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Laboratory of Ecotoxicology, Faculty of Environmental Science and Biochemistry, 

University of Castilla–La Mancha,  
Spain 

1. Introduction 

Nowadays it is widely accepted that current agricultural practices cause a loss of 
biodiversity (Bianchi et al., 2006). Moreover, the introduction of vast areas of monocultives 
(e.g., biofuel crops) contributes to increase the risk for crop loss by pest infestation (Landis et 
al., 2008). Despite the introduction of integrated pest management (IPM) strategies in an 
attempt to reduce pesticide inputs, chemical control is still necessary to combat pests 
(Devine & Furlong, 2007). As an example, the figure 1 shows the evolution of pesticide 
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Fig. 1. Pesticide consumption worldwide. Data taken from OECD 2009 
(http://dx.doi.org/10.1787/286683827028). 
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consumption in the last decade. Some European Union (EU) member states have 

experienced a notable increase (>20%) of pesticide use (OECD 2009). According to Eurostat 

(2007), five EU member states (France, Spain, Germany, Italy and the United Kingdom) 

account for the nearly 75% of the total plant protection products (PPPs) consumed in the EU. 

In the particular case of insecticides, Italy and Spain represented the 33% and 29%, 

respectively, of the insecticide consumption in 2003 (Eurostat, 2007). The organophosphate 

(OP) and, in a less extent, the carbamate (CM) insecticides are the most used chemical classes 

of PPPs in the EU (Fig. 2). Chlorpyrifos, parathion-methyl, dimethoate, imidacloprid, 

methomyl, fenthion, methiocarb, methidathion, chlorpyrifos-methyl and endosulfan represent 

the top-10 active substances in the European PPP market (Eurostat, 2007). Beside insecticides, 

OP and CM compounds are also present in the formulation of herbicides (21,722 and 2,144 

tonnes of OP and thiocarbamate herbicides, respectively, in 2003) and fungicides (21,149 and 

3,466 tonnes of dithiocarbamate and OP fungicides, respectively, in 2003) (Eurostat, 2007). 

Taken together, these data show that OP and CM agrochemicals are still two important groups 

of pesticides in the current agriculture despite the progressive increase in the use of synthetic 

pyrethroids (SPTs), among other new pesticide classes. Although data in figure 1 show a 

generalized global tendency in reducing the pesticide consumption, it does not seem the same 

scenario in emerging countries like India (Abhilash & Singh, 2009). 
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Fig. 2. Use of plant protection products (PPPs) and, particularly, insecticides in the European 
Union (EU) between 2000 and 2003. Horizontal bar chart shows the main chemical classes of 
insecticides used in the EU, whereas vertical bar chart shows the most used insecticide 
active substances (reference year 2003). Data taken from the Eurostat (2007).   
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Therefore, it would seem evident that pesticide consumption will not decrease substantially 
and globally in the next decade. Under this assumption, exposure and effect assessment of 
pesticides in the environment would be necessary for decision-making related to pesticide 
use and agroecosystem protection, even in a post-authorization phase. 

1.1 Why soil is an environmental compartment of (eco)toxicological concern? 

The Soil Science Society of America defines soil quality as the “capacity of a specific kind of 
soil to function, within natural or managed ecosystem boundaries, to sustain plant and 
animal productivity, maintain or enhance water and air quality, and support human health 
and habitation” (Karlen et al., 1997). Therefore, soil degradation is the situation by which 
soil losses its agronomic and environmental qualities. Both natural phenomena and human 
activities cause soil degradation. For example, the EU has identified up to eight primary 
threats for soil quality: erosion, decline in organic matter, contamination, salinisation, 
compaction, loss of biodiversity, soil sealing, landslides and flooding (European 
Commission, 2002). Among these soil-deteriorating processes, contamination is probably the 
most important and dangerous phenomenon to humans because soil is a vital natural 
resource and, in turn, the man is a significant vector to soil contamination. 
Transport of hazardous chemicals, agricultural pesticide applications, oil and fuel dumping, 
and discharge of industrial/urban wastes are the main human activities causing soil 
contamination (Mirsal, 2008). Moreover, soil is the environmental compartment where most 
of the pollutants released into the biosphere are accumulated (Köhne et al., 2009). Once in 
soil, a wide variety of physicochemical and biological processes, shown in the figure 3A, 
contribute jointly to the environmental transport and fate of contaminants (Cáceres et al., 
2010). Soil acts therefore as a “filter” or “reactor” reducing pollutant leaching towards 
groundwater or leakage into atmosphere. However, soil contaminants represent a serious 
hazard to organisms living in both belowground and aboveground systems. The scientific 
literature is plenty of examples that illustrate the negative impact of agrochemicals on 
wildlife (Devine & Furlong, 2007; Newman et al., 2006). Agrochemicals take part in the 
population decline of amphibians (e.g., Mann et al., 2009) and pollinators (e.g., Potts et al., 
2010; Spivak et al., 2011). Likewise, pesticides cause side-effects on natural populations of 
pest enemies (Devine & Furlong, 2007; Devotto et al., 2007) which can make the IPM 
strategies ineffective. Moreover, reduction of prey populations as a consequence of pesticide 
applications can lead to indirect effects on top predators (Flavia et al., 2010; Fleeger et al., 
2003). Soil microorganisms are also affected by pesticide applications. For example, one of 
the main metabolites of the OP chlorpyrifos, i.e., 3,5,6-trichloro-2-pyridinol, displays 
antimicrobial properties. This metabolite inhibits the proliferation of soil microorganisms 
and, therefore, the subsequent metabolism of chlorpyrifos is reduced (Racke, 1993). The 
impact of agrochemicals on soil microorganisms can result in changes in the soil nutrient 
cycles and in the failure of microorganism-assisted bioremediation actions (Barker & 
Bryson, 2002; Gianfreda & Rao, 2008). Soil enzymes are another molecular target of pesticide 
inputs. Most of the soil enzyme activities are considered the direct expression of 
microorganism communities involved in nutrient cycles and they are therefore an indicator 
of soil fertility (e.g., Gianfreda & Rao, 2008). Many investigations have documented the 
effects of agrochemicals such as triazines, OPs or CMs on soil enzyme activities (reviewed in 
Gianfreda & Rao, 2008). Taken together, these studies suggest that control of pesticide 
residues in soil should be a priority strategy in those agroecosystems where pesticides are 
intensively used. 

www.intechopen.com



 Pesticides in the Modern World  
– Pests Control and Pesticides Exposure and Toxicity Assessment 

 

216 

 

A) 

Diazin
on

Fenitro
th

ion

Para
th

ion m
ethyl

Malath
ion

Ace
phate

Mevin
phos

Carb
ofu

ra
n

Benom
yl

Aldica
rb

Carb
aryl

H
a

lf
-l

if
e
 (

d
a

y
s
)

0

10

20

30

40

50

100

200

Hydrolysis half-life 

Aerobic soil half-life 

Anaerobic soil half-life 

Organophosphates Carbamates

 

B) 

Fig. 3. A) Main physicochemical and biological processes contributing to pesticide fate and 
toxicity (conceptual scheme elaborated from Köhne et al. (2009). B) Hydrolysis and soil 
(under aerobic and anaerobic conditions) half-lives of selected organophosphate and 
cabarmate insecticides. Data taken from the Pesticide Action Network (PAN)–Pesticide 
Database (www.pesticideinfo.org) and from Cáceres et al. (2010). 
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1.2 Why invertebrate biomarkers can be useful in the assessment of soil pollution by 
pesticides? 

In environmental toxicology, biomarkers are defined as molecular, biochemical, 
physiological or histological indicators of contaminant exposure or effects (van Gestel & van 
Brummelen, 1996). This definition frequently includes behavioral changes (e.g., Walker et 
al., 2001). Biomarkers have shown their ecotoxicological role as indirect measurements of 
bioavailability or toxicant’s absorption when used in toxicity testing (Lanno et al., 2004), or 
as key elements in the understanding of the toxic mechanism underlying observed effects at 
whole-organism level (Forbes et al., 2006). They have also been useful to distinguish acute 
toxicity from long-term effects (Hagger et al., 2009). 
Nowadays, there is an intense debate on the suitability and meaning of biomarkers in the 
environmental risk assessment of environmental contaminants. Traditionally, biomarkers 
tried to be early indicators of adverse effects at population or community levels (e.g., 
Peakall, 1992). In addition, a battery of biomarkers covering multiple levels of biological 
organization is recommended to distinguish reversible adaptive responses from irreversible 
toxic effects (Galloway et al., 2004; Gastaldi et al., 2007). However, the use of biomarkers for 
making ecologically relevant predictions is questioned (e.g., Chapman, 2002; Forbes et al., 
2006). But, most of the researchers agree that biomarkers provide evidences on the 
molecular mechanisms operating to cause observed toxic effects on the whole individual. 
Biomarker research has had an increasing development in aquatic toxicology. A survey of 
the scientific literature for biomarker studies indicates that its use has been scarcely 
investigated with terrestrial organisms, particularly invertebrates. The figure 4 is an attempt 
to illustrate this marked difference in the impact of biomarker research in terrestrial 
organisms. We searched the biomarker literature focused on ecotoxicological investigations 
involving the aquatic and terrestrial systems in the past 10 years using the ISI Web of 
Knowledge search engine. We filtered the searching with multiple keywords specific to 
aquatic and terrestrial systems. It is evident that the difference in the number of publications 
between biomarker studies involving the aquatic ecosystem and those performed in the 
terrestrial system increases progressively since 2000. Moreover, when we limited the 
searching to ‘invertebrates’ and ‘pesticides’, the number of studies addressed on biomarkers 
increased for aquatic invertebrates, whereas their use in terrestrial invertebrates seems 
merely anecdotic. 
From the literature survey showed in the figure 4, the pertinent question is why biomarkers 
have not had a similar concern for terrestrial invertebrates if we consider that soil is the 
primary environmental media where pesticide are accumulated and transformed. 
Furthermore, pesticides such as OPs, CMs or SPTs generally display short half-lives (from 
days to a few months) in the environment, and high concentrations of pesticides (and their 
metabolites) in water are not the most frequent scenario (Cáceres et al., 2010; Gavrilescu, 
2005; Katagi, 2004). Agrochemicals can reach the aquatic systems by direct application, 
runoff from pesticide-treated fields or wind-borne drift (Fig. 3A). However, the figure 3B 
shows that persistence of OP and CM pesticides in soil seems lower than that observed in 
water, although it is shown the water half-lives by hydrolysis solely and other degradation 
processes (photolysis or microbial breakdown) are not considered (Fig. 3B). Because 
agricultural pesticides are not intended to be used in water bodies and the persistence of 
pesticides in soil is relatively low, concentrations of agrochemicals in water systems would 
be assumed as very low otherwise intentional applications into water take place. One 
possible explanation to the limited studies on pesticide biomarkers in soil invertebrates 
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could be the heterogeneous and complex nature of the terrestrial environment that makes 
difficult to identify harmful effects on biota from pesticide exposure. Moreover, economic 
aspects could also account for a high research interest in aquatic invertebrate. Nevertheless, 
terrestrial invertebrates are key components of the soil system. For example, earthworms are 
considered soil engineers with a notable contribution to soil function and structure (Lavelle 
et al., 2004) as well as to plant growth and health (Scheu, 2003). Other terrestrial 
invertebrates such as honey bees or the natural enemies of pests play an unquestionable 
pivotal function in the agroecosystem. 
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Fig. 4. Number of annual publications (limited to articles and reviews) involving 
biomarkers. Left graph shows the evolution of biomarker studies in the aquatic and 
terrestrial ecosystem. Centre graph shows those investigation limited to aquatic and 
terrestrial invertebrates, whereas the right graph illustrates the biomarker research in these 
groups of organisms when agrochemicals were the chemical stress. Searching was made 
using the ISI Web of Knowledge bibliographic search engine 
(www.accesowok.fecyt.es/login/). 

To the question why biomarkers can be useful in the assessment of pesticide toxicity, we 
could find an answer in their valuable use in the understanding of the mechanistic basis of 
pesticide toxicity in non-mammal species. Most of the interpretations and conclusions 
drawn from biomarker responses measured in invertebrates are provided on the basis of the 
biomarker knowledge in mammals. However, the physiology and biochemistry of many 
terrestrial invertebrates are not well known, in particular those species that have not an 
economic or recreational interest. This is not the case of some pest species. For example, it is 
well known that carboxylesterases play a significant role in the mechanism of pesticide 
tolerance and resistance in the pest species (Hemingway et al., 2004; Oakeshott etal., 2005). 
These esterases modulate the toxicity of OPs, CMs and SPTs through or hydrolysis reactions 
with this agrochemicals (Wheelock et al., 2008). These chemico-biological interactions 
between esterases and pesticides have not been extensively investigated in non-target 
terrestrial invertebrates. 
This chapter examines the current knowledge on biomarkers of pesticide exposure and 
effects in terrestrial invertebrates. Particular emphasis will be put in earthworms because of 
their ecological, toxicological and agronomic concern.  Comparisons with related studies 
performed with aquatic organisms are unavoidable, and will enable us to know at what 
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extend the findings with aquatic organism biomarkers have been reproduced in soil 
organisms. Finally, we suggest some issues of methodological concern when biomarkers are 
used for monitoring pesticide effects or to provide mechanistic understandings on the toxic 
effects observed at the whole-organism level. 

2. Biomarkers of pesticide exposure and effect 

2.1 Cholinesterases and carboxylesterases 

Esterases act on the ester bond. According to the International Union of Biochemistry they are 

included in the subgroup 3.1 of hydrolases. In environmental toxicology, acetylcholinesterases 

(AChE, EC 3.1.1.7), butyrylcholinesterases (BChE, EC 3.1.1.8) and carboxylesterases (CbE, EC 

3.1.1.1) have had particular attention because of their role in pesticide toxicity and 

detoxification. The inhibition of AChE activity is the most used biomarker in the field 

monitoring of OP and CM impact. This is not surprising because the primary mechanism of 

acute toxicity of these agrochemicals is the inhibition of AChE activity at the nervous tissue 

(Thompson & Richardson, 2004). Some reviews provide a comprehensive analysis of this 

biomarker in the aquatic system (e.g., Domingues et al., 2010; Fulton & Key, 2001; Hyne & 

Maher, 2003; Jemec et al., 2009; Monserrat et al., 2007; Sanchez-Hernandez, 2001). Carbamate 

and OP pesticides interact with ChEs, and CbEs in a very similar way (Fig. 5). The carbonyl 

group of the CM reacts with the serine hydroxyl group at the active site of the esterase to yield 

a Michaelis-type complex. The carbamylated enzyme is unstable and the activity is rapidly 

reversed in the presence of water. In this reaction, the CM is chemically destroyed to form  
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Fig. 5. Interactions of esterases (cholinesterases and carboxylesterases) with carbamates 
(CM), the oxon metabolites of organophosphates (OP) and synthetic pyrethroids (SPT). 
Inhibition of esterases by CMs yields a carbamylated complex which is unstable and the 
esterase activity is rapidly recovered in the presence of water. Organophosphates inhibit 
irreversibly the hydrolysis activity of ChEs and CbEs by the formation of a stable 
phosphorylated complex. Under this condition, restoration of the esterase activity requires 
the synthesis of new enzyme. Synthetic pyrethroids interact only with CbEs, and these 
esterases hydrolyze them to yield the corresponding alcohol and carboxylic acid. Scheme 
elaborated from Sogorb & Vilanova (2002) and Thompson & Richardson (2004). 
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CO2 and an amine (Sogorb & Vilanova, 2002; Thompson & Richardson, 2004). Similarly, the 
phosphoryl moiety of the OPs reacts with the serine hydroxyl group of ChEs, or CbEs, to 
form a stable complex. At this point, the phosphorylated enzyme can undergo three main 
pathways: spontaneous reactivation, oxime-induced reactivation, or aging. Spontaneous 
reactivation occurs in the presence of water but it is a very slow reaction, and the enzyme 
does not recover its full normal activity. Chemical-induced reactivation employing oximes is 
a faster mechanism of activity restoration. Oximes are nucleophilic reagents able to attack 
the phosphoryl group bound to the active site of the esterase resulting in the recovery of the 
activity (Thompson & Richardson, 2004). If the enzyme remains long time inhibited, one 
alkyl group can release from the phosphyl-esterase complex (dealkylation) and leads the 
enzyme to a permanent inactivation, a situation known as aging (Fig. 5). At this stage, the 
esterase cannot be reactivated either spontaneously or using oximes. The type of esterase 
and the chemical nature of the inhibitor are determinants in the pathway that the 
phosphorylated enzyme will follow. These post-inhibitor pathways indirectly modulate the 
toxicity of the OP compound or even may contribute to the chemical interactions between 
pesticides (e.g., synergism and antagonism). In the case of SPTs, CbEs hydrolyze these 
agrochemicals to yield the corresponding alcohol and carboxylic acid (Fig. 5). 
Cholinesterases and CbEs have been extensively investigated in many pest species because 
of their implications in pesticide resistance (Hemingway et al., 2004; Oakeshott et al., 2005). 
Conversely, little is known about these esterases in terrestrial invertebrates of ecological 
concern such as earthworms or pollinator species. Most of the available works with non-
target invertebrate esterases are focused on enzymological aspects of these hydrolases. 
Laboratory studies have been aimed to examine three main features commonly associated to 
a good biochemical biomarker: 1) in vitro sensitivity to OP and CB insecticides, 2) recovery 
of ChE activity following pesticide exposure and 3) relationship between esterase inhibition 
and observed adverse effects at whole-individual level (e.g., growth, mortality or behavior 
changes). 
Earthworms have been model organisms in these esterase investigations. Enzymological 
characterization of earthworm ChE activity has been extensively investigated in the past 
(Stenersen, 1980), and more recently, some laboratory studies have suggested the 
inclusion of CbE activity in the assessment of pesticide exposure and toxicity in these soil 
organisms (Collange et al., 2010; Sanchez-Hernandez & Wheelock, 2009). Many authors 
postulate that sensitivity of CbE activity to both OP and CM insecticides modulates the 
acute toxicity of these agrochemicals. The stoichiometric binding between CbEs and the 
insecticide (see Fig. 5) can lead to a reduction in the number of inhibitor molecules able to 
interact with nervous AChE. This assumption has led to compare the sensitivity of ChE 
and CbE activities to model OP and CM insecticides. Thus, CbE activity of aquatic 
organisms generally displays a higher in vitro and in vivo sensitivity to OPs than ChE 
activity (e.g. Barata et al., 2004; Kuster, 2005; Wogram et al., 2001). These observations are 
also reproduced in some terrestrial invertebrate groups. For example, earthworms 
exposed to chlorpyrifos-spiked soils showed a higher percentage of CbE inhibition than 
ChE activity, irrespective of the tissue used for esterase measurements (Collange et al., 
2010; González Vejares et al., 2010). However, foot CbE activity in juvenile garden snails 
(Helix aspersa) was less sensitive to inhibition by dimethoate than foot AChE activity 
(Coeurdassier et al., 2002). It was suggested in this latter study that the lower sensitivity 
of foot CbE to the OP could mean a reduced ability of CbEs to protect AChE activity 
against OP inhibition. Similar results were observed by Laguerre et al. (2009) in the 
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terrestrial snail Xeropicta derbentina. They reported an IC50 (the concentration of pesticide 
causing a 50% reduction in the enzyme activity) value of 3.8 x 10-8 M for AChE activity 
against chlorpyrifos-oxon, whereas the IC50 was 3.2 x 10-6 M for CbE activity. However, 
when dichlorvos was the inhibitor, the degree of CbE inhibition was stronger than that of 
AChE (Laguerre et al., 2009). 
In general, phosphorylated ChE and CbE activities in earthworms and snails display an 
extremely slow recovery rate (Coeurdassier et al. 2001, Rault et al. 2008, Collange et al. 
2010). This limited capacity of returning to normal activity levels following OP exposure is a 
generalized phenomenon in earthworms (Table 1). Synthesis of new enzyme would be the 
most plausible explanation for this slow recovery of OP-inhibited esterase activity. 
Although spontaneous reactivation of the inhibited enzyme could also contribute to full 
recovery of the esterase activity, this is not true when the inhibitor is an OP compound 
(Rodríguez-Castellanos & Sanchez-Hernandez, 2007). A slow recovery rate enables to detect 
the OP exposure over a longer period of time after OP applications. This is a desirable 
feature for assessing anti-ChE exposure because of most of these pesticides show a low 
persistence in the environment (Fig. 3B). 
 

Species 
Biological 
material 

Insecticide 
(concentration) 

Time of 
exposure

Cholinesterase 
response 

Reference 

Eisenia fetida Whole 
body 

Chlorpyrifos 
(240 mg/kg dry 
wt) 

2 days No recovery of E2 
(a carbaryl-
resistant form of 
ChE) activity 
during 84 days of 
transferring 
earthworms to 
clean soil. 
E1 (a carbaryl-
sensitive form of 
ChE) recovered its 
normal level of 
activity after 21 
days followed OP 
exposure. 

(Aamodt et 
al., 2007) 

Aporrectodea 
caliginosa and 
Allolobophora 
chlorotica 

Whole 
body 

Parathion-ethyl 
(1 and 10 mg/kg 
dry wt) 

14 days No recovery of 
ChE activity of A. 
caliginosa exposed 
to both OP 
concentrations 
after 70 days of 
transferring 
earthworms to 
clean soil. 
Full recovery of 
ChE activity in A. 
chlorotica exposed 

(Rault et 
al., 2008) 
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to 1 mg kg-1 after 
70 days of 
transferring 
earthworms to 
clean soil, but no 
recovery of ChE 
activity in the 
group exposed to 
10 mg/kg. 

A. caliginosa Whole 
body 

Diazinon 
(60 mg/kg dry 
wt). 
Chlorpyrifos 
(28 mg/kg dry 
wt) 

14 days No recovery of 
ChE activity 
during the 14 days 
of OP exposure 
(inhibition percent 
> 85 %). 

(Booth et 
al., 2000) 

Lumbricus 
terrestris 

Body wall 
muscle 

Chlorpyrifos 
(3, 12 and 48 
mg/kg) 

2 days No recovery of 
muscle ChE 
activity of L. 
terrestris exposed 
to 12 and 48 
mg/kg dry wt 
after 35 days of 
transferring 
earthworms to 
clean soil. 

(Collange 
et al., 2010) 

L. terrestris Pharynx, 
crop, 
gizzard, 
foregut 
and 
seminal 
vesicles 

Chlorpyrifos 
(3, 12 and 48 
mg/kg) 

2 days Carboxylesterase 
activity of gut 
tissues (measured 
with the substrate 
4-NPV) did not 
recover its activity 
in earthworms 
exposed to 12 and 
48 mg/kg. 

(González 
Vejares et 
al., 2010) 

Table 1. Recovery of cholinesterase (ChE) activity in several adult earthworm species 
following exposure to organophosphorus (OP)-spiked soils. This table was elaborated from 
data published as supplementary material in Collange et al. (2010). 

One of the most desirable attribute of a biomarker when it is used in the environmental 
assessment of contaminants is to be a predictor of adverse effects at higher levels of biological 
organization (e.g., whole individual or population). However, many researchers have shown 
that such a link is hard to establish (Chapman, 2002; Forbes et al., 2006). In the cascade of 
biological responses occurring when the organism is exposed to environmental contaminants, 
it is expected that early responses occur at biochemical and molecular levels before than 
observed effects at higher level (changes in growth, reproduction or behavior). However, 
biological responses at the whole-individual level are often more sensitive or more easily 
detectable than biochemical biomarkers. For example, burrowing activity of earthworms was 
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a more sensitive endpoint to imidacloprid than ChE and GST activities (Capowiez et al., 2003). 
Comparisons of LOEC (lowest observed effect concentration) values between biochemical 
biomarkers and whole-organism responses measured in the terrestrial isopod Porcellio scaber 
evidenced that the biochemical biomarkers were not necessarily more sensitive to diazinon or 
imidacloprid exposures (Jemec et al., 2009). To a less extent, inhibition of ChE activity by 
pesticides has been related to tissue damage. The carbamate insecticides methomyl and 
methiocarb caused histopatological and ultrastructural alterations in the nervous tissue of the 
land snail Eobania vermiculata after 14 d of exposure to sublethal concentrations of these CMs 
(Essawy et al., 2008). 
The interaction between ChE activity and pesticides has been explored with terrestrial non-
target organisms other than earthworms and snails. Some studies have involved the use of 
ChE inhibition as an indicator of pesticide exposure in bees, isopods or spiders. Recently, 
there is a global concern in population decline of honey bees (Spivak et al., 2011). Among 
the multiple factors potentially responsible for this phenomenon, agricultural pesticide 
applications seem to contribute to this global bee’s population decline (Gross, 2011). 
Nevertheless, little is known about the use of pesticide biomarkers in bees. Past studies have 
documented many biochemical aspects of bees CbEs. As with many other organisms, 
multiple CbE isozymes are generally found in the bee (Krieg & Marek, 1983), which play an 
important role in the metabolism of pesticides (Yu et al., 1984). Frohlich (1990) compared the 
hydrolytic activity of CbE in males and females of the solitary bee Megachile rotundata using 
multiple substrates. Bee sex had a significant impact on the variability of CbE activity. It was 
suggested that esterases of M. rotundata may be involved in the nest construction which 
would explain the higher levels of CbE activity in the females. This speculation suggests 
further exploration to examine whether anti-ChE pesticides are able to disrupt nest 
performance by inhibition of CbE activity because this enzyme is likely involved in the 
chemical process that leads to the formation of the brood cells (Frohlich, 1990). Isopods are 
another group of invertebrates that, despite of their growing concern in terrestrial 
ecotoxicology (Drobne, 1997), their esterases have been little studied in relation to pesticide 
contamination. Stanek et al. (2006) compared the inhibitory response of AChE activity in 
both adults and juveniles P. scaber exposed to diazinon-spiked food for two weeks. They 
found that AChE activity of juveniles was more sensitive to the OP than that of adults. 
Moreover, inhibition of AChE activity was linked to mortality of isopods, however other 
biological traits such as feeding activity or weight change did not vary with the diazinon 
exposure. The study by van Erp et al. (2002) is an example on the toxic effects of pesticides 
on a pest natural enemy. The wolf spider (Lycosa hilaris) is frequently found in the 
agroecosystem and it is a natural predator of many pest species. Cholinesterase activity was 
investigated in adults of this arachnid exposed to environmentally realistic concentrations of 
diazinon and chlorpyrifos. A ChE inhibition >80 % was associated to high mortality of male 
and female spiders in both laboratory and mesocosm trials, although females were more 
resistant to the toxic action by diazinon (van Erp et al., 2002). 
Despite the widespread use of ChE inhibition as a sensitive indicator of OP and CM 
exposure, its use in terrestrial invertebrates sampled from, or caged in, the agroecosystem 
has been little explored. The soil-dwelling earthworm A. caliginosa has been used for 
monitoring OP exposure in the agroecosystem (Reinecke & Reinecke, 2007). Although ChE 
inhibition was recorded in the earthworms, it was not possible to make clear predictions at 
whole-individual level (e.g., changes in behaviour). Inhibition of ChE activity in earthworms 
and terrestrial snails has been satisfactorily used to distinguish the impact of multiple pest 
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control strategies in apple orchards (Denoyelle et al., 2007; Mazzia et al., 2011). These field 
studies only show that exposure to anti-ChE pesticides took place in the moment of 
specimens’ collection, but information about detrimental effects at whole-individual level, 
indirect effects on other non-target organisms, or recovery of inhibited ChE is unknown. As 
argued by others, species selection, exposure design (e.g., in situ exposure, mesocosm), 
simulated pesticide applications, selection of tissues according to the mode of toxic action or 
detoxification pathways, among other factors, should be considered before planning a 
biomonitoring program for assessing environmental impact of post-authorized pesticides 
(Newman et al., 2006; Sanchez-Hernandez, 2010). 
Esterases are generally considered indicators of toxicant's absorption. In addition, 

mammalian BChE and CbE activities are efficient bioscavengers of OPs reducing the impact 

of these compounds on brain AChE activity (Masson & Lockridge, 2010; Maxwell & Brecht, 

2001; Wheelock et al., 2005). For example, Dettbarn et al. (1999) demonstrated that rat 

plasma CbE activity decreased the acute toxicity of paraoxon and, furthermore, a rapid 

recovery of both plasma and liver CbE activities following OP exposure contributed to a 

lack of toxicity. Beside the affinity of esterases for OP compounds, the number of enzyme 

molecules is also critical in the efficacy of this stoichiometric mechanism of detoxification. 

For example, Chanda et al. (1997) observed that liver CbE activity of female and male rats 

showed the same affinity for binding chlorpyrifos-oxon, however the liver of males had 

twice specific CbE activity than the liver of females. This variation in the CbE activity was a 

determinant factor in OP toxicity beside of CbE affinity for these pesticides. On the other 

hand, the interaction of these esterases with CM insecticides is a reversible inhibition that 

destroys chemically the parent compound (see Fig. 5). Taken together, these studies lead to 

postulate that BChE and CbE activities contribute significantly to modulate the acute 

toxicity of OPs and CMs. However, little is known about the detoxification role of BChE and 

CbE activities in terrestrial invertebrates. 

2.2 Glutathione S-transferases and other related antioxidant enzymes. 

Many agrochemicals such as OP insecticides are able to induce oxidative stress 

(Lukaszewicz-Hussain, 2010), a situation in which the production of reactive oxygen species 

(ROS) overcomes the cellular antioxidant mechanisms (molecular and enzymatic), leading to 

the oxidative damage of biomolecules (e.g., lipids, proteins or DNA). Glutathione level is 

one of the most used biomarker of pro-oxidant exposure in fish (van der Oost et al., 2003) 

and birds (Koivula & Eeva, 2010). In the detoxification of environmental contaminants, 

glutathione plays two main roles (van der Oost et al., 2003): 

1. This tripeptide acts directly as a scavenger of ROS. In this interaction, the reduced 

glutathione (GSH) is oxidized to the disulfide form (GSSG). Thus, the GSH/GSSG ratio 

is a suitable biomarker of oxidative stress. 

2. Glutathione is the cofactor of some enzymatic reactions involved in the metabolism of 

xenobiotics. For example, glutathione S-transferases (GSTs) use glutathione to form a 

conjugated metabolite with electrophilic intermediates that, in turn, are generated from 

the phase-I metabolism of xenobiotics. Similarly, hydrogen peroxide and other organic 

hydroperoxides are reduced to their corresponding alcohols by the action of glutathione 

peroxidases (GPx) which use glutathione as a cofactor. In this reaction GSH is oxidized 

to GSSG. 
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The GSSG formed during these detoxication pathways is reduced back to GSH by the 
glutathione reductase (GR), which is an essential enzyme in the GSH/GSSG balance. In 
summary, the GSH/GSSG ratio as well as the main enzymes involved in its redox 
homeostasis are proposed as sensitive exposure biomarkers of cellular oxidative stress 
(Koivula & Eeva, 2010; Maity et al., 2008; van der Oost et al., 2003). Few studies have been 
concerned with changes in glutathione concentration and glutathione-dependent enzymes 
in terrestrial invertebrates. Biomarkers of oxidative stress have been mainly explored in 
earthworms exposed to, or inhabiting in, metal-polluted environments. For example, 
earthworm GST activity is a noteworthy detoxication system (Stenersen, 1984), which is 
induced in earthworms exposed to organochlorine pesticides (Hans et al., 1993). However, 
no effects on this enzyme activity were observed in earthworms exposed to the OP 
fenitrothion (Booth & O’Halloran, 2001) or the CM carbaryl (Ribera et al., 2001). Herbicides 
also induce the GST activity of earthworms. For example, a strong induction of GST activity 
was found in E. fetida exposed for 24 and 48 h to fenoxaprop and metolachlor (Aly & 
Schröder, 2008). In the terrestrial isopod P. scaber, GST activity increased after two weeks of 

dietary exposure to 5 g/g imidacloprid, but decreased in adults exposed to 25 g/g of this  
neonicotinoid insecticide (Drobne et al., 2008). Despite this limited number of studies, it is 
not clear how the enzymatic (e.g., GST, GR, GPx, catalase, etc.) and molecular (e.g., GSH) 
antioxidant mechanisms work in terrestrial invertebrates exposed to pesticide-contaminated 
environments. 

2.3 Behavioral changes as indicators of pesticide exposure 

Behavior is the final integrated result of a diversity of physiological processes interacting 

with the surrounding abiotic and biotic components (Adkins-Regan & Weber 2002). In soil 

toxicity testing, body weight changes and reproduction rate are common sublethal toxicity 

endpoints. However, there is a growing concern to include new sublethal variables with 

ecological relevance such as behavior (Hellou, 2011). Many investigations have evidenced 

that pesticides are able to cause behavioral changes. Acephate (Moulton et al., 1996) and 

dichlorvos (McHenery et al., 1997) altered the ability of mussels to retract the mantle fringes 

and close the valves. The OP azamethiphos caused significant changes in the sheltered 

behavior of juvenile lobsters (Homarus americanus) (Abgrall et al., 2000). Similarly, the 

literature is plenty of examples describing perturbation or disruption of physiological 

systems directly involved in fish behavior (Scott & Sloman, 2004). Behavior is also a 

sensitive indicator of pesticide exposure in invertebrates. For example, the OP dimethoate 

caused significant changes in the locomotor activity of the collembolan Folsomia candida 

(Sorensen et al., 1995). Burrowing of A. caliginosa was examined in soil spiked with 

parathion-ethyl and this behaviour was more sensitive than ChE inhibition (Olveravelona et 

al., 2008). Similarly, a bioassay with the terrestrial isopod Porcellio dilatatus and dimethoate 

evidenced a significant relationship between ChE inhibition and locomotor impairment 

following 48 h of OP exposure (Engenheiro et al., 2005). Moreover, although such a 

correlation was lost within 10 d of pesticide exposure, locomotor variables (path length, 

average velocity, active time or stops per path) and AChE activity were still affected by the 

OP (1–60 g/g soil). 

According to the concept of a hierarchical cascade of biological responses to pollutants, sub-
individual biomarkers should be linked to behavioral responses. The OP and CM pesticides 
are a good example to test this hypothesis. Their primary mechanism of acute toxicity is the 
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inhibition of the AChE activity at the nervous system and neuromuscular junction. A severe 
inhibition of this enzyme should cause behavior changes mediated by cholinergic synapses. 
A good example of such a relationship is the study by Beauvais and coworkers. A 
correlation between inhibition of brain AChE activity and decreasing of swimming speed 
was found in larval rainbow trout exposed for 24 and 48 h to carbaryl (Beauvais et al., 2001). 
In other related study, changes in the swimming speed or distance of larval rainbow trout 
exposed to malathion and diazinon significantly correlated with AChE inhibition (Beauvais 
et al., 2000). In the light of these studies, implementation of biochemical biomarkers directly 
implicated in behavior (e.g., AChE inhibition) could increase the toxicological meaning of 
behavior bioassays for assessing soil pollution. 
The standardized avoidance behavior test with earthworms is an example of how behavior 

changes can be used easily as a screening toxicity test of soil pollution (ISO, 2005). The most 

common design to carry out the avoidance behavior test is a two-chamber system (ISO, 

2005). This is a rectangular container which is divided in two equal compartments by a 

removable plastic separator. A control soil is placed in a compartment whereas the 

contaminated soil is placed in the other. Earthworms are then released in the middle of the 

rectangular container after remove the plastic split. Elapsed a period of exposure (normally 

48 h), the plastic separator is inserted again in the middle of the container and individuals 

are counted in each soil compartment. The avoidance response is judged as positive when a 

percent of live earthworms higher than 80 % is found in the compartment containing the 

reference soil. This simple test can be of ecological concern because this escape behavior 

could alter the earthworm community of the soil or to change earthworm-induced  

physicochemical properties of soil. However, the meaning of the avoidance behavior test 

may be modified whether earthworms are released in the chamber containing the 

contaminated soil and after a fixed period of time, the separator is removed enabling to 

earthworms move toward the clean soil (Rodríguez-Castellanos & Sanchez-Hernandez, 

2007). With this alternative approach, avoidance ability, locomotor activity and AChE 

inhibition can be evaluated all together and quantitative relationships may be established in 

relation to pesticide exposure; which is an important aspect not considered in the 

standardized avoidance behavior test. Attempts to increase the environmental realism of the 

avoidance behavior response test have been performed by others. For example, a vertical 

avoidance behavior test was proposed by Ellis et al. (2010) to be used with soil-dwelling 

earthworms. Inclusion of biomarkers directly related to pesticide toxicity (ChE inhibition) 

and detoxification (CYP-dependent monooxygenases, GST or CbEs) could be helpful in the 

understanding of the underlying mechanistic events that yield toxic-induced behavior 

responses or behavioral adaptive responses (Pereira et al., 2010). 

3. Some methodological issues with biomarkers 

3.1 Tissue-specific analysis 

Selection of the target tissue or organ is critical for biomarker analysis. However, many 

studies have used the whole organism or pooled individuals for biomarker determinations. 

Moreover, when the body size is often not sufficiently large to perform accurate molecular 

and biochemical analysis, portions of the animal where is suspected a high concentration of 

the proteins of interest are used for biomarker measurements (Rault et al., 2007; Ribeiro et 

al., 1999). The biomarker literature is, however, plenty of examples that illustrate significant 
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tissue-specific variations in biomarker responses and sensitivity to environmental 

pollutants. For example, E. fetida has two different ChEs with a marked difference in OP and 

CM sensitivity (Aamodt et al., 2007; Stenersen, 1980). Likewise, when earthworm ChE and 

CbE activities are measured in a tissue-dependent way, there is a strong variation in the 

activity levels of these esterases (Rault et al., 2007; Sanchez-Hernandez & Wheelock, 2009). 

Our laboratory has determined the normal variation of ChE and CbE activities in the soil-

dwelling earthworm L. terrestris (Fig. 6A). The highest levels of ChE activity were observed 

in the body wall muscle and the pharynx, the latter probably as a consequence of the 

nervous tissue (ganglions) dissected together with the pharynx (Fig. 6B). This esterase   
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Fig. 6. A) Cholinesterase (ChE) and carboxylesterase (CbE) activities in multiple tissues of 
the earthworm Lumbricus terrestris. The substrate acetylthiocholine iodide (AcSCh) was used 

for ChE determination, whereas CbE activity was assayed using -naphthyl acetate (-NA) 
and 4-nitrophenyl valerate (4-NPV). B) Internal anatomy of L. terrestris showing some 
structures and organs of the gastrointestinal tract, and the reproductive system. Bars are the 
mean and the standard errors of 36 individuals. Different lower case letters denote 
significant differences (pairwise multiple comparison Dunn's test, P<0.05). 
Data taken from the supplementary material provided in González Vejares et al. (2010) and 
Collange et al. (2010). Photograph of the internal anatomy of L. terrestris was kindly 
provided by Christopher Mazzia and previously published in Sanchez-Hernandez and 
Wheelock (2009). 
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activity showed a marked regional variation along the alimentary canal of L. terrestris. 

Carboxylesterase activity also displayed a tissue-specific variation of its hydrolytic activity 

towards two common substrates, i.e., -naphthyl acetate (-NA) and 4-nitrophenyl valerate 

(4-NPV). Although the hydrolysis of both substrates could be carried out by the same CbEs, 

the activities measured in the gizzard suggested the presence of multiple isozymes with a 

different substrate preference (Fig. 6A). 

Beside this marked tissue-specific variation in esterase activity, its sensitivity to pesticide is 

also highly dependent on the tissue where esterases are expressed. For example, Sanchez-

Hernandez & Wheelock (2009) found that the in vitro inhibition of CbE activity by 

chlorpyrifos-oxon varied with the tissue. Furthermore, the substrate used for CbE 

measurements evidenced multiple isozymes with marked differences in sensitivity to 

chlorpyrifos-oxon. In general, IC50 values for CbE activity using 4-NPV were lower than 

those reported with the use of 4-nitrophenyl acetate (4-NPA) (Sanchez-Hernandez & 

Wheelock, 2009). 

These in vitro outcomes have been reproduced in microcosm trials (Collange et al., 2010; 

González Vejares et al., 2010). Earthworms (L. terrestris) exposed to chlorpyrifos-spiked soils 

for 2 days showed a tissue-specific variation in ChE and CbE inhibition, and the recovery 

pattern of the enzyme activities was also different dependent on the tissue and, in the case 

of CbE activity, the substrate used in the enzyme assay (Fig. 7). As with other organisms, the 

CbE activity was more sensitive to chlorpyrifos exposure than ChE activity, but not all 

tissues showed such a response. For example, gizzard ChE activity was more depressed that 

CbE activity (Fig. 7). Moreover, when -NA was used as the substrate for CbE 

measurements, we found a significant increase of this esterase activity compared to controls. 

These microcosm studies clearly indicate that determination of esterase inhibition as a 

biomarker of pesticide exposure should be made in a tissue-specific way, instead of using 

the whole organism or portions containing multiple tissues. A similar conclusion can be 

drawn from other detoxifying enzymes such as cytochrome P450-dependent 

monooxygenases (Stenersen, 1984) or GST activity (LaCourse et al., 2009). 

3.2 Substrate-specific analysis 

In general, enzyme kinetic procedures (e.g., spectrophotometric assays) used in 

invertebrates are directly reproduced, or include slight modifications, from those validated 

for mammals. However, the biochemistry and physiology of terrestrial invertebrates such as 

earthworms or isopods are not well known as in mammals, and there is a serious risk of 

making erroneous conclusions about the toxic effects of environmental contaminants. Some 

biochemical biomarkers are commonly measured in aquatic and terrestrial invertebrates 

using protocols developed and optimized for mammals. For example, specific inhibitors for 

AChE (BW284C51) and BChE (tetraisopropyl pyrophosphoramide or iso-OMPA) activities 

or selective substrates (acetyl--(methyl)thiocholine for AChE or butyrylthiocholine for 

BChE) allow to distinguish both ChEs when co-exist in the same tissue or organ. Although 

this approach is suitable for mammalian ChE activities, when it is used with terrestrial 

invertebrates arises atypical or overlapping mammalian ChEs-type properties (Rault et al., 

2007; Stenersen, 1980). For example, ChE activity of E. andrei was not sensitive to iso-OMPA 

when the esterase activity was assayed with butyrylthiocholine but was sensitive to the 

inhibition by BW284C51 (Caselli et al., 2006). However, Stenersen (1980) used  
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Fig. 7. Porcentages of remaining cholinesterase (ChE) and carboxylesterase (CbE) activities 
measured in multiple tissues of the earthworm Lumbricus terrestris following two days of 
exposure to soils spiked with 48 mg/kg dry wt chlorpyrifos, and after 35 days of 
transferring earthworms into clean soils. The substrate acetylthiocholine iodide (AcSCh) was 

used for ChE determination, whereas CbE activity was assayed using -naphthyl acetate (-
NA) and 4-nitrophenyl valerate (4-NPV). Bars are the mean and the standard errors of 6 
individuals. Data taken from the supplementary material provided in González Vejares et 
al. (2010) and Collange et al. (2010). Horizontal dotted lines indicate the mean esterase 
activity of controls set to 100%. 

carbaryl as a specific inhibitor to differentiate two ChEs in E. fetida, a mammalian-type 
AChE activity named by the author as E1 and a mammalian-type BChE activity named E2 
(carbaryl-resistant ChE). These earthworm ChE activities showed different recovery rates 
following exposure to chlorpyrifos (Aamodt et al., 2007), which indicate that determination 
of both ChEs should be performed individually to know the real impact of OP exposure on 
ChEs of this earthworm species. 
The measurement of CbE activity is another example that illustrates why common 
substrates routinely used for enzymatic assays should be implemented in invertebrates with 
some reservations. Carboxylesterases comprise multiple isozymes whose number and 
activity depend on the tissue where they are present (Satoh & Hosokawa, 2006; Wheelock et 
al., 2008). These esterases display a broad range of substrate specificity (Wheelock et al., 
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2005). Naphthyl and nitrophenyl esters are the usual substrates for CbE determinations, and 
some researchers recommend the use of multiple substrates when these esterases are used 
as biomarkers of pesticide exposure (Wheelock et al., 2005; Wheelock et al., 2008). However, 

most of the ecotoxicological studies use one or two substrates (usually -NA or 4-NPA) to 
determine the CbE activity with the risk that these substrates be not efficiently hydrolyzed. 
On the other hand, because these substrates have not any known biological significance, it is 
difficult to understand the toxicological meaning of CbE activity and inhibition. In 
mammals, some authors have used more realistic substrates from an environmental and 
pharmacological viewpoint. Thus, liver and intestinal CbE activities were able to hydrolize 
efficiently type-I pyrethroids compared to type-II pyrethroids (Ross et al., 2006; Ross & 
Crow, 2007). In addition, the hydrolysis kinetic parameters usually obtained with SPT 
insecticides are different to those obtained with common substrates such as 4-NPA or 4-
NPV. Indeed, it is suggested that different CbE isozymes are involved in the hydrolysis of 
pyrethroids and the nitrophenyl esters (Wheelock et al., 2003). Our studies with L. terrestris 
also show the occurrence of multiple CbE isozymes with marked differences in substrate 
specificity in the gastrointestinal, reproductive and muscle tissues (Fig. 6). More recently, we 
have detected pyrethroid hydrolysis by CbEs in the earthworm gut, which does not 
correlate with the CbE activity towards naphthyl or nitrophenyl esters (Sanchez-Hernandez, 
pers. comm.). 
Glutathione S-transferases and cytochrome P450-dependent monooxygenases (CYPs) are 

two groups of detoxifying enzymes that participate in the biotransformation of liphophilic 

compounds (Hodgson, 2010). For example, GST activity catalyzes glutathione-aryltransfer 

or glutathione-alkyltransfer reactions of OP insecticides forming non-toxic conjugate 

metabolites (Jokanovic, 2001). In routine assays, GST activity is determined by a 

spectrophotometric assay in which the substrate 1-chloro-2,4-dinitrobenzene is conjugated 

with GSH to form a conjugated metabolite, i.e., 1-(S-glutathionyl)-2,4-dinitrobenzene, which 

is monitored at 340 nm (Habig et al., 1974). This is the most common spectrophotometric 

method to determine GST activity for biomonitoring purposes. Again, the occurrence of 

multiple forms of GST (cytosolic and microsomal) not only in mammals (Hayes et al., 2005) 

but also in earthworms (Aly & Schröder, 2008; LaCourse et al., 2009) suggests that more 

than one substrate should be used for exploring induction or inhibition of GST activity by 

pesticides. Ethoxyresorufin-O-deethylase (EROD) activity is the most common enzymatic 

assay to measure the induction of the cytochrome P4501A (CYP1A) isozyme (van der Oost 

et al., 2003; Whyte et al., 2000). This isozyme plays a pivotal role in the detoxication and 

bioactivation of pesticides. For example, CYP1A catalyzes the conversion of 

phosphorothioate- and phosphorodithioate-type OP pesticides into their highly toxic ‘oxon’ 

forms (Jokanovic, 2001). Earthworms present two CYP subfamilies, i.e., the polyaromatic 

hydrocarbon-inducible form (CYP1A) and the phenobarbital-inducible form (CYP2B) 

(Stenersen, 1984). However, there is a marked species-specific difference in the catalytic 

properties of CYPs and induction capability. For example, microsomes of L. terrestris midgut 

showed CYP activity when benzyloxyresorufin was used as substrate, but no dealkylation 

activity was detected towards other resorufin derivates such as methyloxy-, ethyloxy- or 

propyloxyresorufin (Bergholjt et al., 1991). Conversely, microsomes of whole E. fetida 

displayed CYP activity when benzyloxy- and pentoxyresorufin were used as substrates 

(Achazi et al., 1998). Lumbricus rubellus did not show detectable CYP1A activity using EROD 

as the catalytic assay even when earthworms were exposed to known inducers of CYP1A 
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activity (Brown et al., 2004). Taken together, these studies show that CYP activity is highly 

dependent on substrate and earthworm species. However, the role of this detoxifying 

multienzymatic system should be investigated in detail in pesticide-exposed earthworms to 

propose the most appropriate substrates to measure induction (or inhibition) of CYP450 

activity. 

3.3 Complementary methods 

The chemical reactivation of the phosphorylated ChE activity using oximes is a workable 
methodology of assessment of wildlife exposure to OP insecticides in vertebrates. However, 
this approach has not had a comparable attention with terrestrial invertebrates. Some 
laboratory studies have proved that oximes are able to recover the activity of the OP-
inhibited ChE activity in earthworms (Rodriguez and Sanchez-Hernandez 2007), snails 
(Laguerre et al. 2009) and honey bees (Polyzou et al. 1998). One of the main limitations of 
this method is the lack of oxime-induced reactivation when the esterase remains long time 
inhibited. However, this drawback could still be useful for detecting multiple and short-
term exposures to OP insecticides because aged ChE and new synthetized ChE could be 
estimated with the use of oximes. For example, ChE activity of the earthworm L. terrestris 
was significantly reactivated with 2-PAM or obidoxime within one week following acute OP 
exposure, although such a chemically-induced recovery decreased with time as a 
consequence of ChE aging (Collange et al. 2010). Thus, comparison of ChE activity levels 
between OP-exposed and control earthworms in combination with oxime reactivation 
assays would enable to detect inhibition of newly synthesized enzyme if earthworms suffer 
an additional OP exposure event. Nonetheless, optimization of oxime-induced reactivation 
of phosphorylated ChE activity should be performed when we use a new species or a new 
tissue as target for ChE determination and reactivation. 

4. Concluding remarks 

Plant protection products are still necessary for combat pests. The massive use of 
pesticides leads to a set of environmental hazards on non-target organisms of ecological 
and agronomic concerns such as earthworms, pollinators or natural enemies of pests. 
Moreover, the occurrence of pesticide residues in soil can change microbial communities 
and soil enzyme activities involved in nutrient cycles. These effects can lead, in turn, to a 
loss of soil quality. In the predictive and retrospective (post-authorized) environmental 
risk assessment of PPPs, exposure and effect assessment of pesticide toxicity on non-target 
organisms is an essential step for decision-making related to pesticide use and 
agroecosystem protection. Besides toxicity and bioaccumulation bioassays, biomarkers are 
often used to provide mechanistic understandings on the toxic effects observed at the 
whole-organism level. Classical biochemical biomarkers have been used in terrestrial 
invertebrates, mainly earthworms, to assess exposure to OP and CM pesticides. Below it is 
emphasized a set of practical issues that would require further investigation to use 
biochemical biomarkers in the understanding of pesticide toxicity and tolerance in 
terrestrial invertebrates. 
When possible, the analysis of biomarkers should be performed in a tissue-specific way 
because level, degree of response or persistence of the response is highly dependent on the 
tissue. Moreover, a tissue-specific analysis of the biomarkers can be helpful to understand 
local toxic effects of pesticides or possible mechanisms involved in the reduction of pesticide 

www.intechopen.com



 Pesticides in the Modern World  
– Pests Control and Pesticides Exposure and Toxicity Assessment 

 

232 

uptake and detoxication (e.g., sensitivity and expression of pesticide-detoxifying enzymes in 
the gastrointestinal tract). 
Linking biochemical biomarkers to behavior changes is a growing ecotoxicological topic that 
requires further studies aimed to examine adaptive behavior responses following pesticide 
exposure, or the impact of long-term and low-level pesticide exposure on the “behavior-
biomarkers” interaction. Current behavior protocols such as the standardized avoidance 
behavior bioassay with earthworms (ISO, 2005) and other more ecologically relevant 
alternatives provide an excellent opportunity to link those biomarkers directly related to 
pesticide toxicity and metabolism with behavior. 
When enzyme inhibition (e.g., CbEs or ChEs) or induction (e.g., GST or CYP1A) are used to 
assess pesticide toxicity and detoxication, appropriate substrates or multiple substrates are 
recommended because of multiple isozymes cco-existing in the target tissue or organ. Some 
studies discussed in this chapter have demonstrated that earthworm CbE activity (an 
esterase of notable importance in the metabolism of OP, CM and SPT pesticides) display 
multiple tissue-specific isozymes and, further, these isozymes respond (inhibition and 
recovery) differently to OP exposure. 
When ChE activity is used as a biomarker of pesticide exposure, it is recommended the use 
of oximes (nucleophilic compounds able to restore the ChE activity following OP exposure). 
Some studies with earthworms have shown that phosphorylated ChE activity can be 
reversed in vivo and in vitro by pralidoxime and obidoxime. This methodology would allow 
to assess multiple OP exposures in the field or to examine the potential contribution of ChEs 
(AChE and BChE) as bioscavengers of OP pesticides.  
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