
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

15

Multi-Functional Guidance, Navigation
and Control Simulation Environment

- Rapid Prototyping of Space Simulations

Erwin Mooij1 and Marcel Ellenbroek2

1Delft University of Technology, Faculty of Aerospace Engineering
2University of Twente, Department of Applied Mechanics

2Dutch Space B.V., Leiden
The Netherlands

1. Introduction

Many space projects involve at one stage or the other extensive mission analysis, either to
serve as an indication of system performance or as input to the design of sub-systems, such
as the satellite’s guidance, navigation and control (GNC) system. From the large difference
in nature of these space projects one would expect a huge diversity of simulation models. A
few typical examples include GPS satellites orbiting the Earth, the Voyager-1 and -2 flying in
a heliocentric orbit through the solar system, Apollo’s mission to the Moon, the European
robotic spacecraft Giotto flying to Halley’s comet and providing pictures of the cometary
nucleus, Huygens entering the atmosphere of Saturn’s moon Titan, and the Viking 1 and 2
spacecraft landing on Mars.
However, upon closer study it seems that there are many commonalities in both simulation
models and simulation approach. Also the experience from several major projects has
resulted in a generic approach for development, integration, verification and validation of
on-board software for GNC, and Data/Handling systems (Mooij and Wijnands, 2002; Neefs
and Haye, 2002; Mooij and Ellenbroek, 2007). This approach contains inter-connected paths
for rapid prototyping, control-algorithm design and verification, on-board software
development, and integration thereof with dedicated (flight) hardware in the control loop.
To allow for a modular design of a particular simulator that is independent of the chosen
spacecraft, (space) environment and mission, a (large) number of elementary functions and
models is available to the user through a number of model libraries. These models can easily
be combined by means of ‘drag and drop’. In this way a significant cost reduction in terms
of man-hours, as well as a short turnaround time can be achieved. Of course, this can only
be guaranteed if each individual model is extensively tested and well documented.

Worldwide, MATLAB/Simulink is the most commonly used simulation environment for
the design of control systems, not only in the aerospace industry, but also in, for instance,
the automotive industry. So, for the sake of the current discussion, the programming

environment of our choice is MATLAB/Simulink, although it must be stressed that the
philosophy behind the generic simulation environment is independent of programming
language.

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

316

The standard way to obtain source code that can be implemented in an external, real-time

simulation environment is to use MATLAB’s Real-Time Workshop. This toolbox supports

the re-use of developed Simulink models and hence results in a real-time simulator with
identical models and a similar architecture. This allows for a simple model exchange
between the two environments, as well as a sensible comparison of the results. However,
there are several drawbacks to this approach. First, the generated source code will not be

independent from the MATLAB suite, since some (large) binary libraries have to be linked
with the compiled source code to get an executable. Second, the generated code can be very
complex at times and not be very readable. This makes a direct extension or adaptation of
this source code a complex not to say impossible task.

If there would be a way to separate the actual application code from the MATLAB/

Simulink dependencies, but still use the architectural information of the Simulink

simulator we would have an efficient and flexible way to go from design simulator to real-

time simulator and back. Fortunately, the solution is relatively simple. The application code

can communicate with Simulink by means of dedicated interface code (also called wrapper

functions), and the Simulink file can be parsed to extract architecture information. This

information can subsequently be used to automate the setup of a real-time simulator. In

conclusion, Simulink should be used to set up and test the simulator architecture, and the

combination of MATLAB and Simulink to design, analyse and test GNC systems. Once

the testing is finalized, the application code can be transferred to the real-time environment

and combined according to the architecture information.

In this chapter, the following aspects will be discussed in more detail. Starting out with a set

of top-level requirements, the architecture of the generic GNC simulation environment will

be discussed in Section 2, including an overview of all required (and available) library

models. Section 3 discusses the verification, evaluation and validation of the simulation

environment. In Section 4 a number of examples of increasing complexity will be presented

to show the versatility of the presented modelling and simulation approach. Section 5

concludes this chapter with some final remarks.

2. The generic GNC simulation environment

2.1 System description

The GNC simulation environment is a toolbox facilitating the development of a dynamics

simulator of a spacecraft and its natural environment. Such a simulator can not only be used

for many different projects, but also in several simulation facilities during the full life cycle

of the GNC system. This can vary from the design to the assessment of the functionality and

performance. For instance, in the design phase of a GNC system, the dynamics simulator is

initially applied in a non real-time Design Simulation Facility (DSF). After this phase, the on-

board GNC software is designed and built, and for verification a real-time Software

Verification Facility (SVF) with additional functionality is needed. For qualification

purposes the real-time facility is further extended. In the operational phase of the spacecraft,

important parts of the DSF may be reused in the so-called Spacecraft Training Facility (STF)

and the Software Maintenance Facility (SMF), as well as the Electric Ground Support

Equipment (EGSE) and the Operation Control Center (OCC).

The following main characteristics form the foundation of the generic GNC simulation

environment:

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

317

 System Description
In general, a satellite consists of a central bus and possibly one or more (flexible)
appendages, such as solar arrays and communication antennae. To facilitate a realistic
modelling of such a satellite, it can be built up from multiple bodies. To avoid
overlapping data segments when, for instance, a complete satellite model is copied (or
instantiated), in each library model the data segment is protected and can only be
accessed by the model itself. The following configurations are possible:

 Single rigid system with (or without) rigid appendages

 Single rigid system with flexible appendages. To study the impact of flexible modes
of an appendage on the performance of the guidance, navigation and control
system, these appendages will be modelled as flexible bodies. They can be coupled
with the main satellite body by dragging and dropping, and by properly
connecting the input and output ports.

 Multiple, free-flying rigid systems with or without (flexible) appendages. In close
proximity, such a configuration allows for the study of formation flying.

 Multiple, coupled rigid systems with or without (flexible) appendages. For
rendezvous and docking missions it may be required to analyze the behaviour of
the combined satellites before, during and after docking. Therefore, apart from the
mentioned instantiation mechanism also a (flexible) link between two or more
systems can be defined.

 Model libraries
To define one of the above systems in a simulator, the user can combine building blocks
from different model libraries, e.g., one with fundamental mathematical functions, such
as coordinate transformations, matrix and vector operations, or one with satellite-
dynamics models, space-environment aspects, and sensor and actuator models.

 Verification & Validation

Each of the library models has to be verified and validated, such that the user is

convinced of the proper functioning of the individual models. He should only focus on

building the simulator, and possibly add some missing, project-specific functionality.

Individual models should undergo unit testing, and combinations of models (so-called

metamodels) should undergo system testing.

 Documentation

The complete development of the model libraries should be extensively documented,

thereby following the applicable procedures established by the European Cooperation

for Space Standardization (ECSS, 2009). Included documents are the Software

Requirements Document (SRD), Architectural Design Document (ADD), Interface

Control Document (ICD), Detailed Design Document (DDD), the Software Verification

and Validation Plan (SVVP), Test Reports (TR) and the Software User Manual (SUM).

 Choice of inertial frame

To simulate missions that require a change in main attracting body, the user should be

free to define an arbitrary inertial reference frame. In this way one can simulate, for

instance, Earth-orbiting satellites, interplanetary missions, planetary entry and descent

into the Martian atmosphere, and orbits around asteroids or moons of Jupiter.

 Pre- and post-processing

Verification of dynamical models is always an important issue. Basic physical
properties derived from conservation laws can aid the user in model and simulator

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

318

verification. For this reason, a dedicated library has been set up. This library is also used
to create a clear architecture of the dynamics core, without the calculation of state-
derived parameters. These will be implemented in separate library modules.

2.2 Development philosophy
Each of the aforementioned simulation facilities has the main parts of a dynamics simulator
in common, even though they each have their own dedicated purpose. To avoid inefficiency
and for a better control of the software simulating the dynamic system, we have established
the need for a so-called Generic GNC Simulation (GGNCS) toolbox. As mentioned, this
toolbox contains the fundamental models to build a dynamics simulator. Even though the
architecture of the simulator is designed with Simulink, the actual application software
with the algorithms remains independent of the simulation environment.
The variety and simplicity of the available library blocks will lead to a common, modular
simulator architecture with well defined input and output interfaces. Since the architecture
will reflect the physics of the spacecraft system it has a clear and well-defined structure that
facilitates the extension of the simulator architecture with sensor models, actuator models
and the control logic. The initial architecture of the spacecraft in its environment is then not
affected.
The modular simulator architecture simplifies the development of the simulator, because
blocks can simply be replaced with more detailed models. When these blocks are added to
the libraries, the functionality of the GGNCS Environment will evolve over time. To support
this design philosophy the main characteristics introduced in the previous section need to be
translated to some more specific design rules.

General
1. Concurrent Versions System (CVS) shall be used for configuration control of the

GGNCS source code.
2. Problems (e.g., bugs) shall be reported using a Software Problem Report (SPR) tool
3. The GGNCS environment shall facilitate the re-use of knowledge and models from

previous projects.

Simulator-architecture modularity

4. The architecture of the simulator shall be designed in the MATLAB/Simulink
environment.

5. The architecture shall be defined by “drag and drop” of blocks from the GGNCS model
libraries.

6. The physical system under consideration shall be clearly recognizable within the
architecture.

7. The model blocks shall be combined in distinctive Simulink
 libraries.

8. The GGNCS libraries shall contain sufficient model blocks to comply with the
requirements defined in the Software System Specification

9. Each model block shall be coded with one particular functional property, with an easy
verification and validation process; no complex mix of functionality is allowed in a
single block.

10. Each model block shall be verified, validated and documented.
11. Certain combinations of frequently used blocks shall be combined in so-called meta

blocks

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

319

12. No recompilation shall be needed when a user wants to investigate different spacecraft
configurations or different missions. (After compilation of the source code binary

libraries are obtained. These libraries are linked with the blocks in the Simulink
simulator. Since these libraries are not dependent on the architecture, there is no need
for recompilation. The user only defines an architecture with existing libraries.)

13. The application part of the model blocks is coded in ANSII C. To be applicable in the

MATLAB/Simulink environment, MATLAB/Simulink dependent interface code is
added in a separate so-called wrapper function.

2.3 Top-level simulator architecture

In Fig. 1 the top-level system architecture of the GNC simulator is schematically depicted. The
modelled “equations of motion” include the effect(s) of the changing inertia properties of the
spacecraft and the contributions from the relevant loads. They can be split up in the
environmental loads and the loads exerted by the spacecraft itself. The inertia of the spacecraft
and the environmental loads are intrinsic to the flight dynamics of the spacecraft. In the rest of
this chapter this part is referred to as the flight dynamics-model or simulator kernel.
The control loads applied by the spacecraft are introduced as externally applied loads and
therefore input to the dynamic system. They stem from the actuators that are part of the
Avionics and which are controlled by the GNC. To do this, the GNC requires information on
the state of the spacecraft, which is provided by the sensor readings. As indicated, the
actuators and sensors define the interface between the spacecraft flight dynamics and the
GNC system. The type of the simulation facility that employs the dynamics simulator

Fig. 1. Top level system architecture of the GNC simulator: the user configures a simulator
by selecting spacecraft component models and environmental databases from libraries

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

320

defines the required details that are incorporated in the models, varying from simply
functional to the actual hardware. The GNC simulator environment facilitates the
simulation of the spacecraft dynamics and the evolution of the GNC system from the
beginning with non-real time simulations till the actual hard real-time testing phase.
Since the flight-dynamics box has fixed inputs and outputs the simulator environment
provides a library with sub-boxes to support the transformation of the actuator loads from
one frame into another one, and the actual state into signals relevant for the type of sensor.
It is stressed once more that the top-level GNC system, sensors and actuators are for the user
to fill in, as long as the input-output interfaces are met. A GNC system typically consists of a
mission planner to provide reference signals, guidance algorithms to counter translational
errors and control algorithms to do the same for rotational errors. In addition there is
usually a state estimator that combines the sensor data into something sensible that the
guidance and control algorithms can actually use. Such an estimator can simply be an
equation that calculates a distance norm from three Cartesian position coordinates, or
something more advanced like an Extended Kalman Filter that combines GPS and inertial
measurements into a best estimate of position and velocity. The actual state is input to the
sensor block, so in principle any state(-derived) value can be transformed to a sensor output.
Depending on the level of detail, many different errors can be added to the sensor
measurements. For the actuators a similar reasoning holds. Inputs to this block are actuator
commands, issued by the control system. These can be commanded control-surface
deflections for a winged re-entry vehicle, required moments for a reaction-wheel
assemblage, or an average thruster moment for a pulsed, reaction-control system. However,
the actuator block also enables the user to include any force and/or moment generating
device that may not be controlled by the GNC system. Typical examples are a propulsion
system that produces a constant thrust until it runs out of fuel, the aerodynamic properties
of an entry vehicle, or a parachute system. It should also be clear, though, that the user is
responsible to provide consistent data flows between sensors, GNC system and actuators.
Schematically, an abstract version of a dynamics simulator including the GNC units, as part of
a number of simulator facilities, is shown in Fig. 2. In an industrial context, different
companies may contribute to the definition, design, implementation and testing of the
dynamics simulator. Moreover, the GNC units may be applied in different simulation facilities
for different purposes. Therefore, to enable a controlled translation of software units (e.g., the
actuator and sensor models), the unit models must be structured considering predefined I/O
ports. Fig. 2 also identifies these interfaces ports required by the different facilities.
The I/O ports will usually not change going from one facility to the other. However, the
interfaces may not always be known right from the beginning. Sometimes one assumes
standard interfaces for simplified models (so-called level-1 models that consist mainly of the
physical implementation), which may even reach the real-time simulator. As more detailed
models will become available, the interfaces may need to be adapted. They may change in
the real-time simulator, and for design purposes they will also have to be adapted in the
design simulator. However, depending on the simulation facility, sometimes the interfaces
change to such an extent, for instance due to the inclusion of hardware or software in-the-
loop (HIL/SIL), and will then include a detailed communication interface. In that case there
is no need anymore (or simply not possible) to match the interfaces in the design simulator.
From that moment on the design simulator and real-time simulator become uncoupled. The
standard models provided with the GNC simulation environment will all comply with this
interface specification.

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

321

Fig. 2. Schematic view of the dynamic simulator as part of several simulation and test facilities

2.4 Library models

The idea behind the GGNCS Environment is that the software environment should be

suitable for the development of a so-called end-to-end simulator. This simulator can be used

for the complete lifecycle of a sub-system that is part of or can exert influence on the control

of a spacecraft. Typically, this is the GNC system that executes on/with certain hardware,

although it could be the hardware itself as well.

To achieve this the simulation environment should be a collection of libraries with

predefined (functional) models that have a well-defined and documented interface. It

includes everything that is required to simulate the operation of a GNC system (i.e., vehicle,

environment, operations, etc.), but not the GNC system itself, although it would be possible

to have a library with some pre-defined and tested GNC models to use for a quick closing of

the loop. The so-called state vector that contains only that information for an unambiguous

definition gives the state of the system. The state of the system is propagated in time by

solving the equations of motion. These equations are derived starting with force (or

moment) equilibrium using d’Alembert’s Principle.

The core of any flight-dynamics simulator is thus formed by the equations of motion. These

are typically a form of Newton’s second law, which states: the acceleration produced by a

force is directly proportional to the force and inversely proportional to the mass, which is

being accelerated. This formulation holds in principle for systems of constant mass. By

applying the so-called Solidification Principle one can use the same formulation for mass-

varying systems when two apparent forces are added to the external forces, notably the

Coriolis and relative force due to the mass variation (Cornelisse et al., 1979). The Coriolis

force can usually be ignored, whereas the relative force (originating from mass expulsion, or

in other words, a thrust force) is commonly considered to be an external force.

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

322

Inspecting Newton’s second law, i.e., extF ma with extF is the sum of all external

forces, m is the (current) mass of the system and a is the total acceleration of the system, one

can derive the models required to simulate the motion of this system. In the first place, we

need models for the external forces. These forces stem on one hand from the environment

and on the other hand from hardware elements (i.e., actuators) such as the propulsion

system. A satellite, for instance, is subjected to many aspects of the space environment, i.e.,

gravity of the main attracting body, gravitational perturbations due to third bodies (e.g., the

Moon for an Earth-orbiting satellite), solar-radiation pressure, the magnetic field of, for

instance, the Earth, and the atmosphere of some planets and moons. This means that we

need environmental models that capture the perturbing effects with sufficient detail.
In the second place, we need models that describe the mass properties of the system. When
a propulsion system is present that burns fuel, the current system mass needs to be updated
accordingly. Because the simulator will not only be simulating translational motion, but also
rotational motion, also the inertia properties will be changing in that case. And, to be able to
calculate the external moments acting on the system, accurate information about the location
of the centre of mass is required when external forces are not acting on this centre of mass.
In the third place, when we have isolated the acceleration a by dividing the total force by the
current mass, we need to integrate this acceleration to calculate the change in velocity and

position and obtain the state vector as a function of time. Although Simulink provides a
number of integration methods, independent integration methods are required for porting
the simulator to a real-time environment.
The selected state variables for modelling the spacecraft systems are Cartesian coordinates
for position and velocity, roll, pitch and yaw rate for the angular motion, and so-called
quaternions to describe the attitude. Quaternions are derived from a rotational axis and
the angle of rotation around this axis, and use four elements to describe the attitude
versus the three angles that are actually required. However, while using three (Euler)
angles there will be a singularity in the solution for certain attitudes, which make them
not robust enough for a generic simulator. Quaternions do not have a singularity albeit at
the expense of one extra variable.
To organize the typically large number of models they are grouped together in different
libraries, sorted by functionality. Currently, there are 5 main libraries, i.e., the Flight-
Dynamics Library, Environment Library, Sensor & Actuator Library, Math library and Utility
Library. The underlying theory for the development of these libraries can be found in many
textbooks, such as Wie (2008), Schaub and Junkins (2009), Montebruck and Gill (2000),
Geradina and Cardona (1989) and Haug (1989). The Flight-Dynamics Library consists of the
rigid-body models for calculating the accelerations and propagating the state vector, the
external load calculation, i.e., due to solar radiation, atmosphere, magnetic field and
gravitational field, as well as models to compute the mass properties of a time varying
system that consists of multiple bodies. An extensive subset is formed by the flexible-body
models, which will be discussed later in this section.
The Environment Library (see Fig. 3 for an overview) contains all models related to the space
environment. Five categories can be discerned, i.e., gravity models (central field plus
optional one or more zonal harmonic terms, and the extensive Earth GRIM-5 spherical
harmonics model), magnetic-field models (central field and the spherical harmonics IGRF
Earth magnetic field Epoch 1995), atmosphere models (exponential, tabulated MSIS86
models for different solar activity and the United States Standard Atmosphere 1976, plus an

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

323

Fig. 3. The Environment Library, with the current gravity and ephemerides models detailed.

interface to the ESA Mars Climate Database (Forget et al. 2005)), ephemerides models (low-
order orbit models for the Sun and the Earth’s Moon), and solar-radiation models (inverse-
squared distance solar pressure, eclipse status and illumination-factor calculation). The
Sensor & Actuator Library contains currently only a limited number of functional models of a
three-axis gyroscope (including error modelling), a star tracker, a fine sun sensor, a generic
actuator model that adds different error sources to the input, a Reaction-Control System
thruster and, finally, a three-wheel reaction-wheel assembly. Such a library will typically
grow when dedicated sensors and actuators are developed in projects.
To obtain information about the system state in a format, different from the state variables,
the user can define his own conversions, assisted by the availability of a number of standard
conversions, stored in a so-called pre and post-processing library. A Math Library, as well as
a Utility Library play an essential role in that vision. Of course there are many standard
matrix operations available, such as matrix-vector and matrix-matrix multiplications, vector
dot and cross product, transposing and inverting matrices, and quaternion multiplications.
However, in this library also many functions are included that, for instance, transform
Cartesian position and velocity to spherical components (e.g., latitude, longitude and flight
heading) and back, quaternions to Euler angles, and those related to transformation
matrices. When dealing with forces and moments from different sources, they are usually
not all defined in one and the same reference frame. If the equations of motion require them
to be expressed in the inertial frame (forces) or the body frame (moments), pre-defined
transformation matrices can be used to transform them from typically any frame. Of course,
there are also models available to go from quaternions or Euler angles to a transformation

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

324

matrix and back. With this tool set, the user can create his own output in almost any format
that he wants. To facilitate analyzing the system behaviour models to calculate the kinetic,
potential, elastic and total energy of the system, as well as the power, are included.
The Multi-Body Library consists of models that facilitate the design of standard satellite
multi-body systems, i.e., a rigid central body with a number of (rigid or flexible) appendices
attached to it. Common practice in multi-body dynamics is to model all the bodies
independently of each other and to couple the bodies with constraint relations (Haug, 1989,
Geradin and Cardona, 2001). However, this method has a number of disadvantages of
which the most important one is that the run-time performance of the system decreases
significantly. Since the simulator is also to be used in a real-time environment, a different
solution has been chosen: the motion of all appendages is described relative to the geometric
frame of the central body, the so-called G-frame. This formulation yields a minimum set of
degrees of freedom (d.o.f.) to describe the equations of motion (Ellenbroek, 1994). Due to the
relative motion of the (flexible) appendices to the satellite, the center of mass of the system
moves with the motion of the appendices.. As a consequence the equations of motion cannot
be obtained in the system center of mass. Therefore, it is decided to formulate a ‘rigid-body’
motion of the system by the motion of the G-frame in contrast to the commonly used
Newton-Euler formulation. In the present Multi-Body Library, the relative motion in the joint
between the appendix and the central body is assumed to have one or no d.o.f. relative to
the satellite central body. This is sufficient for most satellite systems. It is then possible to
model, for example, a solar array with a relative orientation that varies in orbit, or a
momentum wheel that spins relative to the satellite.
The flexibility of an appendix is modelled assuming that the linear theory of elasticity is
valid. This means that in an appendix reference frame that moves with the appendix it is
allowed to use both a linear expression of the strain tensor and a linear relation between the
elastic strains and stresses (Hooke’s Law). The geometric non-linear motion of the appendix
can thus be described with sufficient accuracy. To further improve the run-time
performance the elastic deformation is modeled in terms of the sum of normal modes, each
of which is multiplied with a time-dependant elastic degree of freedom (d.o.f.). In this way,
one can decide to use only those modes that can be excited and that have a frequency in the
range of interest of the controller (Ellenbroek, 1994).
Summarizing, the d.o.f. to formulate the motion of the satellite system are the position and
orientation of the G-frame of the central body, the corresponding linear and angular
velocity, the joint d.o.f. between the central body and the appendices, and finally the elastic
d.o.f. and their time derivatives.
To derive the equations of motion of the satellite system, the structural properties of each
appendix (mass distribution, stiffness and damping properties) and the loads that are acting
on the appendix are first evaluated in the already mentioned appendix reference frame. The
environmental parameters should therefore also be available in the same reference frame,
which can be achieved by using the available transformations from the Math and Utility
Libraries. Via the interface joint between appendix and central body this information can
subsequently be transformed to the G-frame. Finally, all data from the appendices and the
central body are assembled in the G-frame and the equations of motion are formulated.
Solving the equations of motion provides the time derivative of the state vector, which is
then integrated. Extracting the kinematics data of an appendix from the system state vector
closes the loop. The Multi-Body Library has models for each of the steps that have been
described above. In Fig. 11 (see Section 4.3), the top-level models are shown: extracting

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

325

kinematics data from the state vector, formulation of the appendix properties in the G-
frame, and the formulation and solving of the equations of motion.

3. Verification and validation

The importance of the verification and validation process of the simulation environment
should not be underestimated. Only when this environment is well documented, and
verified and validated in a transparent manner, a user is willing to use the environment.
Therefore, this aspect warrants a great deal of attention from the beginning of the project.
The ECSS standards on software development (ECSS, 2009) are used as guidelines. In line

with these standards, among others the following documentation is written:

 The software system specification

 The architectural design document

 The detailed design document

 The verification and validation plan, and test reports

 The system environment release note
The consistency and correctness of these reports are checked, e.g., the traceability and
verifiability of the requirements throughout the documents are carefully considered, and the
correctness of the mathematical and physical formulations are verified.
To verify and validate software a number of methods is available. Verification of software
means: “confirmation by examination and provision of objective evidence that specified
requirements have been fulfilled”. Validation of software means: “confirmation by
examination and provision of objective evidence that the particular requirements for a
specific intended use are fulfilled”. More information on this topic is given in ECSS (2009).
The related methods are:

 Inspection:
Compliancy with requirements is shown with standard quality control methods.

 Review of Design:
Verification is achieved by validation of records, evidence of validated design
documents or when approved documents show the requirement is met.

 Analysis:
Compliance to specifications are verified by selected techniques as engineering
analyses, statistics, computer and hardware simulations, and analogue modelling.

 Similarity:
A specification is verified by similarity when it is similar in design to another
specification that has already been verified

 Test:
Compliancy to requirements is determined by using simulation techniques and the

application of established principles and procedures. Testing is the most important

method to verify requirements. It is used when verification by analysis is not sufficient.

The first step in testing the environment concerns the verification of the basic

mathematical functions, e.g., matrix multiplications, frame and co-ordinate

transformations, etc. The next step applies to unit testing of more functional models.

One can think of, for instance:

 Time propagation, both in relative and absolute sense, i.e., simulation time (starting
from t = 0) and mission time (related to the calendar date),

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

326

 Environment, e.g., consisting of the Earth's gravitational and magnetic field, the
Earth's atmosphere, the motion of Moon and Sun and the interplanetary
environment,

 Equations of motion, focusing on both translational and rotational motion, and the
numerical aspects due to the integration of the differential equations,

 Perturbations, of gravitational origin, due to third-bodies (Sun and Moon), the
Earth-magnetic field, the Solar radiation and the working of the upper atmosphere.

Finally, the modules integrated in a system simulator are tested on, e.g., a circular orbit
around the Earth – to be discussed in Section 4.1. In that and subsequent sections, we will
cover a number of representative tests as an example of the verification and validation
process.
If during the verification and validation process errors are detected, they are reported and
solved. To support this error handling process a dedicated SPR tool is available to facilitate
the reporting and handling of software problems and software change requests, i.e. the
problem is described, a problem “owner” is indicated, the priority to solve the problem is
set as well as the severity, and when and how it is solved.
Finally, we strongly emphasize that the verification and validation activities are performed
independently from the design and implementation activities. As an example of the
verification and validation process the current section is ended with two representative
tests.

Test 1 - Position of the Sun
The first test is meant to show that the low-order Sun orbit is correctly modelled.

Astronomically the arrangement of the planes of the orbit of the Earth and its equator are

such that the planes intersect at two times, the Equinoxes, when the length of the day and

night are equal. Mid-way between these are the Solstices, when the Sun is at its highest and

lowest in the sky at mid-day. These times can be determined very accurately and, as they

occur near the times when the seasons are changing, have been used to indicate the start of

each season. Thus, Spring is deemed to start at the Vernal Equinox (near March 21), Summer

at the Summer Solstice (near June 21), Autumn at the Autumnal Equinox (near September

21) and Winter at the Winter Solstice (near December 21). In the southern hemisphere the

cycle is displaced by half a year.

For the year 2001, the following simulated data are found for the location of Equinoxes and

Solstices: Vernal Equinox: March 20, UTC 13:31, Autumnal Equinox: September 22, UTC

23:04, Summer Solstice: June 21, UTC 07:38, and Winter Solstice: December 21, UTC 19:21.

Fig. 4. shows the relative position of the Sun with respect to the Earth-centred inertial frame.

The resulting orbit is correct within the models accuracy of about 0.5-1% (Montenbruck and

Gill, 2000). Plotting the orbit projections on different planes shows that the Earth’s

equatorial plane makes an angle  with the ecliptic plane, notably  = 23.5. All these data

are close to the expected values, so the model is assumed to be correct.

Test 2 - Magnetic field

The Earth magnetic field has been modelled as a dipole, with a strength of 7.961015 Wb m in

1975 (Wertz, 1978). The "south" end of the dipole was in the northern hemisphere at 78.60 N

latitude and 289.55 E longitude and drifting westward at about 0.014 /year. The

implemented model has been evaluated for the Earth's surface (r = Re = 6371.2 km, as

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

327

specified for the IGRF), the result of which is shown in Fig. 5. Comparing this result with the

plot for Epoch 1965 (Wertz, 1978) shows a good comparison, especially when taking the

secular drift into account. Within reason, it can be stated that the current geomagnetic model

has been properly implemented.

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x 10
8

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
x 10

8

X-position [km]

Y
-p

o
s
it
io

n
 [

k
m

]

Winter Solstice

Vernal Equinox Autumnal Equinox

Summer Solstice

Earth

relative Sun orbit

Fig. 4. Relative in-plane orbit of the Sun around the Earth. The Equinoxes appear at y = 0,
whereas the Solstices appear at x = 0.

-180 -120 -60 0 60 120 180
-90

-45

0

45

90

longitude (deg)

la
ti
tu

d
e
 (

d
e
g
)

25

3035

3540

40

45

45

50

50

55

55

55

60

60

60

60

Fig. 5. Total magnetic field intensity at the Earth's surface (in T Epoch 1995).

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

328

4. Applications

In this section a number of application examples of varying complexity is discussed. Starting
with a single satellite, subsequent examples will build on this one by adding functionality. It
is stressed that the examples focus on the versatility and ease of modelling of the GGNCS
Environment, and not on the portability from a functional to a real-time simulator. Due to
space limitations the reader is referred to two references for that. Mooij and Wijnands (2003)
discuss the development of a complex satellite control system based on Model Reference
Adaptive Control. A C-version of the simulator was implemented in the real-time
simulation environment EuroSim, including communication-interface facilities in the form
of a (hardware) MIL-1553 bus. In addition, a generic set-up was made for individual, real-
time testing of the control algorithms. Neefs and Haye (2002) describe a strategy for the
design of a set of simulation facilities for the development and flight-qualification of the
Attitude Control and Measurement System of the Herschel/Planck satellites. A modular
design for the simulation infrastructure complemented by a keen design of the simulation
model software resulted in a set of (real-time) simulation facilities with one common design,
and a single source for the simulations models.

4.1 Single satellite

In terms of space simulators, the model of a single satellite orbiting the Earth is a relatively
simple one. In this example, we will show how to model the satellite dynamics, the space
environment in terms of main attracting force and perturbing forces, starting from the
elementary building blocks. We will show a particular type of orbits around the Earth, i.e., a
highly eccentric orbit of the Molnyia type. This orbit has the characteristic that it stays over
Russia for a long time. The Russians use this type of orbit for telecommunication purposes.
The architecture of the simulator for a single satellite is shown in Fig. 6. The satellite consists
of a central body and two solar arrays. Each of the three bodies includes its own space
environment, as its influence on the body is a function of not only position and velocity, but
also the individual orientation. Within the body sub-system the mass properties and the

Fig. 6. Top-level architecture of a single-satellite simulator.

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

329

-180 -120 -60 0 60 120 180
-90

-45

0

45

90

longitude (deg)

la
ti
tu

d
e
 (

d
e
g
)

Fig. 7. – 24h groundtrack of a sample Molniya-type orbit (a = 26,555 km, e = 0.7222, i = 63.4,
 = 270.0, T = 12h.0).

external forces are calculated, which are combined before the calculation of the total
acceleration takes place. This acceleration is resolved in the earlier mentioned G-frame to be
in line with the later example of a satellite with flexible appendages (Section 4.3). Once the
acceleration has been calculated it is integrated to a new state. Note that the current satellite
state, shown as a dataline from the block Integrate State_IIGG, is required in several blocks.
These blocks are the three bodies (to calculate the external loads) and the block Solve
accelerations in G, because of the kinematic relation between position and velocity. In the
post-processing block, amongst others the inertial, Cartesian position is converted to
latitude and longitude, which will allow us to plot a groundtrack.
Simulating the Molnya orbit results in the groundtrack shown in Fig. 7. When compared
with the corresponding plot in Montenbruck and Gill (2000), it shows a close resemblance.
There is only a shift of the points of intersection with the equator - the date and time of day
for the orbit propagation was chosen arbitrarily, and was obviously different from the orbit
given by Montenbruck and Gill.
In a second test, the above simulation model is extended with a GNC system, as well as
sensors and actuators. The mission objective for the satellite is now to permanently “look
down” towards the Earth’s surface (as if there was an Earth observation instrument). The
new simulator architecture is shown in Fig. 8 . In this figure, the indicated simulator kernel
(the grey block) is identical to the complete simulator shown in Fig. 6, i.e., a satellite with
two rigid solar panels. We have added three sub-systems to the top level, i.e., the Sensors,
Actuators and the GNC_Logic, consisting of a Mission Manager, Navigation Filters, Guidance
Logic and Control Algorithms. It may be obvious that a detailed discussion of the design of the
GNC_Logic is beyond the scope of the current example, so we will suffice with a high-level
description.
For the current example, both the sensors and actuators are modelled as ideal systems. The
satellite state vector is only separated in a measured orbit state and a measured attitude
state. The Mission Manager provides the control setpoints, i..e, the required attitude to look
down towards the Earth. This corresponds with a fixed satellite orientation with respect to
the local horizontal plane, i.e., the plane tangential to the Earth’s surface. The Navigation

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

330

Fig. 8. Top-level architecture of a single-satellite avionics simulator for control-system
testing.

Filter converts the satellite attitude (i.e., the quaternions) to the local attitude angles, with

standard blocks from the Math & Utility library. The difference between the setpoint and the

actual angles (the control error) enters the Control Algorithm (a simple proportional-derivative

controller) and calculates the corrective moment to reduce the control error to zero. This

corrective moment enters the Actuators block as actuator_command. The commanded

moments pass through the actuator block and enter the Simulator Kernel. There, the angular

accelerations are calculated and integrated to a new state vector. The results show that

indeed the satellite is “looking down” all the time.

Summarizing, in the first example we simulated only the orbit (with so-called three degrees

of freedom), without any orbit control. In the second example we added attitude control and

set up the architecture for a simulator with which one can test GNC systems. Although the

sensors and actuators were modelled as ideal systems, given the interfaces we can replace

these ideal systems with more realistic models. That would allow us to do a detailed

analysis of the GNC-system performance.

4.2 Formation flying

Building on the previous example, we will show the orbit characteristics of four satellites

flying in formation. In essence, it means that we instantiate (or copy) the single satellite

model (in its space environment) four times, and use the related output of each satellite to

calculate the relative motion. In essence, we could either copy the simulator in Fig. 6 (which

became the grey block in Fig. 8.), or we can go one step further by creating a meta block of

the simulator shown in Fig. 8. This would allow us to study formation flying with fully

controllable satellites. For the current example this is arbitrary, since we will only simulate

the open-loop orbits of the four formation-flying satellites.

In Fig. 9. the top-level architecture of the simulator is shown. Each of the four blocks

represents a satellite with two rigid solar panels, as introduced in Section 4.1. The Master

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

331

Fig. 9. Formation-flying simulator for four satellites.

satellite takes the state vector of each of the three Slave satellites as input, whereas the Slaves

only get information from the Master. This configuration is quite common, where a single

Master controls the formation based on input it receives from the Slaves. In this example,

however, we do not control the Master nor the slaves, and the input to the Master is only

used for post-processing purposes, i.e., to calculate the relative position difference between

each of the Slaves and the Master.

The orbit of the Master satellite is circular. The variation of the orbital elements is selected in

such a way that the position distance for each of the slaves starts in the range of 1000 m.

Running the simulation, yields the results of Fig. 10. The curves show the relative motion in

along-track and cross-track direction of the three slave satellites with eccentricity differences

of e1 = 0.0001, e2 = 0.0002 and e3 = 0.0003. It is clear that each of the Slave satellites

follows a perfect ellipse around the Master satellite. And, at the same time the formation

orbits the Earth in a circular orbit (not shown here). This behaviour is in line with results

found in Schaub and Junkins (2009).

Concluding, this example shows that it is easy to instantiate a complete satellite and

simultaneously simulate multiple satellites. The data segments in each satellite block are

properly shielded from each other.

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

332

-4000

-2000

0

2000

4000

-5000

0

5000
-1

-0.5

0

0.5

1

d
Z

 [
m

]

Relative motion in Hill frame

dX [m]dY [m]

slave #3

slave #2

slave #1

Fig. 10. Simulation of relative motion for four formation-flying satellites in an equatorial
orbit with small difference in eccentricity.

4.3 Multi-body Satellite with flexible appendages

To test the implementation of flexible bodies in the GGNCS Environment a satellite with a
rigid central body and two flexible solar arrays attached to it is simulated. Each body is
defined in its own body frame. The position and orientation of the solar-array reference
frames are defined relatively to the reference frame of the central body. The solar arrays are
connected to the central body by a revolute joint, which allows for a single degree of
freedom rotation. The elastic deformation of the solar array is calculated locally in the solar-
array reference frame. The resulting model of the solar array is described in terms of a mass,
stiffness and damping matrix. The mass matrix depends on the elastic deformations,
whereas the stiffness and damping matrix are constant. They only depend on the spatial
deformation shapes. The time dependence of the elastic deformations is introduced by so-
called generalized coordinates, which are included in the state-vector. The mass matrix of
the undeformed body, and the stiffness and damping matrix are derived with the aid of an
accurate finite-element model of the solar arrays.

Fig. 11. shows the MATLAB/Simulink architecture of the described satellite system. The
satellite central body and both solar arrays are clearly identified. The kinematics of each solar
array in its own frame is extracted from the state-vector by the blocks SA kinem 1 and SA kinem
2. The blocks satellite body, solar array 1 and solar array 2 calculate the mass matrix, the time-
varying mass properties and the loads per body. The equations of motions are assembled and
solved for the time derivative of the state-vector in block Solve EquationsOfMotion. This block
also performs the integration, so that in the end the updated state-vector is obtained.

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

333

Fig. 11. The architecture of the satellite system with a central body two flexible appendices

To verify the correct implementation of the flexible appendages in the

MATLAB/Simulink environment, the simulation results obtained with the model of the
rigid central body with two flexible solar arrays were compared with the results from the
multi-body package DCAP (Franco et al., 1996). It is then observed that the system mass
matrix and the eigenfrequencies of the total system obtained in both simulation
environments are exactly the same. Also the time histories of the displacements, orientations
and velocities showed the same behaviour. Finally, the energy conservation and power
balance laws were verified.
Some of these results are presented with the following simple example. Consider the case

where a step moment of 1 Nm about the Z-axis of the G-frame is applied to the central body

after 1 second. The solar array joints are fixed and no further environmental load is

introduced. The flexibility in each solar array is modelled with 9 normal modes. The

corresponding frequencies varied between 0.25 Hz and 7.37 Hz. The data are obtained from

the linear module of the finite-element software MSC/NASTRAN. The power balance is

shown in Fig. 12. It clearly shows the presence of the flexible modes. Since the elastic and

damping loads are added to the load vector, the power from the external loads includes the

elastic power and the damping power. To show that the elastic modes are indeed active, Fig.

13 shows the power due the elastic load, the damping loads and also the elastic energy. The

power of the loads can also be derived to verify the power flow in the system. In fact, the

Power defines how accurate the equations of motions are solved. Although the presented

figures are only illustrative, they show the use of the post-processing modules to verify the

GGNCS Environment.

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

334

Fig. 12. Time history of the power conservation laws

Fig. 13. Time history of the elastic energy and power

4.4 Re-entry vehicle

To illustrate the use of the simulation environment for atmospheric flight, we show two

simple examples of a vehicle entering a planetary atmosphere. The first example deals with

an uncontrolled entry of an entry capsule in the Earth’s atmosphere. The model that is used

is that of an Apollo-like entry capsule (mass m = 4976 kg), which is on a return leg from the

Moon. It enters the atmosphere at 220 km altitude with a relative velocity of V = 11 km/s.

The corresponding flight-path angle  = -9.536, which means that the velocity vector is

below the local horizon.

Of course, the motion of the entry capsule is still governed by Newton’s second law, but

compared to the satellite examples shown earlier, the space environment is different. For

Earth-orbiting satellites the dominating force is the gravitational force of the main attracting

body (the Earth). The influence of the atmosphere gives rise to perturbing accelerations at

most. In case of a vehicle entering a planetary atmosphere, the gravitational acceleration is

mostly of secondary importance when compared to the very large aerodynamic forces (and

moments).

So, compared with the previous examples the simulator will include some additional
models. The simulator kernel (Fig. 8.) can in this case be somewhat simplified: of course, the

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

335

solar arrays can be removed. The satellite central body can be treated as the entry capsule.
However, the flight of the entry capsule will be inside the atmosphere and the main force
will be of aerodynamic origin. Therefore, the aerodynamic characteristics of the vehicle need
to be modelled much more accurately than that of a satellite that is only perturbed by
atmospheric drag. Since we do not want to change the (generic) flight dynamics kernel, it is
most obvious to include the aerodynamic force and moment model in the Actuators block.
However, since the aerodynamic properties are dependent on the actual state-derived
parameters (angle of attack, angle of sideslip, Mach number, dynamic pressure) we need to
feedback these data from the kernel.
In Fig. 14. the adapted Actuators block is shown. Apart from the reaction-control thrusters –
the actual actuators – two blocks have been added. One block calculates and outputs the
aerodynamic forces and moments in the body frame. The actual implementation is, of
course, depending on the available aerodynamic data. In the case of Apollo, the data came
from wind-tunnel measurements and consisted of several (tabulated) force and moment
coefficients as a function of Mach number, angle of attack and angle of sideslip. Linear
interpolation was used to obtain the actual values as a function of the flight condition. A
second block was added for future use, i.e., the block User_FM_body, which can in principle
be used for anything the user wants. For the current example, it outputs zero values. All
forces and moments are added together before they are outputted.
The simulation of a free-fall entry (translations and rotations), i..e, without guidance and
control, gives the trajectory and attitude motion shown in Fig. 15. This type of trajectory is
typical for entry capsules, see also Vinh (1981) and Mooij (1998). Comparing results shows a
correct implementation of this type of problem involving large aerodynamic forces and
moments. On a sidenote: in Mooij and Ellenbroek (2007) the implementation of a controlled,
winged re-entry vehicle is discussed, with an extensive aerodynamic database including
several control surfaces. That particular model has been used for many guidance and control
studies, which can be found in the quoted references.

Fig. 14. Inclusion of aerodynamic forces and moments computation in the Actuators block.

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

336

Fig. 15. Alitude-velocity profile (left) and attitude angles versus time (right).

The second example deals with the entry and parachute descent of a planetary lander in the

atmosphere of Mars. In principle this example is similar to the previous one, in terms of

aerodynamic implementation. However, also two parachute models are implemented in the

Actuators block. The first parachute is a so-called drogue parachute that is typically

deployed at supersonic speeds (Mach number of 2.1) and serves to stabilize the system and

remove part of the velocity. The second parachute is the main, and should bring the final

velocity down to a certain required value. Both parachutes are modelled as a drag area that

can gradually inflate once triggered.

New in this example is the choice of inertial reference frame (and thus main attracting

body): the frame has its origin in the centre of Mars. This means that the planetary

characteristics have been adapted as well, notably the equatorial radius, the rotational rate,

the gravity model and the atmosphere. This atmosphere is the state-of-the-art ESA Mars

Climate Database (Forget et al., 2005), for which a dedicated interface has been written to

communicate with the database’s Fortran interface.

The deployment of the two parachutes is triggered by a timer, starting at Mach = 2.1. Two

scenarios are considered, both aiming at a certain final velocity, i.e., Vf = 50 m/s and Vf = 80

m/s. For both scenarios, the drogue is inflated after 0.5 s. For the first scenario it is released

after 17 s (14 s for the second scenario). The main parachute is inflated at 18 s (15 s). It is

noted that the main chute for the first scenario is considerably larger than for the second one

to guarantee the lower final velocity.

For each scenario two simulations are run, i.e., a nominal one and one for which drogue

inflation is delayed by 5 s. The results are shown in Fig. 16. Due to the inflation delay the

Mars lander impacts with Vf = 65 m/s and Vf = 100 m/s, respectively. This kind of

simulations will help the system designers to study sensitivities in the descent and landing

system.

This example has clearly shown the versatility of the simulation environment to

accommodate complex force models, such as a parachute system. Of course, the complexity

of this force model can easily be increased as long as the interface to the flight-dynamics

kernel remains the same. To conclude, an extension of this example could be to use the

Multi-Body Library to model the parachute as a separate body, such that also the relative

rotation of parachute and payload can be analysed.

www.intechopen.com

Multi-Functional Guidance, Navigation
and Control Simulation Environment - Rapid Prototyping of Space Simulations

337

Fig. 16. Alitude-Mach number profile for different parachute-deployment timings.

5. Conclusions

In this paper, the development of a Generic GNC Simulation Environment, starting from a
set of User Requirements, has been described. The GGNCS Environment consists of a set of

MATLAB/Simulink libraries that are available to build a simulator of a spacecraft in its
environment. Each library comprises of a number of relatively simple blocks. The blocks
simulate/calculate/evaluate only one functional property, and are separated into an
application part and an interface part. The interface part takes care of all data

communication with the simulation platform, which is currently MATLAB/Simulink. The
user should use MATLAB/Simulink only to design the architecture of the spacecraft
simulator, which leads to an architecture that is very modular and reflects the physics. The
same architecture will serve as baseline for the development of other simulation facilities
that support the complete lifecycle of, for instance, the on-board software. This architecture

could be transferred by simply parsing the Simulink file. Extensive evaluation of the
simulation models has indicated that the models are representative for mission and control-
algorithm analysis for a multitude of missions and spacecraft configurations.

6. References

Cornelisse, J.W., Schöyer, H.F.R. and Wakker, K.F., Rocket propulsion and spaceflight
dynamics, Pitman, London, 1979.

www.intechopen.com

Rapid Prototyping Technology – Principles and Functional Requirements

338

Ellenbroek, M.H.M., "On the fast simulation of the multibody dynamics of flexible space
structures". Ph.D. dissertation Enschede, Technische Universiteit Twente, 1994

European Cooperation for Space Standardization, “Software”, ECSS-E-ST-40 C, Third issue,
06 March 2009

Forget, F., Dassa, K., Wanherdrick, Y., Lewis, S.R., Collins, M. and Bingham, S.J., “Mars
Climate Database v4.0 User Manual”, ESTEC contract 11369/95/NL,
January 2005.

Franco, R., Dumontel M.L., Portigliotti, S., and Venugopal, R., "The Dynamics and Control
Analysis Package (DCAP) - A versatile tool for satellite control", ESA Bulletin 87,
1996.

Geradin, M. and Cardona, A., "Flexible multibody dynamics, A finite element approach",
Chichester, John Wiley & Sons Ltd, 2001.

Haug, E.J., Computer aided kinematics and dynamics of mechanical systems, Volume 1: Basic
methods, Allyn and Bacon, Needham Heights, Massachusetts, 1989.

Montenbruck, O. and and Gill, E., Satellite orbits. Models, methods, and applications, Springer
Verlag, 2000.

Mooij, E., "Aerospace-Plane Flight Dynamics. Analysis of Guidance and Control Concepts",
Ph.D. dissertation, Delft University of Technology, 1998. Available from
http://repository.tudelft.nl/

Mooij, E. and Wijnands, Q.G.J., "Generic Attitude and Orbit Control Simulator development
supporting the AOCS software life cycle", From: 7th International Workshop on
Simulation for European Space Programmes, November 12-14, 2002, Noordwijk, The
Netherlands.

Mooij, E. and Wijnands, Q.G.J., " Real-Time Implementation of a Model Reference Adaptive
Control System”, AIAA-03-5754, AIAA Modeling and Simulation and Technologies
Conference, Austin, TX , August 11-14, 2003.

Mooij, E. and Ellenbroek, M.H.M., "Multi-Functional Guidance, Navigation, and Control
Simulation Environment", AIAA-07-6887, AIAA Guidance, Navigation, and
Control Conference, Hilton Head, SC, August 20-23, 2007.

Neefs, M.J. and Haye, M.J., “The Herschel-Planck ACMS simulation approach”, From: 7th
International Workshop on Simulation for European Space Programmes,
November 12-14, 2002, Noordwijk, The Netherlands.

Schaub, H.P. and Junkins, J., Analytical Mechanics of Space Systems, Second edition, AIAA
Education Series, 2009.

Vinh, N.X., Optimal trajectories in atmospheric flight, Elsevier, 1981.
Wertz, J., Spacecraft Attitude Determination and Control, (Astrophysics and Space Science

Library : Vol 73), 1978.
Wie, B., Space vehicle dynamics and control, Second Edition, AIAA Education Series, 2008.

www.intechopen.com

Rapid Prototyping Technology - Principles and Functional

Requirements

Edited by Dr. M. Hoque

ISBN 978-953-307-970-7

Hard cover, 392 pages

Publisher InTech

Published online 26, September, 2011

Published in print edition September, 2011

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Modern engineering often deals with customized design that requires easy, low-cost and rapid fabrication.

Rapid prototyping (RP) is a popular technology that enables quick and easy fabrication of customized

forms/objects directly from computer aided design (CAD) model. The needs for quick product development,

decreased time to market, and highly customized and low quantity parts are driving the demand for RP

technology. Today, RP technology also known as solid freeform fabrication (SFF) or desktop manufacturing

(DM) or layer manufacturing (LM) is regarded as an efficient tool to bring the product concept into the product

realization rapidly. Though all the RP technologies are additive they are still different from each other in the

way of building layers and/or nature of building materials. This book delivers up-to-date information about RP

technology focusing on the overview of the principles, functional requirements, design constraints etc. of

specific technology.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Erwin Mooij and Marcel Ellenbroek (2011). Multi-Functional Guidance, Navigation and Control Simulation

Environment - Rapid Prototyping of Space Simulations, Rapid Prototyping Technology - Principles and

Functional Requirements, Dr. M. Hoque (Ed.), ISBN: 978-953-307-970-7, InTech, Available from:

http://www.intechopen.com/books/rapid-prototyping-technology-principles-and-functional-requirements/multi-

functional-guidance-navigation-and-control-simulation-environment-rapid-prototyping-of-space-s

© 2011 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

