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1. Introduction 

Technological developments such as Flexible AC Transmission Systems (FACTS) can 
improve the power quality of the power system and can respond to the ever-increasing 
demand for electrical energy. Superconducting magnetic energy storage (SMES) is a FACTS 
device that has been used for several years at utility and industrial sites throughout the 
United States, Japan, Europe, and South Africa to provide both transmission voltage 
support and power quality to customers who are vulnerable to fluctuating power quality 
[1]-[3]. SMES systems are classified into two groups: voltage source inverter (VSI) and 
current source inverter (CSI) SMES. The VSI SMES has many advantages when compared 
with the CSI SMES; for example, in the VSI SMES, the power rating of power electronic 
devices that are used in the inverter is much less than that of the CSI SMES, resulting in 
fewer switching and power losses. Also, the VSI SMES can be used as a Static synchronous 
Compensator (STATCOM) when its chopper is out of service. Moreover, for the same 
condition, the VSI SMES can store more energy than the CSI SMES; these advantages 
encouraged the authors to study VSI SMES. 
This type of SMES is composed of a magnetic energy storage coil with various structures 
and power conditioning systems that are also composed of different parts, such as AC-DC 
filters, a multi-level chopper, a capacitor bank, and a multi-level converter (i.e. an inverter or 
rectifier). These power conditioning systems are also used in many different sustainable 
energy systems, such as bio fuels, solar power, wind power, wave power, geothermal 
power, and tidal power.  
The converter is an interface between the power network and the capacitor bank and 
controls the electrical energy exchange between the two. Likewise, the chopper is also an 
interface between the magnetic energy storage coil and the capacitor bank, and controls 
electrical energy exchange between them. To store the electrical energy in the capacitor bank 
and the magnetic energy storage coil in the range of mega joules, it is necessary to employ 
high power-rating converters; to overcome the limitations of the current and voltage range 
of the semiconductors, multi-level converters are used. The advantages of using such 
converters include reducing voltage on the switches, harmonic order correction, decreasing 
or eliminating lateral equipment, decreasing switching frequency, decreasing total harmonic 
distortion (THD), decreasing switching losses, and decreasing the output current ripple. 
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Multi-level converters, on the other hand, have some disadvantages associated with their 
use, such as the complexity of the control systems, increasing the number of power 
electronic devices, and increasing the asymmetry of the capacitor voltages during charge 
and discharge [4]-[8]. However, the trend toward increasing the speed of electronic 
processors and the steady decrease in the cost of power electronic devices, coupled with the 
ability to implement advanced modulation methods such as the SVPWM, encourage 
engineers to ignore the disadvantages of multi-level converters. There are three different 
multi-level voltage source converters: diode-clamped, flying capacitor, and cascade H-
bridge. For the same voltage level, there are fewer capacitors in a diode-clamped multi-level 
converter than in the other multi-level converters, making it much more cost-effective than 
other two converters. When there are three voltage levels, a three-level diode-clamped 
converter is referred to as a neutral point clamped (NPC). With respect to the fact that an 
appropriate choice of switching strategy for SVPWM effectively reduces the low order 
harmonics, a novel and optimized switching strategy for SVPWM has been proposed for the 
first work in this chapter in order to mitigate some low order harmonics in the NPC voltage 
source inverter [9]-[13].  
Depending on its application, a SMES device is controlled in two ways: first, the transmitted 
active and reactive power to the network is controlled using a NPC voltage source inverter 
and the capacitor voltage is stabilized using a chopper. In the second approach, the NPC 
voltage source inverter controls the transmitted reactive power to the network while 
stabilizing the capacitors voltage and the chopper controls the transmitted active power to 
the network. It should be noted that if the capacitors voltage is stabilized during all 
switching operations, low-capacity capacitors can be used in the SMES system, resulting in a 
lower cost of configuration. The voltage variation in low-capacity capacitors is faster during 
the course of supplying the power network by the SMES; consequently, a controller with a 
differential part, i.e. PID, will make the capacitor’s voltage unstable and will transmit any 
noise to the power electronic devices of the chopper. Thus, PI controllers are used in this 
study to stabilize the capacitors voltage of the SMES by generating the real-time duty 
cycles of the three-level chopper in different operation modes. Stabilization of capacitors 
voltage will correct any imbalance due to asymmetry within the SMES circuit and its 
operation. 
 

 

Fig. 1. The VSI SMES 
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Power quality is involved with a wide range of electromagnetic phenomena such as 
transient state, short- and long-term variations, voltage imbalance and variations, wave 
distortion, and frequency oscillations in power systems. In fact, the magnitude of 
variations in voltage, current, and frequency within power systems determines the power 
quality. In recent years, the voltage quality has been hailed as the most important index of 
power quality. Among voltage quality indicators, voltage sag has been shown to be 
especially important; voltage sag is defined as a temporary voltage drop that lasts 
between 0.5 and 30 cycles, and has a typical magnitude of 0.1 to 0.9 per unit range [14], 
[15]. 
A voltage sag can cause the same amount of downtime as a complete loss of power, 
especially if, for example, machines need to be rebooted or production processes need to be 
restarted. This issue poses a major challenge when estimating the economic cost of power 
interruptions and power-quality events. One way to compensate for voltage sag is to use 
VSI SMES, which is studied as a second work in this chapter by proposing a novel 
compensation algorithm. So this chapter presents a novel and optimized switching strategy 
and control approach for a three-level two-quadrant chopper in a three-level Neutral point 
clamped (NPC) voltage source inverter (VSI) superconducting magnetic energy storage 
(SMES). Using the proposed switching strategy, the voltage of the inverter capacitors in 
SMES can be independently controlled; also, the minimum power and switching losses - as 
well as the proper convection - can be achieved using this same strategy. The simulation 
results indicate that when combined with a proportional-integral (PI) control approach the 
proposed switching strategy can be easily implemented in the power networks and can 
balance and stabilize the multi-level inverters’ capacitor voltage level. The voltage variation 
of the capacitors in the steady state condition is less than (0.062%) which is 15 times better 
than the IEEE standard requirement (1%). To investigate the effectiveness and reliability of 
the proposed approach in stabilizing capacitor voltage, SMES performance using the 
presented approach is compared with that of SMES when the capacitors of the three-level 
inverter are replaced with equal and ideal voltage sources. This comparison is carried out 
from the power quality point of view and it is shown that the proposed switching strategy 
with a PI controller is highly reliable [16]- [17]. Considering that the Space Vector Pulse 
Width Modulation (SVPWM) is highly effective in decreasing low order harmonics, this 
article utilizes this type of modulation when it is combined with the most optimized 
switching strategy.  
In addition, this chapter proposes a new algorithm for SMES to compensate the voltage sag 
in the power networks. Simulation results show that the VSI SMES, when combined with 
the proposed algorithm, is able to compensate the voltage sag and phase voltage in less than 
one cycle, which is 5 times better than other voltage sag compensators. 

2. Switching strategies of the three-level NPC inverter  

Fig. 2 shows a case study in which a three-level NPC inverter supplies the three phase 
power network. A filter is used between the inverter and the power network to eliminate 
the high order harmonics; it is noted that parts of the low order harmonics are mitigated by 
applying SVPWM. Different switching states of the three-level NPC inverter are shown in 
Table 1: 1 and 0 indicate the on/off states of the switches, respectively. As seen in this table, 
in order to prevent a capacitor leg short-circuit, all switches in a leg are never turned on 
simultaneously. 
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 a) b) 

Fig. 2. a) The three-level three-phase Inverter, b) The power network (Load) and  
the LC Filter 

 

1iS ′  
2iS ′  

2iS  
1iS  iC  

0 0 1 1 1 

0 1 1 0 0 

1 1 0 0 -1 

Table 1. Different switching states of the three-level inverter 

From Fig. 2 and Table 1: 

 / 2 , ,= =io i dcV C V      i a b c  (1) 

Assuming that the inverter output voltage is balanced and symmetrical:  

 = −io noinV V V  (2) 

 0+ + =an bn cnV V V  (3) 

Replacing (2) in (3) results in: 

 ( ) /3= + +no ao bo coV V V V  (4) 

Also, substituting (1) and (4) in (2) gives: 

 

2 / 3 1 / 3 1 / 3

1 / 3 2 / 3 1 / 3

1 / 3 1 / 3 2 / 3

− −     
     

= − −     
     

− −     

an ao

bn bo

cn co

V V

V V

V V

 (5) 
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If ( 0)=wt , Park’s transformation gives : 

 ( ) 2 /322
,

3
= + = + + =


j

ref d q an bn cnV V jV V aV a V a e π  (6) 

 ( )2

6
= + +


dc

ref a b c
V

V C aC a C  (7) 

Using (7) and the values of ( , , )a b cC C C  that are given in Table 1, 27 space vectors are 

obtained; the corresponding space vector plan is shown in Fig. 3 and shows that the vectors 

14 7, ,V V and 0V  will short-circuit the load. In fact, these vectors are zero voltage vectors in 

the space vector plan; the other space vectors are active vectors. The active vectors 21V  to 

26V  that have a magnitude of 2 / 6dcV  form a large hexagon; the active vectors 15V  to 20V  

that have a magnitude of / 2dcV  form a medium hexagon, while the active vectors that 

have a magnitude of / 6dcV  draw a small hexagon in the space vector plan. As seen in Fig. 

3, each hexagon is divided into six sectors; moreover, each sector in the large hexagon is 

divided into four triangles. So there are 24 triangles in the large hexagon. At any instant, the 

vector 


refV  is located inside one of the 24 triangles. The average value of the output voltage 

( )


refV is computed from the linear composition of the vectors of the triangle in which 


refV  is 

located, as is shown in Fig. 4.  
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Fig. 3. The space vector plan 
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Fig. 4. Operation time calculation of each triangle vector 

  
0 0

+

+

= + +   
   S a a b S

a a b

T T T T T

ref a b c

T T T

V dt V dt V dt V dt  (8) 

 = + +
   

S ref a a b b c cT V T V T V T V  (9) 

The projection of the vectors in (9) on the d-q axis and composing the obtained vectors 
results in: 

 cos cos cos cos= + +
   

s ref a a a b b b c c cT V T V T V T Vα α α α  (10) 

 sin sin sin sin= + +
   

s ref a a a b b b c c cT V T V T V T Vα α α α  (11) 

 

2
,

6

,

2

 
=  

 
+ + =

+ = =


a ref dc

a b c S

inv

m V V

T T T T

t ftω ϕ π α

 (12) 

where am  is the modulation index, ST  is the switching period [the inverse of the switching 

frequency ( )Sf ], invϕ is the inverter phase, and f  is the frequency of the inverter output 

voltage. Assuming that the switching period, the phase, and the magnitude of the vectors 

, , ,
  

ref a bV V V and 


cV  are known, solving equations (10), (11), and (12) gives , ,a bT T  and 

cT . These, shown in each triangle in Fig. 3, determine the operation time of the triangle 

vectors. Note that by knowing the value of + invtω ϕ at any time, the number of the space 

sector in which 


refV is located can be determined. The above equations can be extended to all 

sectors of the large hexagon by changing α  to (( 1) / 3)− −nα π  where 1 , ... , 6=n  is the 

sector number. Table 2 gives the operation times of the vectors of the 4 triangles created in 

the thn  sector.  
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, ,=iT i a b c  triangles’ number 

= − −a s b cT T T T  

2 2 sin( / 3) /= − +b ref S dcT V T n Vα π  

2 2 sin( ( 1) / 3) /= − −c ref S dcT V T n Vα π  

I  

= − −a s b cT T T T  

2 2 sin( / 3) /= − +b ref S dcT V T n Vα π  

2 2 sin /=c ref S dcT V T Vα  

II  

= − −a s b cT T T T  

2 2 cos( (1 2 ) /6) /= − + + −b s ref S dcT T V T n Vα π  

2 2 sin( / 3) /= − − +c s ref S dcT T V T n Vα π  

III  

= − −a s b cT T T T  

2 2 sin( / 3) /= − +b ref S dcT V T n Vα π  

2 2 sin( ( 1) / 3) /= − + − −c s ref S dcT T V T n Vα π  

IV  

Table 2. The operation times of the vectors of 4 triangles of the nth sector 

Depending on the number of space vectors in each sector and the operation time of each 

space vector in generating ,


refV  many different switching strategies can be presented. The 

authors of the present work demonstrated that, in order to minimize THD in the inverter 

output voltage, the zero vectors should be distributed at the beginning, middle, and end of 

the switching periods in each sector whenever possible, [23]-[24]. Also, to minimize the 

switching losses, this distribution should be performed so that the minimum number of 

displacements in the switching states in each switching period of each sector occurs. The 

switching strategy of the space vector pulse width modulation is shown in Table 3; this 

strategy is based on the 24 triangles that were generated in the large hexagon as previously 

indicated. This switching strategy is implemented such that both the minimum THD and 

the minimum switching losses are realized. Note that aijC  in this table indicates the 

switching states in the inverter leg-a at sector i in triangle j. It should also be noted that the 

operation time of the vectors of each triangle in this switching strategy is determined by the 

times indicated in each triangle shown in Fig. 3. The switching strategy shown in Table 3 is 

the most appropriate strategy among the other switching strategies of the SVPWM [23] 

because it: 

• Minimizes the THD in the line voltage 

• Has the minimum THD in the phase voltage in 60% of the modulation index interval 

• Creates the minimum number of the harmonic orders in both the line and the phase 
voltage, resulting in the minimum distortion power losses  

• Has the minimum ratio of harmonic orders to the fundamental order 

• Has the minimum switching losses to switching frequency ratio 
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• Has a low dependency of the THD on the high harmonic orders in the high modulation 
index. 

• Reduces the size of the filter inductance ( )fL . This is because the order of the low order 

harmonic (LOH) increases 

• Creates the minimum power and switching losses in the 50% and 100% modulation 
index interval, respectively 

• Produces the maximum number of levels in the line or phase voltage 

• Provides rapid damping of the distortion factor (DF) of the line and the phase voltage 
versus the switching frequency. Because of this rapid damping, DF is independent of 
the switching frequency 

• Reduces the transient time for one cycle period to obtain a sinusoidal voltage and load 
current  
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Table 3. The implemented switching strategy in the three-level NPC inverter with Space 
Vector Pulse Width Modulation 

3. A novel switching strategy for the two-quadrant three-level chopper   

As was previously discussed, the SMES control methods for stabilizing capacitors voltage 
depends upon the power networks. In the first control approach, the transmitted active and 
reactive power to the network is controlled by a NPC voltage source inverter, while the 
capacitors voltage is stabilized using a chopper. This approach is used to investigate the 
interaction between the SMES and the power networks. This control approach is easily 
implemented if an optimized and appropriate switching strategy for the chopper is defined;  
5 shows a two-quadrant three-level chopper that was studied in this work.  
In Table 4, all possible switching states in the three-level chopper as well as the SMES coil 
current path are provided. One of the main requirements for the switching strategy of the 
multi-level choppers is to minimize both the switching losses and the frequency in order to 
eliminate the need for high frequency electronic switches. Moreover, minimization of the 
power loss is obtained by minimizing the number of on-switches with the minimum on-
time in each switching period. Therefore, the switching states in which each chopper 
switching period creates the minimum number of displacements in the switching states are 
selected as the best states for the SMES coil charge and discharge modes. The optimum 
switching states are highlighted in Table 4; other switching states that do not satisfy the 
aforementioned conditions were not used [28]. 
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Current path 1 2 1 2( , , , )′ ′d d d dS S S S  loadV  Mode 

1 2 1 2, , ,′ ′d d d dS S S S  (1111)   1 2+C CV V  FCM 

1 2 2, , ,′ ′d d d dS S D S  (0111)  2CV  

1 2, , ,′ ′d d d dS D D S  (0110)  0  

1 1 2, , ,′ ′d d d dS D S S  (1110)  1CV  

CM 

, ′e eD D  (0000)  1 2− −C CV V  FDM 

1 , ,′ ′ ′d d eS D D  (0010)  2− CV  

1 2, , ,′ ′d d d dS D D S  (0110)  0  

2, ,e d dD D S  (0100)  1− CV  

DM 

1 2, ,e d dD S S  (1100)  0  

1 2, ,e d dD S S  (1101)  0  

1 2, ,′ ′ ′d d eS S D  (1011)  0  

1 2, ,′ ′ ′d d eS S D  (0011)  0  

2, ,e d dD D S  (0101)  1− CV  

, ′e eD D  (1010)  1 2− −C CV V  

, ′e eD D  (1001)  1 2− −C CV V  

, ′e eD D  (1000)  1 2− −C CV V  

, ′e eD D  (0001)  1 2− −C CV V  

U
n

u
sa

b
le

 

Table 4. Switching states in a two-quadrant three-level chopper 

Another requirement in the switching strategy of the multi-level choppers is the 

independent action of the capacitors voltage controllers. The switching strategy that satisfies 
the two cited requirements is outlined in Table 5. The charge and discharge modes (CM and 
DM) in Table 5 are obtained from the proper states in Table 4, assuming that the chopper 

switching period is 2 chT .  

Note that oT  and uT  are, respectively, the operation times that the voltage of the upper and 

lower capacitors are connected to the positive and the negative polarities of the load during 

the charge and the discharge modes. Also, zT  is the chopper operation time when the load is 

short circuit; this occurs at both the charge and discharge modes. Hence, the duty cycles of 

the chopper can be defined as follows:  

 2 , 2 , 2= = + + =o o ch u u ch o u z chd T T d T T T T T T  (13) 

From this equation, it can be seen that , ,o ud d and zd  vary within the range [0, 1]. Also, 

Table 5 shows that in the charge and the discharge modes, +o ud d  is always less than one, 

which means that the required time for compensating the capacitor voltage to the reference 

voltage is less than a single switching period of the chopper. In other words, if +o ud d  is 

more than one, the required time for the compensation of the capacitors voltage to the 

reference voltage will be more than a single switching period of the chopper.  
In this case, the compensation of the capacitors voltage to the reference voltage should be 
performed simultaneously. The fast charge and discharge (FCM and FDM) modes have 
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been considered for this case; note that in changing from the fast charge mode to the charge 
mode, or from the fast discharge mode to the discharge mode and vice versa, the minimum 
number of switch displacements of each chopper switching period occurs, resulting in a 

minimum of switching losses presenting an advantage of the proposed switching strategy. 
 

a)

b)

Fig. 5. a) The two-quadrant three-level chopper, b) The load (DC filter and SMES coil) 

 

 

Table 5. The implemented switching strategy in the two-quadrant three-level chopper 
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4. Chopper duty cycle controller design 

In this section, a block diagram for generating the duty cycle of CM and FCM is presented 
(Fig. 6). To enhance the system dynamic response when balancing the capacitors voltage, it 
is necessary to ensure that the capacitors voltages are equal prior to connecting the inverter 
to the power network. To achieve this, the voltages of the upper and the lower capacitors are 

compared with the reference voltage, which is assumed to be 0.5 dcV , as seen in Fig. 6. 

Subsequently, the difference in the voltages is passed through the limiters with [0 0.5] 
interval. These limiters work so that each capacitor is charged for only 50% of the switching 
period; in fact, the outputs of these limiters can only produce the charge mode (CM). After 
connecting the inverter to the power network, the PI controllers begin operating and the 
voltage errors are fed to these controllers. Using the signal holders, the outputs of the PI 

controllers are sampled every 2 chT period. The signal holders with a 2 chT  sampling time are 

used to avoid abrupt variations in the duty cycles. If the duty cycles vary abruptly, the turn 
on/off times should be zero, but this is practically impossible. The signal holder outputs are 
passed through the limiters with [0 1] interval; these limiters can produce both the charge 
and the fast charge modes (CM, FCM).  
 

   
 a) b) 

Fig. 6. The chopper duty cycle controller 

With the availability of , ,o ud d chT , and by using the Embedded MATLAB Functions shown 

in Fig. 6, the various modes of the chopper (CM, FCM, DM, and FDM) can be determined. 

Finally using these modes, the corresponding switching strategies are applied to the 

chopper switches based on Table 5. 

5. Simulation results of the switching strategy of the three-level chopper 

In this section, the strategies presented in sections 2 through 4 are simulated using 
MATLAB® software. The power network to which the SMES is connected is shown in Fig. 7 
and was modeled using the M-file in MATLAB®. The power network and the SMES 
parameters are given in Appendix I.  
In Fig. 8, the SMES performance using the developed approaches is compared with that of 
the SMES when the capacitors of the three-level NPC inverter are replaced with equal and 
ideal voltage sources (SMES with ideal VSI). These comparisons are from the perspective of 
the THD and the DF of the inverter output line voltage. As seen in this figure, the 
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performance of the SMES using the chopper duty cycle controller is the same as that of the 
SMES with an ideal VSI.  
 

 
Fig. 7. The power network 
 

 

 

Fig. 8. THD and DF variation of the inverter output line voltage 
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Fig. 9 shows the voltage variation of the capacitors versus the modulation index; this figure 
indicates that the proposed schemes are capable of stabilizing the capacitors voltage to the 
reference voltage (with less than 0.5% error in the worst case scenario). The smallest voltage 
variation (with 0.0625% error) is obtained when the modulation index is 0.65, as shown in 
Figure 9. This is because PI controllers have been regulated for this modulation index; in 
short, the variation of the capacitor voltage depends on both the modulation index and the 
parameters of the PI controllers. Therefore, in order to obtain the best results, it is recommended 
that the parameters of the PI controllers be deregulated for each modulation index. 
 

 

Fig. 9. The capacitors voltage variation versus index modulation 

 

 

Fig. 10. The current and the voltage of the SMES coil and the current of the load 
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Fig. 10 shows the voltage and current of the SMES coil and the current of the load. From this 
figure, it can be seen that the current of the SMES coil is decreasing, or rather, that the stored 
energy in the coil is discharging. The discharged energy is transmitted to the chopper in the 
active power form because in this transmission, the current of the load and the voltage of the 
SMES coil remain constant.  
 

a) 

 

b) 

 

Fig. 11. a) The voltage of the capacitor fdcC  and the chopper duty cycle percent,  

b) Steady state duty cycle percent 

Fig. 11 depicts the variation of the chopper duty cycle and the voltage of the DC filter 

capacitor. In this figure, the inverter is connected to the power network at 0.08 [sec]=t . It is 

concluded from this figure that before 0.08 [sec]=t , the CM mode has been selected by the 
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Embedded MATLAB function, and after this time, both the CM and the FCM modes have 

been selected as well. Also, as observed in Fig. 11a, the voltage of the fdcC is important in 

stabilizing the voltage of the SMES coil; Fig. 11b shows that in steady state condition, only 

the CM mode occurs for this power network.  

Fig. 12 shows the voltage variation of the capacitors; the initial voltages of the capacitors 1C  

and 2C  were 9800 [ ]V  and 9500 [ ]V , respectively. As noticed in Fig. 12, the proposed 

switching strategy properly stabilizes the capacitors voltage before and after connecting the 

inverter to the power net-work. In Fig. 12, the voltage variations of the capacitors in the 

steady state condition, as can be verified in Fig. 9, is less than 6.25 [ ]V (0.062%)  Compared 

with the values defined in the IEEE standard specifications and obtained in [27] (i.e. 1% ), 

this value has been reduced approximately 15 times.  

 

 

Fig. 12. Variation of the voltage of the capacitors 1C  and 2C  

The parameters of the PI controllers, as seen in Appendix I, should be independently tuned 

for the upper and lower capacitors. This is because when using the SVPWM, the upper and 

the lower capacitors are not discharged at the same rate; consequently, the number of the PI 

controllers should be equal to that of the level of the inverters, and the parameters of each PI 

controller should be independently tuned. In fact, using this approach, the voltage of the 

inverter capacitors can be stabilized even when the power network is asymmetric and 

unbalanced. To verify the simulation results obtained by the proposed switching strategy 

given in Tables 3 and 4, part of the implemented switching strategy in the inverter and the 

three-level chopper are shown in Figs. 13 and 14, respectively. These figures show that the 

carrier waves of the chopper and the inverter are triangular, that the period of these carrier 

waves for the inverter and the chopper are 2 0.001 [sec]=ST  and 2 0.001 [sec]=chT , and that 

their magnitudes are ST  and chT , respectively. 
In Fig. 15, the steady state line voltage and the current of loads 2 and 3 are shown. Fig. 16 
shows the steady state line voltage and the current of the inverter prior to filtering. 
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Comparisons of Figs. 15 and 16 show that the AC passive filter successfully filters out  
the current and the voltage harmonics that are produced by the inverter at the load 
terminals. 
 

 

Fig. 13. Part of the proposed switching strategy for the inverter using the SVPWM 

 

 

Fig. 14. Part of the proposed switching strategy for the three-level chopper 
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b) 

Fig. 15. Steady state line voltage and the current of the loads: a) No.2, b) No.3. 
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Fig. 16. The steady state output voltage and the current of the inverter 

6. Voltage sag compensation algorithm  

Here, a new algorithm is presented to compensate the sag voltage in an R-L load using 
SMES. Fig. 17 shows the configuration of the studied power network, the R-L loads, and the 
SMES. 
 

 

Fig. 17. Configuration of the R-L load, the SMES, and the power network 

To compensate the voltage sag using SMES, it is necessary that the proper values of am and 

invϕ  be calculated and applied to the inverter. If the phasor voltage of the R-L load 2 
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(resulting only from the generator) before and after the voltage sag is shown by 


pv  and 


nv , 

respectively, and the phasor voltage of this R-L load (resulting only from connecting the 

SMES to the power network) after the voltage sag is shown by ,


smesv then the phasor 

diagram of the R-L load voltage can be shown as given in Fig. 18, using which, the following 

equations can be obtained: 

 1 sin sin
tan

cos cos
−
 −

=   − 

p p n n
smes

p p n n

g
ν ϕ ν ϕ

ϕ
ν ϕ ν ϕ

 (14) 

 ( )cos cos cos= −smes p p n n smesν ν ϕ ν ϕ ϕ  (15) 

By calculating smesϕ  and smesv  from (14) and (15), and by using the power flow that considers 

only the effect of the SMES system, the values of the am and invϕ for applying to the three-

level NPC inverter can be calculated.  
 

 

Fig. 18. The phasor diagram of the voltage sag compensation in the R-L load 

7. Simulation rsults and dscussion 

The power network shown in Fig. 17 was simulated using MATLAB software; the 

parameters used in this figure are the same as those defined in Fig. 7, and the parameters for 

the generators are provided in Appendix I; in addition, the sag compensation of the voltage 

for load 2 using the SMES is shown in Fig. 19. In this study, the voltage of the generator 

drops to 0.5 [ . .]p u ; in Fig. 19a, the voltage immediately decreases at 0.5=t [sec] from its full 

value to the sag value in essentially zero time, while in Fig. 19b, the same observation occurs 

during one cycle in ramp rate. In Figs. 19a and b, the Compensator begins sampling the 

magnitude and phase of the voltage of load 2 after one cycle and again after three cycles of 

voltage sag, respectively. As can be seen in this figure, the SMES successfully uses the 

proposed algorithm and compensates the load voltage in less than one cycle. Performance 

comparison shows that the dynamic response time of the SMES using the proposed 

algorithm when compensating for the voltage sag is 5 times faster than that which is 

presented in [32], and is equal to the responses obtained by the current source inverter (CSI) 

SMES presented in [33]-[36].  

To study the active and reactive powers at steady state, in all other figures that are 

presented in this section, the Compensator is regulated to begin measuring and compensating 

after three cycles of the voltage sag. Fig. 20 shows the compensation of the phase and the 
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magnitude of the voltage of load 2. As seen in this figure, the SMES uses the presented 

algorithm to successfully compensate both the magnitude and the phase of the load voltage 

and return them to their initial values. In Fig. 20, the voltage variation of the load in steady 

state condition is approximately 1.1559 [ ] (0.0365%)V , which is 136 times less than the IEEE-

519 standard (5%) . 
 

 
a) 

 

 
b) 

Fig. 19. The voltage sag compensation of the load No. 2 

www.intechopen.com



  
Power Quality – Monitoring, Analysis and Enhancement 

 

276 
 

 

Fig. 20. Compensation of the phase and magnitude of the voltage of the load No. 2. 

8. Conclusion 

In this study an appropriate switching strategy for the NPC VSI with several advantages for 
the SMES regarding its ability to improve the performance of this device was presented. 
Some advantages of using this strategy for the NPC VSI presented in this chapter include: 

• Optimizing power quality by implementing a proper switching strategy in SVPWM for 
VSI SMES 

• Better stabilization of the capacitors voltage of the VSI SMES than that of the IEEE 
standard  

• Implementing the rapid charge and discharge modes as opposed to the charge and 
discharge modes in order to increase the dynamic response time when stabilizing the 
capacitors voltage of the VSI SMES 

• Independent control of the capacitors voltage in the VSI SMES for compensating 
asymmetric and unbalanced loads 

• Minimizing the switching and power losses, resulting in easy and reliable convection 
from multi-level converter’s switches 

• Using the proposed switching strategies, resulting in the power quality becoming equal 
with the case in which the capacitors of the inverter are replaced with an ideal and 
equivalent voltage source (SMES with ideal VSI) 

• Effective and highly reliable performance of the presented strategy when used with a PI 
control approach 

• Compensating capacitors voltage of the VSI SMES prior to connecting the SMES to the 
power network (stand-by mode) 

• Furthermore, an algorithm was presented for the VSI SMES in order to compensate the 
voltage sag. Some advantages of the proposed algorithm include: 

• Compensating the voltage sag and the voltage phase of the load in less than one cycle 
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• Compensating the active and the reactive power in less than four cycles 

• Load voltage stabilizing in good agreement with the IEEE-519 standard  

9. Appendix I 

The parameters of the PI controllers: 

0.1, 0.1, 0.04, 0.03= = = =O O U UKP KI KP KI  

Specifications of the transmission line: 

1 1 2

2 3 3

15 [ ], 1.5 [ ], 15 [ ],

1.5 [ ], 30 [ ], 3 [ ]

= Ω = Ω = Ω

= Ω = Ω = Ω

L L L

L L L

X R X

R X R
 

Specifications of the synchronous generator: 

0.15 [ . .], 0.015 [ . .],

20 [ ], 50 [ ]

= =

= =

G G

G G

X p u R p u

V KV S MVA
 

Specifications of the transformers: 

1 1 1

1 2 2

2 1 3

3 3 3

0.1 [ . .], 0.01 [ . .], 30 [ ],

20 /132 [ ], 0.1 [ . .], 0.01 [ . .],

30 [ ], 132 / 20 [ ], 0.1 [ . .],

0.01 [ . .], 50 [ ], 132 /13.2 [ ]

= = =

= = =

= = =

= = =

T T T

T T T

T T T

T T T

X p u R p u S MVA

V KV X p u R p u

S MVA V KV X p u

R p u S MVA V KV

 

Specifications of the R-L loads: 

1 1 1

1 2 2

2 2 3

3 3 1

2 [ ], 5 [ ], 30 [ ],

18 [ ], 0.2 [ ], 0.5 [ ],

30 [ ], 18 [ ], 0.2 [ ],

0.5 [ ], 50 [ ], 13.2 [ ]

= = Ω =

= = = Ω

= = =

= Ω = =

RL RL RL

RL RL RL

RL RL RL

RL RL RL

L mH R S MVA

V KV L mH R

S MVA V KV L mH

R S MVA V KV

 

Assumed specifications of the NPC VSI and the SMES: 

: , 0.75 [ ], 1.1 [ ],

0.05 [ ], 20 [ ], 2 [ ], 400 [ ]

= Ω =

= = = =

IGBT FO

S dc ch f

IGBT SEMIKRONSKM R m V V

P W V KV f KHz C Fµ

2

1

800 [ ], 1 [ ], 20 [ ], 0.65,

50 [ ], 10 [ ], 2 [ ], 200 [ ]

700 [ ], 2 [ ], 2 [ ], 200 [ ]

= = = Ω =

= = = Ω =

= = Ω = =

f fdc fdc

SMES SMES

fdc fdc s

L H L mH R m M

f Hz L H R C mF
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