-related effects on gonad growth (GSI) 
in either males or females over a 21-day study period (Spano et al., 2004). 
Biochemical profiles of blood can provide important information about the internal 
environment of the organism (Masopust, 2000). Biochemical alterations are usually the first 
detectable and quantifiable responses to environmental change. Chronic exposure to 
terbutryn at 0.2 and 2 µg/L resulted in a significant increased in plasma GLU concentration, 
demonstrating the response of exposed fish to metabolic stress. Mekkawy et al. (1996) 
observed increases in GLU levels in Nile tilapia (Oreochromis niloticus) and catfish 
(Chrysichtheys auratus) after atrazine exposure at 3 mg/L. Chronic exposure to simazine at 
0.06, 2, and 4 µg/L resulted in a significant decrease in plasma ALP activity. The source of 
ALP includes synthesis in the intestinal epithelium, kidney, and liver and is often increased 
in response to a biliary obstruction. Velisek et al. (2008) also reported decreased ALP in 
rainbow trout after acute exposure to metribuzin. Chronic exposure to terbutryn at 0.2 and 2 
µg/L resulted in significant increase in plasma AST and LDH activity. Chronic exposure to 
simazine at 2 and 4 µg/L resulted in a significant decrease in plasma ALT activity. LDH is 
the terminal enzyme of anaerobic glycolysis and therefore of crucial importance in muscle 
physiology, particularly in conditions of chemical stress when high levels of energy may be 
required for a short period of time (Monteiro et al., 2007). The increase in LDH level 
indicated metabolic changes, i.e. glycogen catabolism and a glucose shift towards the 
formation of lactate, primarily in muscle. A significant change in the activity of plasma 
enzymes LDH and the transaminases ALT and AST indicates stress-based tissue 
impairment. Change in activity of transaminases indicates amplified transamination 
processes. An increase in transamination occurs with amino acid input into the TCA cycle to 
cope with the energy crisis during pesticide stress. It has been suggested that, in general, 
stress induces elevation of the transamination pathway and is likely to have contributed to 
toxic effects induced by terbutryn and simazine and the altered transaminase activity 
observed in the present study. Chronic exposure to simazine at 4 µg/L resulted in 
significant decrease in plasma TP and ALB concentration. In these circumstances, changes in 
serum protein concentration might arise from protein leakage from damaged tissue. In the 
present study, the reduction of plasma protein and albumins with chronic exposure 

confirms the toxic effects of simazine on the immune system and/or the haemodilution 
effect, and may account for the pathological effects on caudal kidney. These results agree 
with Hussein et al. (1996) and Mekkawy et al. (1996) who reported a decrease of TP in 
atrazine exposed Nile tilapia and catfish. Davies et al. (1994) also observed a decrease in TP 
in rainbow trout after acute exposure to atrazine at a concentration of 50 µg/L. Other 
authors found changes in biochemical profiles of fish following triazine exposure. Velisek et 
al. (2009a) found a decrease in the activity of AST and an increase in GLU, NH3, LDH, CK, 
and CREA levels in common carp after subchronic exposure to simazine. The biochemical 
profiles determined in the present chapter suggest that internal organs and tissue of 
common carp were slightly altered with exposure to terbutryn and simazine. 
The evaluation of haematological characteristics of fish has become an important means of 
understanding normal and pathological processes and toxicological impacts. 
Haematological alterations are usually the first detectable and quantifiable responses to 
environmental change (Wendelaar Bonga, 1997). In our study, simazine was associated with 
decreased leukocyte count relative to controls. Leukocytes are involved in the regulation of 
immunological function and a protective response to stress in fish. The reduction in 
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leukocyte count occurs through an alteration in lymphopoesis and/or altered release of 
lymphocytes from lymphoid tissues. The decrease in leukocyte count in the present study 
indicates the stress condition of the fish subsequent to simazine exposure, which may have 
produced hypoxia and kidney damage. The response to environmental challenges often 
leads to leucopenia with lymphopenia and sometimes neutrophilia, which is similar to the 
classic leukocytic response to stress in mammals (Ainsworth, 1992). In the present study, the 
decrease in leukocyte count and the lymphopenia in carp exposed to terbutryn indicated a 
reduction in non-specific immunity. Prolonged stress may have caused disruption of 
leukopoiesis, resulting in reduction in the total leukocyte count. Exposure to terbutryn was 
associated with the highest RBC value in fish exposed to the higher concentrations, when 
stress-induced RBC release from spleen to blood circulation was reported (Tort et al., 2002).. 
Haematological changes may result from the release of immature erythrocytes from the 
spleen and could be an immediate response to acute stress mediated by catecholamines. 
Oropesa et al. (2009) reported no effect on the haematological profiles of common carp 
exposed to 45 µg/L simazine.  
The present experiments attempted to evaluate xenoestrogenic potency of triazine pesticide 
using vitellogenin and 11-ketotestosterone as a biomarker of exposure to (xeno)oestrogens. 
The monitoring of VTG and KT are proving to be useful tools for study of the effects of 
endocrine disrupting chemicals in fish. Synthesis of VTG, a lipophosphoprotein, is induced 
by oestradiol in the liver of female fish. Its presence in male and juvenile fish indicates 
contact with xenoestrogenic compounds, since VTG synthesis is oestrogen-dependent. In the 
presence of substances with oestrogenic effects, synthesis of VTG is carried out in the liver 
of male fish, which may lead to degenerative alterations of male gonads, reproductive 
breakdown, and, in extreme cases, sex reversal. Crain et al. (1997) showed that chloro-s-
triazine herbicides have the ability to stimulate production of the enzyme aromatase, which 
converts androgens to oestrogens, and presumably could interfere with sex differentiation 
and development. However, terbutryn and simazine did not further influence plasma VTG 
and KT levels in the exposed fish after 90 days. Moore & Waring (1998) observed that an 
atrazine concentration of 3.6 µg/L altered plasma testosterone and, at 6.0 µg/L, affected KT 
in Atlantic salmon (Salmo salar). Tennant et al. (1994), working with rats, concluded that, 
while the chloro-s-triazine herbicides atrazine and simazine did not possess any intrinsic 
oestrogenic activity, these two compounds were capable of weak inhibition of oestrogen-
stimulated responses in the rat uterus (i.e., effect on progesterone receptor binding and 
thymidine incorporation into uterine DNA).  
Determination of enzymes and cofactors involved in xenobiotic biotransformation is widely 
practiced for assessment of exposure to pollutants. As compared with phase I systems, the 
induction responses of phase II enzymes are generally less pronounced. Cytochrome P450, 
members of a large family of heme proteins, are membrane-bound proteins which are 
predominantly located in the endoplasmic reticulum of the liver. The CYP450 reactions can 
be grouped according to the type of substrate and separated into the synthesis and 
degradation of endogenous substrates and the metabolism of xenobiotic substrates. The 
presence of the CYP450 1A isoform is expressed as EROD activity. The EROD activity may 
be indicative of the cytochrome P4501A1 enzyme system function. Induction of EROD is 
commonly observed in fish and other vertebrates exposed to Ah-receptor agonists (i.e. 
dioxins, polychlorinated biphenyls, polyaromatic hydrocarbons, pesticides) (reviewed in 
van der Oost et al., 2003). The liver is probably the most commonly studied organ in 
preclinical toxicology as a detoxification organ essential for the excretion of toxic substances 
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in animals. The major site of cytochrome P450 expression in teleost fish is the liver. 
Tripeptide glutathione (L-γ-glutamyl-cysteinyl-glycine; GSH) is a major component of 
cellular antioxidant defences and a key conjugate of electrophilic intermediates in phase II 
metabolism. The conjugation reaction is mediated principally via GST. Another function of 
the GST family is the transport of endogenous hydrophobic compounds, such as steroids, 
bilirubin, heme, and bile salts, as well as the prevention of lipid peroxidation. It has been 
reported that terbutryn is able to induce EROD activity in rainbow trout (Tarja et al., 2003). 
Dong et al. (2009) reported that P450 content in zebrafish (Danio rerio) (both male and 
female) was induced by atrazine, even at a dose of 0.01 mg/L. Exposure to terbutryn and 
simazine did not influence CYP concentration or EROD, GST, or GSH activity, suggesting 
that a role for CYP450 1A in the metabolism of terbutryn and simazine in common carp can 
be ruled out. In rodents, the dominant phase I metabolic reaction for triazine pesticides is 
cytochrome P450-mediated N-dealkylation (Hanioka et al., 1999 a,b). 
Triazine pesticides have a direct effect on kidney structure and function in freshwater fish 

(Velisek et al., 2008, 2009b). In our experiment, the caudal kidney of carp with chronic 

exposure to simazine showed destruction of the tubules, although chronic exposure to 

terbutryn had no effect on caudal kidney. The kidney is important for the maintenance of a 

stable internal environment with respect to water and salt, excretion, and, partially, for the 

metabolism of xenobiotics. In fish, this organ receives the largest proportion of 

postbranchial blood.  

The uptake of triazine via gill seems to be of major significance; therefore renal lesions might 
be expected to be good indicators of environmental pollution. In addition, this is a target 
organ of certain toxicants, since it is a major route for the excretion of foreign chemicals. It 
has been reported that acute and subchronic exposures to triazine result in lesions in 
kidneys and liver in fish (Velisek et al., 2008, 2009b). Simazine showed no effect on liver of 
common carp. On the other hand, Velisek et al. (2010) found cell shape changes and lipid 
inclusions in hepatocytes of common carp with subchronic terbutryn exposure in 
concentrations of 4, 20, and 40 μg/L. Similar alterations in liver were observed by Arufe et 
al. (2004), who exposed the larvae of gilthead sea bream (Sparus aurata) to terbutryn-
triasulfuron at a concentration of 2.5 mg/L for 72 h. Steatosis in liver of grey mullet (Liza 
ramada) (Biagianti-Risbourg & Bastide, 1995) has been observed after atrazine exposure and 
has been proposed as a mechanism of sequestration of the pesticide molecules, protecting 
fish from toxic effects. Changes in metabolism of hepatic lipids and vacuolar degeneration 
of hepatocytes have been observed in various fish species exposed to herbicide such as 
clomazone (Crestani et al., 2007). 

5. Conclusion 

Toxicological and environmental problems resulting from the widespread use of 
pesticides in agriculture have raised concerns, particularly with respect to the potential 
toxic effects in humans and animals. The acute exposure of rainbow trout and common 
carp to the pyrethroids deltamethrin, cypermathrin, and bifenthrin were associated with 
alterations in haematological and biochemical indices as well as in tissue enzymes, 
resulting in stress to the organism. These pyrethroids are therefore classified as belonging 
to substances strongly toxic for fish. Long-term exposure to triazines terbutryn and 
simazine in environmental concentrations can affect the biochemical, haematological, and 
biometric profiles of common carp. Some changes were observed only with the higher 
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exposures. These results suggest that biometric, blood, liver biomarkers, and 
histopathological responses could be used as potential biomarkers for monitoring residual 
pesticides present in aquatic environments and provide useful parameters for evaluating 
physiological effects in fish, but the application of these findings will need more detailed 
laboratory study before they can be established as special biomarkers for monitoring the 
aquatic environment. Other classical morphologic indices (e.g. condition factor and 
hepatosomatic index) in fish could provide useful information for evaluating 
environmental stress. It is not clear that whether these pesticide-induced responses in fish 
were related to the level of stress hormones (especially catecholamines and cortisol), 
enzymatic kinetics, and molecular mechanisms, which need further investigation. 
Research should be focused not only on the effects of pesticides alone, but also on 
interactions of pesticides with other pollutants in environmental concentrations with 
long-term exposure, since the aquatic environment may be polluted by many substances, 
the effects of which can be potentiated with concurrent exposures.  
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