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1. Introduction

The interest to ’in situ’ drug delivery systems has been sparked by the advantages of

these systems, such as ease of application, localized delivery for a site-specific action,

prolonged delivery periods, decreased body drug dosage with concurrent reduction in

possible undesirable side effects common to most forms of systemic delivery, and improved

patient compliance and comfort. There are different materials that can be potentially used

as the implants, each of which has its advantages and disadvantages. Emulsion, liposomes,

microcapsules and micells may be potentially used for certain applications Collins-Gold et al.

(1990); Sharma (1997); Chen et al. (1997); Zhang et al. (1996), however, they still have some

room for improvement. They are not the best systems for long-time delivery because of the

stability, sterilization and low drug entrapment problems, as well as, in some cases, difficulty

of manufacturing procedure or in control of the properties Hatfia & Amsdena (2002). As

alternative, ’in situ’ setting semi-solid drug depots are being developed. These implants are

made of biodegradable polymers that solidify once injected into the site. Together with all the

advantages, the main minus of these systems is the initial burst in the drug release connected

with the release of the drug during the solidification time of the matrix. Also, some of the

polymers require high temperature for injection or usage of organic solvents, which may result

in necrosis or toxicity. Another polymer matrix (ethylene-vinyl acetate) was successfully used

as an implant to deliver phenytoin into the brain Tamargo et al. (2002), however, the material

manufacturing time is quite long, more than one month, which makes it difficult to apply

routinely.

The recently developed sol-gel technology offers new possibilities for incorporating

biologically active agents within inorganic titania or silica xerogels at room temperature, and

for controlling their release kinetics from the gel matrix Chiriac et al. (2010); Quintar-Guerrero

et al. (2010); Lopez et al. (2006); Lopez & Quintana et al. (2007); Lopez et al. (2007). This
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2 Will-be-set-by-IN-TECH

sol-gel technique is inexpensive, versatile and simple and provides easily reproducible xerogel

properties. Thus, such materials are good candidates to create ’in situ’ delivery systems.

2. State of the art

Phenytoin (5,5-diphenyl hydantoin) is one of the major first-line antiepileptic drugs used in

the treatment of generalized and partial (with or without secondary generalization) seizures.

Also, it is used acutely in the management of life threatening status epilepticus and in

the treatment of serial seizures. The mechanism of action is not definitely known but

extensive research strongly suggests that its main mechanism is to block frequency-, use-

and voltage-dependent neuronal sodium channels and, therefore, limit repetitive firing of

action potentials. In chemical structure, phenytoin is related to the barbiturates. However,

the use of phenytoin clinically is problematic for several reasons. Firstly, phenytoin has a

low therapeutic index so that therapeutic and toxic doses are close to each other. Secondly,

because of its saturable metabolism, the relationship between plasma concentration and dose

is non-linear and difficult to predict Richens & Dunlop (1975). Thirdly, it has a long term

toxicity profile, including adverse cosmetic effects Reynolds (1989), which is undesirable.

Also, chronic drug administration can lead to many side effects, among which language and

memory problems, intellectual decline and psychiatric illness. This occurs because only a

certain amount of the drug overcomes the hematoencephalic barrier, which requires its higher

dosage Lolin et al. (1994). Considering this, ’in situ’ prolonged drug delivery represents an

alternative that has excellent therapeutic benefits.

3. Sol-gel derived materials

The encapsulation of a drug inside an inorganic nanostructured matrix is a promising way to

deliver the drug. The matrix is usually some metal oxide such as Titanium or Silicon dioxides

or aluminosilicates of different structures. The structure may vary from highly organized

(crystals, microtubes) to an amorphous one. Such a matrix has a high surface area and porosity

allowing to accommodate rather large amounts of the drug. The drug may be incorporated

either by adsorption into already existing structure or during the structure formation, namely

the synthesis of the matrix. The latter method is more efficient because it allows encapsulation

of larger amounts of the drug and its release during a longer period. The synthesis conditions

of conventional chemical processes do not always allow addition of the drug during the

synthesis, since many drugs are quite sensitive to the change of the synthesis parameters

such as temperature, pH, etc. Also, the solubility of the drug influences the possibility of its

encapsulation. However, in this case, the sol-gel method may overcome these difficulties and

become a good option, since it allows the drug encapsulation under the mild conditions. In

the typical sol-gel process the synthesis starts with a solution containing metal precursors,

such as metal alkoxides, water as a hydrolysis agent, and alcohol as a solvent. The reacting

mixture may also include acid or base as a catalyst. Metal alkoxides undergo hydrolysis and

polycondensation at near room temperature forming a sol, in which polymers or fine particles

are dispersed without precipitation. Further reaction connects the particles solidifying the

sol into a wet gel, which still contains water and solvents. Vaporization of the solvent and

water produces a dry gel, which is a porous material. Since the sol-gel process starts with

a well mixed solution, the reaction may take place at lower temperatures as compared to
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conventional mixtures. This enables incorporation of otherwise decomposing compounds

such as many drugs. The drug is usually added to the initial mixture and during the process

accommodates within the pores. Usually amorphous material has a distribution of the pore

sizes. Thus, on release, firs, the drug situated inside the large pores comes out, then the one

inside the mesopores, and, finally, the one inside the micropores. This permits reaching a

desired level of the drug and then to have its prolonged liberation.

The release profile of the drug incorporated into titania matrix is expected to depend on

the following factors: the reservoir surface properties affecting drug-matrix interactions, the

morphology of the matrix, the degree of crystallinity, drug dissolution and diffusion, and the

method of incorporation of the drug into the matrix. Since the majority of these factors may

be controlled by the parameters of the sol-gel synthesis, the drug release kinetics, therefore,

may be tuned by tailoring the processing parameters during the sol-gel reaction. Thus, one

specific parameter of the synthesis can be varied in order to change the drug release profile.

In the following sections we will discuss what are the main parameters influencing the release

profile and how they affect the release kinetics ’in vitro’.

4. Phenytoin-titania reservoirs

In the particular case of the drug incorporated into the sol-gel titania, there are two principal

questions that one should address: (i) does the synthesis process affect the structure-activity

relation and the stability of the drug and (ii) what functional groups of the matrix and the drug

participate in the interaction? There are different types of interactions that can be found in the

modern drug delivery systems: electrostatic (Coulombic), hydrophobic, or hydrogen-type.

Sol-gel titania, if it is not calcinated, has a surface covered with hydroxyl groups with the

average density of 5 OH/nm2. These terminal hydroxyls can interact with a heteroatom of

the drug molecule serving as adsorption sites favoring the drug distribution inside the matrix.

Naturally, the number of OH groups capable of binding the drug would define the amount

of the drug that can be carried by the matrix, whereas the strength of the interaction would

influence the drug diffusion out of the reservoir. The two parameters together will influence

the release profile. Thus, the surface coverage by OH groups determines the adsorption

behavior and the surface reactivity.

4.1 Phenytoin-titania interactions

The solid state 13C NMR study allowed us to determine that phenytoin is attached to the

matrix without any changes in the structure and to establish what part of the molecule couples

to the titania hydroxyl groups Lopez et al. (2010). The comparison of the two spectra for pure

phenytoin and the one encapsulated into the titania matrix (Figs. 1) revealed that the same

signals are present in both cases with the only difference of the peaks in the aliphatic region

of the spectrum for phenytoin within titania. These peaks correspond to the nonhydrolyzed

butyl radicals attached to titania. The slight shift of the signals for encapsulated phenytoin

as compared to pure phenytoin implies that the structure of the phenytoin molecule in the

matrix is more rigid than ’free’ phenytoin. Due to the largest shifts for the two carbons of

the hydantoin ring it becomes clear that the hydantoin ring in the phenytoin molecule is the

system that interacts with OH groups of the titania matrix. To answer the question how exactly

the interaction takes place, we suggested the possible complexes between the hydantoin ring
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4 Will-be-set-by-IN-TECH

(a) (b)

Fig. 1. Solid state 13C NMR spectra of (a) pure and (b) titania encapsulated phenytoin. The
peak letters indicate corresponding atoms in the phenytoin structure given on the right in (a).

C-I

Gsol=-4.72 Kcal/mol

C-II

Gsol=-9.20Kcal/mol

C-III Oxygen

Nitrogen

Carbon

Hydrogen

Gsol= 4.38 Kcal/mol

Titanium

Fig. 2. Optimized geometries of phenytoin-titania complexes: C − I and C − I I are
monodentate complexes, and C − I I I is the tridentate complex. The corresponding corrected
free Gibbs energies on formation of each complex are given below.

and titania hydroxyl groups, calculated using the Gaussian 03 Frisch et al. (2004) package of

programs within the Density Functional Theory (DFT) formalism, and shown in Fig. 2.

The last complex proposed (tridentate C-III) has three simultaneous weak hydrogen-type

interactions: two hydroxyl groups of titania interact with two oxygen atoms (of carbonyl

groups) of phenytoin and there is an oxygen bridge from titania to a proton of the amine

group of phenytoin. The calculated Gibbs energies show that C-III is more favorable in

comparison to C-I and C-II. Since hydroxyl groups of titania participate in the complex
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formation, phenytoin adsorption on titania should significantly depend on the hydroxylation

degree of titania. The experimental evidence of the presence of C-III complex was obtained

by comparison of carbonyl region of IR-spectra calculated for different complexes with

the experimental IR-spectrum. Even though the carbonyl group signals do not disappear

completely, as suggested in an ’ideal’ theoretical system, a significant reduction of the signals

suggests the presence of rather large amounts of C-III, though it is hard to conclude in what

proportion to C-II and unbound phenytoin it is formed. Since the amount of hydroxyl groups

on the titania surface is crucial for the phenytoin load in titania reservoirs, the hydroxylation

degree was analyzed by IR and TGA/DSC analyses. It was found that with increase of

water/alkoxide ratio rw, the hydroxylation degree increases up to rw = 16 and then decreases

for rw = 24. Water/alkoxide ratio rw = 16 was concluded to be the most favorable to bind the

largest amount of the drug because of the highest hydroxyl group coverage. The next step in

the research was to study how different rw would affect the phenytoin release ’in vitro’.

4.2 Water-alkoxide ratio

As it was mentioned above, titania reservoirs were synthesized by the sol-gel method.

Titanium(IV) tetrabutoxide was continuously added to the mixture of deionized Millipore

filtered water, filtered ethanol and sodium phenytoin at 25◦C under constant stirring.

The molar ethanol/alkoxide ratio was kept constant and equal to 8. The sodium

phenytoin/alkoxide ratio was fixed to 7.5 mg per 1 g of alkoxide. The molar ratio of

water/alkoxide rw was taken as 4, 8, and 16. The resulting homogeneous sol was then left

to gelate for 24 h under constant stirring and after that was dried at room temperature. The

white powder was then dried at 40◦C in a vacuum for 24 h. The surface properties were

characterized by the Brunauer-Emmett-Teller (BET) method, crystallinity - by High Resolution

Transmission Electron Microscopy (HRTEM), hydroxyl group coverage - by IR spectroscopy

combined with a homemade vacuum heating cell under nitrogen atmosphere Lopez et al.

(2011). These parameters were considered in the connection with the drug release ’in vitro’.

To give an idea about the structure and morphology of the prepared materials, it is important

to notice that the structure of the reservoirs is rather complex. The primary particles formed

during the polycondensation are of the size of about 3 - 5 nm (Fig. 3a). The primary particles

almost immediately aggregate, forming the primary aggregates of about 50 nm size Heredia

et al. (2009). Slitlike micropores of 2.5 nm are formed as a result of aggregation of the primary

aggregates with the formation of the secondary aggregates. The secondary aggregates are

much larger but they also can aggregate between them during the sample drying, forming

the structure shown in Fig. 3b with macropores comparable to the aggregate sizes. The

agglomerates have different sizes ranging from 0.1 up to 0.8 µm, building up a porous

structure with large distribution of pore sizes.

Interestingly, it was found that the specific surface area increases with the addition of

phenytoin to the reaction due to difference in the particle growth at larger pH (pH=10 for the

solution of phenytoin sodium in water). In the case of different rw, it was observed that the

surface area first increases and then decreases, while crystallization degree decreases with the

increase of water content in the reaction. Titania synthesized in this way is mainly amorphous,

however, when the samples were observed under a high resolution electron microscope

(HRTEM), the regions with the crystalline structures corresponding to anatase titania were

observed (Fig. 4). Thus, there is an indication of a small degree of crystallinity on the nano

337In-situ Release of Antiepileptic Drugs from Nanostructured Reservoirs
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1 m

(b)(a)

Fig. 3. (a) TEM image showing nanoparticle agglomeration and (b) SEM image showing the
spherical morphology.

5 nm5 nm5 nm5 nm

5 nm5 nm5 nm5 nm

(a) (b)

(c) (d)

Fig. 4. HRTEM micrographs with corresponding diffraction patterns of phenytoin-titania
reservoirs synthesized with different water/alkoxide ratios rw: (a) rw = 4, (b) rw = 8, (c)
rw = 16, and (d) rw = 16 titania reference (without phenytoin).

scale in the material. Moreover, the degree of crystallinity depends on the water/alkoxide

ratio rw and decreases with the increase of rw Lopez et al. (2011).

It was possible to characterize the OH group coverage in an accurate way, excluding the

contribution of the sample humidity and physically adsorbed water. The results showed that

the hydroxyl group coverage increases with increase of rw from 4 to 16. Fig. 5 shows the drug

release kinetics of phenytoin from the reservoirs synthesized with different water/alkoxide

ratios rw.

For all three samples the release profiles are similar in shape and characterized by the two

regimes: the initial fast release described by the short-time (ST) release rate followed by the

long-time sustained release with lower release rate (LT). The initial release rate increases with
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Fig. 5. Release kinetics of phenytoin to buffer from 50 mg of titania reservoirs synthesized
with different water/alkoxide ratios rw: squares rw = 4, circles rw = 8 and diamonds
rw = 16. The lines indicate the Fick’s second law fits: solid for rw = 4, dashed for rw = 8 and
dash-dotted for rw = 16. The inset shows closer look to the initial release stage.

the increase of water content in the reaction. It is correlated with the size of macropores

formed between the secondary aggregates of titania nanoparticles. The size of the secondary

aggregates grows with increase of rw, thus, during the initial release period, there is a drug

discharge with the highest release rate and drug amount for rw = 16. Then, the initial

discharge slows down with the decrease of rw.

The constant long-time release rate is affected mainly by the following factors: reservoir

morphology on the surface (surface area, porosity and pore size) and in bulk (crystalline or

amorphous), interactions between the matrix and the drug, and the diffusion of the molecules

within the matrix. These parameters interplay in such a way that LT release rate first slightly

increases with increase of water content from 4 to 8 and then decreases for rw = 16. The

combination of morphology, degree of hydroxylation, and crystallinity allows sample rw = 8

to liberate faster than other samples during the long-term stage.

There are different empirical and semiempirical approaches that have been developed to

interpret the release mechanisms. One of the simplest empirical equation is the so-called

power law equation based on Fick’s second law of diffusion:

Mt/M∞ = ktn, (1)

where M is the amount of drug released after an instant t and infinite times, k is the constant

that correlates with the diffusion coefficient and n is the exponent characterizing the release

mechanism. If the Fickian diffusion takes place, n is equal to 0.5, 0.45 and 0.43 for a thin film,

a cylinder and a sphere, respectively. For porous matrix n is expected to take lower values

Peppas (1985); Peppas & Korsmeyer (1986). However, given the simplifications introduced

for this model, the analysis based on the power law should be taken with precaution. The

values of parameter n are very low (n < 0.45 for all the samples) and vary from 0.2 to 0.3. This

339In-situ Release of Antiepileptic Drugs from Nanostructured Reservoirs
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Fig. 6. (Schematic illustration of the morphology of the titania reservoirs, consisting of
nanoparticles, aggregates, and macro- and mesopores. The green and purple encircled
regions show phenytoin present in macropores and mesopores, respectively.

suggests that the release process is controlled by non-Fickian diffusion. The titania matrix has

the pores quite heterogeneous in length, surface roughness and fractality, which may be the

reason for the complex transport behavior.

4.3 Thermal treatment

With the purpose to determine the influence of the surface characteristics such as the effective

surface area, porosity, and the average pore size of titania on the release kinetics of phenytoin,

various titania-phenytoin reservoirs were prepared by the sol-gel method combined with the

hydrothermal treatment of titanium (IV) isopropoxide in 1 M acetic acid. Control over the

particle size was achieved by using the hydrothermal treatment at 220◦C for different times:

1, 3, 8, 20 and 42 hours. The reservoirs were loaded with 5 wt% of phenytoin Heredia et al.

(2009).

The obtained material consisted of pure anatase crystal phase independent of the heat

treatment time. It was found that the average particle size defined from XRD measurements

grows with the increasing treatment time. As it was previously mentioned, most nanoparticles

are clustered in aggregates. The average aggregate size determined by dynamic light

scattering was found to be in the range between 20 and 60 nm for the shortest and longest

treatment time, respectively. The average number of nanoparticles per aggregate was found

to be about 15-40 suggesting the development of porosity as shown in Fig.6.

The drug release kinetics were determined by measuring the UV-vis spectra of the buffer

solution with the immersed reservoir as a function of time for a period of up to two months

in a closed glass bottle. Fig. 7 shows the results of the release studies of five materials

hydrothermally treated for different periods of time. It was found that the reservoirs are

able to release phenytoin for more than 45 days, and the release kinetics are characterized by

two regimes: an initial fast release and a subsequent slow release, similar to that observed in

Fig.5. The duration of the initial fast release regime was found to depend on the hydrothermal

treatment time, and decreases with nanoparticle and aggregate size. Unfortunately, the initial

release rate was not quantified due to a generally non-linear behavior and insufficient data

points. The slow release rate is independent of time and showed a weak dependence on

the morphology of the nanomaterial. The phenytoin constant release rate was found to be

340 Underlying Mechanisms of Epilepsy
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Fig. 7. Release kinetics for the titania reservoirs with different morphological properties. The
released phenytoin is shown as a percentage of the initially incorporated amount of
phenytoin. The kinetics were determined for three samples of each hydrothermal treatment
duration. The straight lines correspond to linear fits after allowing for the initial fast release
period to end.
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Fig. 8. (a) Stereotactic surgery is used to introduce the implant; (b) Cannula used for
compressing the material to a cylinder and 1x1.5 mm titania cylinder implant.

between 0.017 mg/day and 0.030 mg/day, depending on the properties of reservoirs. One

could distinguish between two main release rates: for the two smallest particles (1 and 3 h

of thermal treatment) the rate is about 0.017 mg/day, while for the three largest particles (8,

20 and 42 h), the rate is about 0.030 mg/day. This trend follows the size of the mesopores,

however, the dependence is remarkably weak. Taking into account that the pore size is at

least a factor of two larger than the phenytoin molecules (varies from 4.3 to 12.6 nm for 1

and 42 h of treatment, respectively), the release rate is expected to be mainly related to the

phenytoin-titania surface interaction. For strong interactions, the difference in specific surface

area for the smaller mesopore and the larger mesopore nanomaterials would be expected to

result in significantly different release rates. However, as it was shown, the release rate can

be tuned to between 0.017 mg/day and 0.030 mg/day by control over the properties of the

materials.

5. In vivo tests

Male Wistar rats (180-250 g) were used to study biocompatibility and effectiveness of the

materials Lopez et al. (2006; 2007; 2009). All rats were induced epileptic convulsions following

the Kindling model, where the rats were intraperitoneally injected with an aqueous solution of

a subconvulsive dose of Pentilentetrazole (PTZ) (35 mg/kg). After each injection, observations

were made for 20 min and the resulting seizures classified based on Racine’s description for

motor seizure activity in rats Racine (1972) as follows: 0 - normal activity; 1 - mouth and

facial movements; 2 - head nodding; 3 - forelimb clonus; 4 - rearing; 5 - rearing and falling,

loss of postural control, or full motor seizure activity. The animals were considered epileptics

after exhibiting at least three consecutive phase 4 or 5 seizures. The material with or without

phenytoin was then compressed to the form of a small cylinder with 1 mm diameter and 1.2

mm of height and stereotactically implanted into the temporal lobe of the rats (Fig. 8).

After the surgery, the animals were allowed to recover in their home cages with food and

water. The effect of the implants were evaluated by further initiation of the seizure with

PTZ on the rats with the reference and drug loaded reservoirs (six for each group). For the

reference group of rats with a drugless TiO2 reservoir, all six rats kept on having epileptic

events (Crisis-Tonic-Clonic-Generalized CTCG), thus, no curative effect was observed for

these implants. The group of rats with implants showed a reduction of the intensity and

frequency of the seizures, however, only about 45% of effectiveness of shielding was observed.

One of the possible reasons for that may be a very small size of the implant, which results in
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Fig. 9. Comparative histological study: (a) overall view of an histological section with the
reservoir (20X); (b) The same as (a) at 100X; (c) Glial response to inflammation of the tissue in
the neighborhood of the reservoir (20X); (d) Amplified limiting zone in (c) at 100X.

the release of phenytoin with the concentration lower than its terapeutic threshold. Another

reason is that the release ’in vivo’ may differ from ’in vitro’, which requiers additional

information to be able to really design the material. Our next steps would be to change the

parameters of the matrix in order to find the best conditions for the reservoir to work ’in vivo’.

Also, the size of the implant may be varied up to 4-5 mm in diameter Tamargo et al. (2002),

which also may result in better protection.

A group of rats was sacrificed using an overdose of sodium phenobarbital administered by an

intraperitoneal injection after 6 months following the implant. After that, they were perfused

using a saline solution of 3.7% formaldehyde. The brains were extracted and conserved in

3.7% formaldehyde solution. The brain specimens were microtomed and conserved in a 4%

formaldehyde solution for a period of 15 days. Sections (10 µm) were embedded in paraffin

and viewed using an optical microscope. The sections were dyed using the Bielchowsky

technique, which enables examination of the neuronal microfibrils and cell soma integrity.

Implant position did not vary after 6 months in the basolateral amygdala, meaning that the

reservoir was highly compatible with the nervous tissue. To confirm the lack of glial response

to the implant, sections were taken of the implant zone for histological analysis and neuronal

damage evaluation.

A comparative histological study Fig. 9 shows that the nerve cells are not adversely affected

by the presence of the reservoir. The interfacial area between the implant and the surrounding

tissue is devoid of inflammatory areas. This observation suggests that these ceramic implants

can safely be used to deliver drugs to the damaged areas of the brain.
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6. Outlook and prospects

An anticonvulsant drug phenytoin can be encapsulated into the sol-gel biocompatible titania

and can be successfully implanted into the temporal lobe of the brain by low invasion

stereotactic surgery. The implantation process is such that the damage of the surrounding

tissue is minimal. The drug release from the implants is controlled by the parameters of

the matrix such as its morphology, drug-matrix interaction strength, etc. Depending on the

parameters of the synthesis, the release profile may be designed according to the necessities

in terms of release rate and the amount of the released drug.

The first experiments ’in vivo’ indicate that there is a certain degree of protection on the

epileptic rats, even though no sharp fall of the seizure type was observed. Also, the

biocompatibility tests revealed a good affinity between the material and the brain tissue. Thus,

the first results are quite promising for the future application of the reservoirs.

One of the main prospects of the study is to achieve better protection ’in vivo’ for longer

time. Also, one needs to find a correlation between the drug release ’in vitro’ and its effect

and release profile ’in vivo’. This would allow generalization of design of the materials for

different types of epilepsy patients and their needs. A very firm clinical stage is required

before any commercialization of the materials.
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